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Abstract
In this paper, we study the wave equation with frictional damping, time delay in the
velocity, and logarithmic source of the form

utt(x, t) –�u(x, t) + αut(x, t) + βut(x, t – τ ) = u(x, t) ln
∣
∣u(x, t)

∣
∣
γ
.

There is much literature on wave equations with a polynomial nonlinear source, but
not much on the equations with logarithmic source. We show the local and global
existence of solutions using Faedo–Galerkin’s method and the logarithmic Sobolev
inequality. And then we investigate the decay rates and infinite time blow-up for the
solutions through the potential well and perturbed energy methods.
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1 Introduction
We consider the following wave equation with frictional damping, time delay in the veloc-
ity, and logarithmic source:

utt – �u + αut(t) + βut(x, t – τ ) = u ln |u|γ for (x, t) ∈ � × (0,∞), (1.1)

u(x, t) = 0 for (x, t) ∈ ∂� × (0,∞), (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ �, (1.3)

ut(x, t) = j0(x, t) for (x, t) ∈ � × (–τ , 0), (1.4)

where � ⊂ R
N , N ≥ 1, is a bounded domain with smooth boundary ∂�. τ > 0 is time

delay, α, β , and γ are real numbers that will be specified later. Equation (1.1) is related to a
relativistic version of logarithmic quantum mechanics and many branches of physics such
as nuclear physics, optics and geophysics [3, 10, 15].

One of the important theories addressing the existence and nonexistence of solutions for
problems with source terms is the potential well method, which was devised by Sattinger
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[29]. Based on the method, the interaction between the damping and the source terms was
firstly considered by Levine [16]. Since then, the damped wave equation with polynomial
nonlinear source of the form

utt – �u + h(ut) = |u|p–2u (1.5)

has been studied extensively on existence, nonexistence, stability, and blow-up of solutions
(see [4, 12, 13, 30] and the references therein). Recently, much attention has been paid
to the study of nonlinear models of hyperbolic and parabolic equations with logarithmic
source nonlinearity [1, 2, 5–8, 17, 18, 22]. For the strongly damped wave equation

utt – �u – a�ut + but = u ln |u|γ ,

Ma and Fang [22] showed the global existence and infinite time blow-up of solutions when
γ = 2, a = 1, and b = 0. They used a family of potential wells that is related to the loga-
rithmic nonlinearity, which was introduced by Chen et al. [7]. Lian and Xu [18] proved
the global existence, energy decay and infinite time blow-up of solutions when γ = 1,
a ≥ 0, and b > –aλ, where λ is the first eigenvalue of the operator –� under homogeneous
Dirichlet boundary conditions. In [1], the authors considered the plate equation

utt(x, t) + �2u(x, t) + u(x, t) + ut(x, t) = u(x, t) ln
∣
∣u(x, t)

∣
∣
γ .

They proved the global existence of solutions and showed that the solutions decay expo-
nentially for a suitable initial data. Later, they extended the results to the case of nonlinear
damping in the work [2]. There is not much literature for wave equations with time delay
and logarithmic nonlinear source. Thus, in this paper, we intend to study such problem;
see (1.1)–(1.4). When γ = 0 in (1.1), Nicaise and Pignotti [24] proved that the energy de-
cays exponentially under the condition 0 < β < α, and then improved the result to the case
of time varying delay in [25]. For related work on problems with time delay, we also refer
to [9, 14, 27, 31, 32] and the references therein. Inspired by these results, we discuss the
solutions for problem (1.1)–(1.4). To the best of our knowledge, there is little work that
takes into account wave equations with time delay and logarithmic source. Thus, we prove
the local existence of solutions for problem (1.1)–(1.4) via Faedo–Galerkin’s method and
the logarithmic Sobolev inequality, and then show the global existence and energy esti-
mates of solutions using the perturbed energy method. Moreover, we establish an infinite
time blow-up result by applying the ideas presented in [20, 23, 26] with some necessary
modification.

The outline of this paper is as follows. In Sect. 2, we give some notations and material
needed for our work. In Sect. 3, we prove the local existence for problem (1.1)–(1.4). In
Sect. 4, we provide the global existence and energy decay rates of solutions. Finally, in
Sect. 5, we show that the solution occurs with an infinite time blow-up.

2 Preliminaries
We denote the norm of X by ‖ · ‖X for a Banach space X. We denote the scalar product in
L2(�) by (·, ·). For brevity, we denote ‖ · ‖2 by ‖ · ‖. Let B1 be the optimal constant of the
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embedding inequality

‖u‖2 ≤ B1‖∇u‖2 for u ∈ H1
0 (�) (2.1)

With regard to problem (1.1)–(1.4), we impose the following assumptions:
(H1) The weights of dissipation and delay satisfy

0 < |β| < α. (2.2)

(H2) The constant γ in (1.1) satisfies

0 < γ < πe
2(N+1)

N . (2.3)

Let us list some lemmas for our work.

Lemma 2.1 (Logarithmic Sobolev inequality [7, 11]) For any u ∈ H1
0 (�) and any positive

real number k,

∫

�

u2 ln |u|dx ≤ 1
2
‖u‖2 ln‖u‖2 +

k2

2π
‖∇u‖2 –

N
2

(1 + ln k)‖u‖2. (2.4)

Remark 2.1 Even though the inequality (2.4) holds for all k > 0, for the computations
throughout this work, we take the constant k satisfying

ρ := max

{

e– N+1
N ,μ

1
N

√
π

γ

}

< k <
√

π

γ
, (2.5)

where μ is any real number with

0 < μ < 1. (2.6)

Lemma 2.2 (Logarithmic Gronwall inequality [5]) Let c > 0 and l ∈ L1(0, T ;R+). If a func-
tion f : [0, T] → [1,∞) satisfies

f (t) ≤ c
(

1 +
∫ t

0
l(s)f (s) ln f (s) ds

)

, 0 ≤ t ≤ T ,

then

f (t) ≤ cec
∫ t

0 l(s) ds, 0 ≤ t ≤ T .

For v ∈ H1
0 (�), we define

J(v) =
1
2
‖∇v‖2 –

1
2

∫

�

v2(x) ln
∣
∣v(x)

∣
∣
γ dx +

γ

4
‖v‖2, (2.7)

I(v) = ‖∇v‖2 –
∫

�

v2(x) ln
∣
∣v(x)

∣
∣
γ dx, (2.8)
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then

J(v) =
1
2

I(v) +
γ

4
‖v‖2. (2.9)

Let

d = inf
v∈H1

0 (�)\{0}
sup
λ≥0

J(λv), (2.10)

then it satisfies, see e.g. [6, 21, 28],

0 < d = inf
v∈N

J(v), (2.11)

where N is the well-known Nehari manifold, given by

N =
{

v ∈ H1
0 (�) \ {0} | I(v) = 0

}

.

Lemma 2.3 For any v ∈ H1
0 (�) with ‖v‖ 
= 0, the functions I and J satisfy

I(λv) = λ
∂J(λv)

∂λ

⎧

⎪⎪⎨

⎪⎪⎩

> 0, 0 < λ < λ∗,

= 0, λ = λ∗,

< 0, λ > λ∗,

(2.12)

where

λ∗ = exp

(‖∇v‖2 –
∫

�
v2(x) ln |v(x)|γ dx
γ ‖v‖2

)

.

Proof By direct computation, we have, for λ ≥ 0,

λ
∂

∂λ
J(λv) = λ

{

λ‖∇v‖2 – λ

∫

�

v2(x) ln
∣
∣v(x)

∣
∣
γ dx +

γ λ

2
‖v‖2

– λ

∫

�

v2(x) ln |λ|γ dx –
γ λ

2

∫

�

v2(x) dx
}

= λ2
(

‖∇v‖2 –
∫

�

v2(x) ln
∣
∣v(x)

∣
∣
γ dx – γ ln |λ|

∫

�

v2(x) dx
)

= I(λv),

and hence we get the desired result. �

Remark 2.2 For a given v ∈ H1
0 (�), J(λv) has the absolute maximum value at λ∗, that is,

sup
λ≥0

J(λv) = J
(

λ∗v
)

= exp

(2‖∇v‖2 – 2
∫

�
v2(x) ln |v(x)|γ dx

γ ‖v‖2

)
γ

4
‖v‖2. (2.13)

Lemma 2.4 The potential depth d in (2.10) satisfies

d ≥ γ

4
eN

(
π

γ

) N
2

:= E1.
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Proof From Lemma 2.1, (2.1), and (2.5), we get

I(v) ≥
(

1 –
k2γ

2π

)

‖∇v‖2 +
Nγ

2
(1 + ln k)‖v‖2 –

γ

2
‖v‖2 ln‖v‖2

>
Nγ

2
(1 + ln k)‖v‖2 –

γ

2
‖v‖2 ln‖v‖2.

Taking the limit k →
√

π
γ

–
, we have

I(v) ≥
{

Nγ

2

(

1 + ln
√

π

γ

)

–
γ

2
ln‖v‖2

}

‖v‖2.

Considering this and (2.12), we have

0 = I
(

λ∗v
) ≥

{
Nγ

2

(

1 + ln
√

π

γ

)

–
γ

2
ln

∥
∥λ∗v

∥
∥

2
}
∥
∥λ∗v

∥
∥

2,

and hence

∥
∥λ∗v

∥
∥

2 ≥ eN
(

π

γ

) N
2

.

Thus, we obtain from (2.13) and (2.9)

sup
λ≥0

J(λv) = J
(

λ∗v
)

=
1
2

I
(

λ∗v
)

+
γ

4
∥
∥λ∗v

∥
∥

2 =
γ

4
∥
∥λ∗v

∥
∥

2 ≥ γ

4
eN

(
π

γ

) N
2

.

By the definition of d given in (2.10), we get the desired result. �

3 Local existence of solutions
In this section we prove the local existence of solutions by applying the ideas in [1, 24].
Using the function

y(x,η, t) = ut(x, t – ητ ) for (x,η, t) ∈ � × [0, 1] × (0,∞), (3.1)

problem (1.1)–(1.4) is rewritten as

utt(x, t) – �u(x, t) + αut(x, t) + βy(x, 1, t)

= u(x, t) ln
∣
∣u(x, t)

∣
∣
γ for (x, t) ∈ � × (0,∞), (3.2)

τyt(x,η, t) + yη(x,η, t) = 0 for (x,η, t) ∈ � × (0, 1) × (0,∞), (3.3)

u(x, t) = 0 for (x, t) ∈ ∂� × (0,∞), (3.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ �, (3.5)

y(x,η, 0) = j0(x, –ητ ) := y0(x,η) for (x,η) ∈ � × (0, 1). (3.6)
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Definition 3.1 Let T > 0. We say that (u, y) is a local solution of problem (3.2)–(3.6) if it
satisfies the following:

u ∈ C
(

[0, T]; H1
0 (�)

) ∩ C1([0, T]; L2(�)
) ∩ C2([0, T); H–1(�)

)

,
(

utt(t), v
)

+
(∇u(t),∇v

)

+ α
(

ut(t), v
)

+ β
(

y(1, t), v
)

=
(

u(t) ln
∣
∣u(t)

∣
∣
γ , v

)

for any v ∈ H1
0 (�),

τ

∫ 1

0

(

yt(η, t),ϕ(η)
)

dη +
∫ 1

0

(

yη(η, t),ϕ(η)
)

dη = 0 for any ϕ ∈ L2(� × (0, 1)
)

,

and

u(0) = u0 in H1
0 (�), ut(0) = u1 in L2(�), y(0) = y0 in L2(� × (0, 1)

)

.

Theorem 3.1 Assume that (H1) and (H2) hold. Then, for the initial data u0 ∈ H1
0 (�), u1 ∈

L2(�), y0 ∈ L2(� × (0, 1)), there exists a local solution (u, y) of problem (3.2)–(3.6).

Proof Let {vi}i∈N be orthogonal basis of H1
0 (�) which is orthonormal in L2(�). Defin-

ing ϕi(x, 0) = vi(x), we can extend ϕi(x, 0) by ϕi(x,η) over L2(� × (0, 1)). We denote
Vn = span{v1, v2, . . . , vn} and Wn = span{ϕ1,ϕ2, . . . ,ϕn} for n ≥ 1. We consider the Faedo–
Galerkin approximation solution (un, yn) ∈ Vn × Wn of the form

un(x, t) =
n

∑

i=1

hn
i (t)vi(x) and yn(x,η, t) =

n
∑

i=1

gn
i (t)ϕi(x,η), n = 1, 2, . . . ,

solving the approximate system

(

un
tt(t), v

)

+
(∇un(t),∇v

)

+ α
(

un
t (t), v

)

+ β
(

yn(1, t), v
)

=
∫

�

un(x, t) ln
∣
∣un(x, t)

∣
∣
γ v(x) dx for v ∈ Vn, (3.7)

τ

∫ 1

0

(

yn
t (η, t),ϕ(η)

)

dη +
∫ 1

0

(

yn
η(η, t),ϕ(η)

)

dη = 0 for ϕ ∈ Wn, (3.8)

un(0) = un
0, un

t (0) = un
1, yn(0) = yn

0, (3.9)

where

un
0 → u0 in H1

0 (�), un
1 → u1 in L2(�), yn

0 → y0 in L2(� × (0, 1)
)

.

Since problem (3.7)–(3.9) is a normal system of ordinary differential equations, there exists
a solution (un, yn) on the interval [0, tn), tn ∈ (0, T]. The extension of this solution to the
whole interval [0, T) is a consequence of the estimate below.

Replacing v by un
t (t) in (3.7) and using the relation

∫

�

un(x, t) ln
∣
∣un(x, t)

∣
∣
γ un

t (x, t) dx =
d
dt

{
1
2

∫

�

(

un(x, t)
)2

ln
∣
∣un(x, t)

∣
∣
γ dx –

γ

4
∥
∥un(t)

∥
∥

2
}

,
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we have

d
dt

{
1
2
∥
∥un

t (t)
∥
∥

2 +
1
2
∥
∥∇un(t)

∥
∥

2 +
γ

4
∥
∥un(t)

∥
∥

2 –
1
2

∫

�

(

un(x, t)
)2

ln
∣
∣un(x, t)

∣
∣
γ dx

}

= –α
∥
∥un

t (t)
∥
∥

2 – β
(

yn(1, t), un
t (t)

)

. (3.10)

Replacing ϕ by ωyn(η, t) in (3.8), one sees

ωτ

2
d
dt

∫

�

∫ 1

0

(

yn(x,η, t)
)2 dη dx = –

ω

2
∥
∥yn(1, t)

∥
∥

2 +
ω

2
∥
∥yn(0, t)

∥
∥

2. (3.11)

Collecting (3.10) and (3.11), we get

d
dt

En(t) = –α
∥
∥un

t (t)
∥
∥

2 – β
(

yn(1, t), un
t (t)

)

–
ω

2
∥
∥yn(1, t)

∥
∥

2 +
ω

2
∥
∥yn(0, t)

∥
∥

2,

where

En(t) =
1
2
∥
∥un

t (t)
∥
∥

2 +
1
2
∥
∥∇un(t)

∥
∥

2 +
γ

4
∥
∥un(t)

∥
∥

2

–
1
2

∫

�

(

un(x, t)
)2

ln
∣
∣un(x, t)

∣
∣
γ dx +

ωτ

2
∥
∥yn(t)

∥
∥

2
L2(�×(0,1)),

here

|β| < ω < 2α – |β|. (3.12)

By Young’s inequality and the fact yn(x, 0, t) = un
t (x, t), we get

d
dt

En(t) ≤ –
(

α –
|β|
2

–
ω

2

)
∥
∥un

t (t)
∥
∥

2 –
(

ω

2
–

|β|
2

)
∥
∥yn(1, t)

∥
∥

2 ≤ 0 (3.13)

and

En(t) + C1

∫ t

0

∥
∥un

t (s)
∥
∥

2 ds + C2

∫ t

0

∥
∥yn(1, s)

∥
∥

2 ds ≤ En(0), (3.14)

where

C1 = α –
|β|
2

–
ω

2
> 0 and C2 =

ω

2
–

|β|
2

> 0. (3.15)

From this and Lemma 2.1, we observe

∥
∥un

t (t)
∥
∥

2 +
(

1 –
γ k2

2π

)
∥
∥∇un(t)

∥
∥

2 +
γ

2
(

1 + N(1 + ln k)
)∥
∥un(t)

∥
∥

2

+ 2C1

∫ t

0

∥
∥un

t (s)
∥
∥

2 ds + 2C2

∫ t

0

∥
∥yn(1, s)

∥
∥

2 ds + ωτ
∥
∥yn(t)

∥
∥

2
L2(�×(0,1))

≤ 2En(0) +
γ

2
∥
∥un(t)

∥
∥

2
ln

∥
∥un(t)

∥
∥

2. (3.16)
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Thanks to (2.5), we have

1 –
γ k2

2π
> 0 and

γ

2
(

1 + N(1 + ln k)
)

> 0,

and hence

∥
∥un

t (t)
∥
∥

2 +
∥
∥∇un(t)

∥
∥

2 +
∥
∥un(t)

∥
∥

2 +
∫ t

0

∥
∥un

t (s)
∥
∥

2 ds

+
∫ t

0

∥
∥yn(1, s)

∥
∥

2 ds +
∥
∥yn(t)

∥
∥

2
L2(�×(0,1))

≤ c1
(

1 +
∥
∥un(t)

∥
∥

2
ln

∥
∥un(t)

∥
∥

2), (3.17)

here and in the sequel cj, j = 1, 2, . . . , denotes a generic positive constant. On the other
hand, it is noted that

un(x, t) = un(x, 0) +
∫ t

0
un

t (x, s) ds.

Applying Cauchy–Schwarz’ inequality and (3.17), we get

∥
∥un(t)

∥
∥

2 = 2
∥
∥un(0)

∥
∥

2 + 2T
∫ t

0

∥
∥un

t (s)
∥
∥

2 ds

≤ 2
∥
∥un(0)

∥
∥

2 + 2T
∫ t

0
c1

(

1 +
∥
∥un(s)

∥
∥

2
ln

∥
∥un(s)

∥
∥

2)ds

≤ c2

(

1 +
∫ t

0

∥
∥un(s)

∥
∥

2
ln

∥
∥un(s)

∥
∥

2 ds
)

.

By Lemma 2.2, we find

∥
∥un(t)

∥
∥

2 ≤ c3ec4T . (3.18)

Since the function f (s) = s ln s is continuous (0,∞), lims→0+ f (s) = 0, lims→+∞ f (s) = +∞,
and f decreases on (0, e–1) and increases on (e–1, +∞), we have from (3.18) and (3.17)

∥
∥un

t (t)
∥
∥

2 +
∥
∥∇un(t)

∥
∥

2 +
∥
∥un(t)

∥
∥

2 +
∫ t

0

∥
∥un

t (s)
∥
∥

2 ds

+
∫ t

0

∥
∥yn(1, s)

∥
∥

2 ds +
∥
∥yn(t)

∥
∥

2
L2(�×(0,1)) ≤ c5. (3.19)

So, there exists a subsequence of {(un, yn)}, which we still denote {(un, yn)}, such that

un → u weakly star in L∞(

0, T ; H1
0 (�)

)

, (3.20)

un
t → ut weakly star in L∞(

0, T ; L2(�)
)

, (3.21)

yn → y weakly star in L∞(

0, T ; L2(� × (0, 1)
))

, (3.22)

yn(1) → y(1) weakly in L2(0, T ; L2(�)
)

. (3.23)
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By Aubin–Lions’ compactness theorem, we find

un → u strongly in L2(0, T ; L2(�)
)

and

un(x, t) → u(x, t) a.e. in � × (0, T).

Since the function s → s ln |s|γ is continuous on R,

un(x, t) ln
∣
∣un(x, t)

∣
∣
γ → u(x, t) ln

∣
∣u(x, t)

∣
∣
γ a.e. in � × (0, T). (3.24)

Now, we let

�1 =
{

x ∈ � | ∣∣un(x, t)
∣
∣ < 1

}

and �2 =
{

x ∈ � | ∣∣un(x, t)
∣
∣ ≥ 1

}

.

Then we have
∫

�

(

un(x, t) ln
∣
∣un(x, t)

∣
∣
γ )2 dx

= γ 2
{∫

�1

(

un(x, t) ln
∣
∣un(x, t)

∣
∣
)2 dx +

∫

�2

(

un(x, t) ln
∣
∣un(x, t)

∣
∣
)2 dx

}

≤ γ 2
{

e–2|�1| + e–2
(

2
q – 2

)2 ∫

�2

(

un(x, t)
)q dx

}

for any q > 2, (3.25)

here we used the fact

|s ln s| ≤ 1
e

for 0 < s < 1 and s–κ ln s ≤ 1
eκ

for s ≥ 1 and κ > 0.

From (3.25) and (3.17), we arrive at

∫

�

(

un(x, t) ln
∣
∣un(x, t)

∣
∣
γ )2 dx ≤ γ 2

{

e–2|�1| + e–2
(

2
q – 2

)2

Bq
2
∥
∥∇un∥∥q

}

≤ c6, (3.26)

where B2 is the best Sobolev imbedding constant of

H1
0 (�) ⊂ Lq(�) for q > 2, if N = 1, 2; 2 < q <

2N
N – 2

, if N ≥ 3.

Thus, we have from (3.26)

un ln
∣
∣un∣∣γ is uniformly bounded in L∞(

0, T ; L2(�)
)

. (3.27)

By the Lebesgue bounded convergence theorem, (3.24), and (3.27), we infer

un ln
∣
∣un∣∣γ → u ln |u|γ strongly in L2(0, T ; L2(�)

)

.

Now, we are ready to pass to the limit m → ∞ in (3.7) and (3.8). The proof of the remainder
is standard and can be done as in [1, 19]. �



Park Advances in Difference Equations        (2020) 2020:631 Page 10 of 17

4 Global existence and energy decay estimate
In this section, we prove the global existence and energy decay rates of solutions to prob-
lem (3.2)–(3.6). For this, we define the energy of problem (3.2)–(3.6) as

E(t) := E
(

u(t)
)

=
1
2
∥
∥ut(t)

∥
∥

2 +
1
2
∥
∥∇u(t)

∥
∥

2 +
γ

4
∥
∥u(t)

∥
∥

2

–
1
2

∫

�

u2(x, t) ln
∣
∣u(x, t)

∣
∣
γ dx +

ωτ

2
∥
∥y(t)

∥
∥

2
L2(�×(0,1)), (4.1)

where ω is the positive constant given in (3.12). It is noted that

E(t) =
1
2
∥
∥ut(t)

∥
∥

2 + J
(

u(t)
)

+
ωτ

2
∥
∥y(t)

∥
∥

2
L2(�×(0,1))

=
1
2
∥
∥ut(t)

∥
∥

2 +
1
2

I
(

u(t)
)

+
γ

4
∥
∥u(t)

∥
∥

2 +
ωτ

2
∥
∥y(t)

∥
∥

2
L2(�×(0,1)). (4.2)

By the same arguments as of (3.13), we can deduce

d
dt

E(t) ≤ –C1
∥
∥ut(t)

∥
∥

2 – C2
∥
∥y(1, t)

∥
∥

2 ≤ 0, (4.3)

where C1 and C2 are positive constants given in (3.15).

Lemma 4.1 Assume that (H1) and (H2) hold. If E(0) < d and I(u0) > 0, then the solution u
of problem (1.1)–(1.4) satisfies

I
(

u(t)
)

> 0 for t ∈ [0, T), (4.4)

where T is the maximal existence time of the solutions.

Proof Since I(u0) > 0 and u is continuous on [0, T), we know that

I
(

u(t)
)

> 0 for some interval [0, t1) ⊂ [0, T). (4.5)

Let t0 be the maximum of t1 satisfying (4.5). Suppose t0 < T , then I(u(t0)) = 0, that is,

u(t0) ∈N .

Thus, we have from (2.11)

J
(

u(t0)
) ≥ inf

v∈N
J(v) = d.

But this is contradiction to the following relation:

J
(

u(t0)
) ≤ E(t0) ≤ E(0) < d. �

It is noted that E(t) is a nonincreasing positive function from (4.3) and Lemma 4.1.
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Theorem 4.1 Under the conditions of Lemma 4.1, the solution u is global.

Proof It suffices to show that ‖ut(t)‖2 + ‖∇u(t)‖2 is bounded independent of t. From
Lemma 4.1, (4.2), and (4.3), we have

∥
∥ut(t)

∥
∥

2 ≤ ∥
∥ut(t)

∥
∥

2 + I
(

u(t)
) ≤ 2E(t) ≤ 2E(0) < 2d. (4.6)

Similarly, we see

∥
∥u(t)

∥
∥

2 <
∥
∥u(t)

∥
∥

2 +
2
γ

I
(

u(t)
)

=
4
γ

J
(

u(t)
) ≤ 4

γ
E(t) ≤ 4

γ
E(0) <

4d
γ

. (4.7)

From Lemma 2.1 and (2.8), we infer

∥
∥∇u(t)

∥
∥

2 = I
(

u(t)
)

+ γ

∫

�

u2(x, t) ln
∣
∣u(x, t)

∣
∣dx

≤ 2E(t) +
γ

2
∥
∥u(t)

∥
∥

2
ln

∥
∥u(t)

∥
∥

2 +
k2γ

2π

∥
∥∇u(t)

∥
∥

2 –
Nγ

2
(1 + ln k)

∥
∥u(t)

∥
∥

2.

Taking the limit k → ρ+ in this inequality and using (4.7), we get

(

1 –
ρ2γ

2π

)
∥
∥∇u(t)

∥
∥

2 ≤ 2E(t) +
γ

2
(

ln
∥
∥u(t)

∥
∥

2 – N(1 + lnρ)
)∥
∥u(t)

∥
∥

2

< 2d +
γ

2

(

ln

(
4d
γ

)

– N(1 + lnρ)
)

∥
∥u(t)

∥
∥

2

= 2d +
γ

2

{

ln

(
4d
γ

e–Nρ–N
)}

∥
∥u(t)

∥
∥

2. (4.8)

From Lemma 2.4 and (2.5), we get

ln

(
4d
γ

e–Nρ–N
)

≥ ln

((
π

γ

) N
2
ρ–N

)

= ln

((√
π

γ
ρ–1

)N)

> ln 1 = 0.

Thus, we observe from (4.8) and (4.7) that

(

1 –
ρ2γ

2π

)
∥
∥∇u(t)

∥
∥

2 < 2d + 2d ln

(
4d
γ

e–Nρ–N
)

.

This gives

∥
∥∇u(t)

∥
∥

2 < 2d
(

1 –
ρ2γ

2π

)–1(

1 + ln

(
4d
γ

e–Nρ–N
))

. (4.9)

We complete the proof from (4.6) and (4.9). �

In order to establish asymptotic behavior for the global solution, let us define the per-
turbed energy by

E(t) = E(t) + ε�(t) + ε�(t),

where ε > 0, �(t) = (ut(t), u(t)), and �(t) =
∫

�

∫ 1
0 e–τηy2(x,η, t) dη dx.
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Lemma 4.2 If the conditions of Lemma 4.1 hold, there exist positive constants C3 and C4

such that

C3E(t) ≤ E(t) ≤ C4E(t).

Proof Young’s inequality and Lemma 4.1 imply

∣
∣�(t) + �(t)

∣
∣ ≤ 1

2
∥
∥ut(t)

∥
∥

2 +
1
2
∥
∥u(t)

∥
∥

2 +
∥
∥y(t)

∥
∥

2
L2(�×(0,1))

≤ 1
2
∥
∥ut(t)

∥
∥

2 +
2
γ

(
γ

4
∥
∥u(t)

∥
∥

2 +
1
2

I
(

u(t)
)
)

+
∥
∥y(t)

∥
∥

2
L2(�×(0,1))

=
1
2
∥
∥ut(t)

∥
∥

2 +
2
γ

J
(

u(t)
)

+
∥
∥y(t)

∥
∥

2
L2(�×(0,1))

≤ c7E(t).

Taking ε > 0 suitably small, we complete the proof. �

Theorem 4.2 Let (H1) and (H2) hold. Assume that E(0) < E1 and I(u0) > 0. Then there
exist positive constants C0 and C5 such that

0 < E(t) ≤ C0e–C5t for t ≥ 0.

Proof Using (3.2) and Young’s inequality, we have

�′(t) =
∥
∥ut(t)

∥
∥

2 –
∥
∥∇u(t)

∥
∥

2 – α
(

ut(t), u(t)
)

– β
(

y(1, t), u(t)
)

+
∫

�

u2(x, t) ln
∣
∣u(x, t)

∣
∣
γ dx

≤ ∥
∥ut(t)

∥
∥

2 –
1
2
∥
∥∇u(t)

∥
∥

2 + α2B1
∥
∥ut(t)

∥
∥

2 + β2B1
∥
∥y(1, t)

∥
∥

2

+
∫

�

u2(x, t) ln
∣
∣u(x, t)

∣
∣
γ dx.

From (3.3) and the integration by parts, we get

�′(t) = –
2
τ

∫

�

∫ 1

0
e–τηy(x,η, t)yη(x,η, t) dη dx

= –
1
τ

∫

�

∫ 1

0
e–τη ∂

∂η
y2(x,η, t) dη dx

= –
e–τ

τ

∥
∥y(1, t)

∥
∥

2 +
1
τ

∥
∥y(0, t)

∥
∥

2 –
∫

�

∫ 1

0
e–τηy2(x,η, t) dη dx

≤ 1
τ

∥
∥ut(t)

∥
∥

2 – e–τ

∫

�

∫ 1

0
y2(x,η, t) dη dx.
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Collecting these and (4.3), we have

E ′(t) ≤ –
(

C1 – ε – εα2B1 –
ε

τ

)
∥
∥ut(t)

∥
∥

2 –
ε

2
∥
∥∇u(t)

∥
∥

2 –
(

C2 – εβ2B1
)∥
∥y(1, t)

∥
∥

2

+ ε

∫

�

u2(x, t) ln
∣
∣u(x, t)

∣
∣
γ dx – εe–τ

∥
∥y(t)

∥
∥

2
L2(�×(0,1)).

Subtracting and adding ξE(t) with 0 < ξ < 2ε, we have

E ′(t) ≤ –ξE(t) –
(

C1 – ε – εα2B1 –
ε

τ
–

ξ

2

)
∥
∥ut(t)

∥
∥

2 –
(

ε

2
–

ξ

2
–

ξγ B1

4

)
∥
∥∇u(t)

∥
∥

2

–
(

C2 – εβ2B1
)∥
∥y(1, t)

∥
∥

2 +
(

ε –
ξ

2

)∫

�

u2(x, t) ln
∣
∣u(x, t)

∣
∣
γ dx

–
(

εe–τ –
ξωτ

2

)
∥
∥y(t)

∥
∥

2
L2(�×(0,1)).

From the logarithmic Sobolev inequality, we obtain

E ′(t) ≤ –ξE(t) –
(

C1 – ε – εα2B1 –
ε

τ
–

ξ

2

)
∥
∥ut(t)

∥
∥

2

–
{

ε

(
1
2

–
γ k2

2π

)

–
ξ

2

(

1 –
γ k2

2π

)

–
ξγ B1

4

}
∥
∥∇u(t)

∥
∥

2

+
γ

2

(

ε –
ξ

2

)
{

ln
∥
∥u(t)

∥
∥

2 – N(1 + ln k)
}∥
∥u(t)

∥
∥

2

–
(

C2 – εβ2B1
)∥
∥y(1, t)

∥
∥

2 –
(

εe–τ –
ξωτ

2

)
∥
∥y(t)

∥
∥

2
L2(�×(0,1)).

First, we choose ε > 0 small such that

C1 – ε – εα2B1 –
ε

τ
> 0 and C2 – εβ2B1 > 0.

Then, taking ξ > 0 sufficiently small and noting that 1
2 – γ k2

2π
> 0 (see (2.5)), we arrive at

E ′(t) ≤ –ξE(t) +
γ

2

(

ε –
ξ

2

)
{

ln
∥
∥u(t)

∥
∥

2 – N(1 + ln k)
}∥
∥u(t)

∥
∥

2. (4.10)

Since 0 < E(0) < E1, there exists 0 < μ < 1 such that E(0) = μE1. Thus, we have from (4.7)

ln
∥
∥u(t)

∥
∥

2 < ln

(
4
γ

E(t)
)

≤ ln

(
4
γ

E(0)
)

= ln

(
4μE1

γ

)

= ln

(

μeN
(

π

γ

) N
2
)

.

Thus, we infer from (2.5) that

ln
∥
∥u(t)

∥
∥

2 – N(1 + ln k) ≤ ln

(

μeN
(

π

γ

) N
2
)

– N(1 + ln k)

= N ln

(

μ
1
N

√
π

γ
k–1

)

< N ln 1 = 0.
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Substituting this into (4.10), we conclude

E ′(t) ≤ –ξE(t).

Consequently, we complete the proof from Lemma 4.2. �

5 Infinite time blow-up
In this section, inspired by the ideas in [20, 23, 26], we establish a blow-up result for prob-
lem (1.1)–(1.4). For this, we first give the following lemma.

Lemma 5.1 Assume that (H1) and (H2) hold. If E(0) < E1 and I(u0) < 0, then the solution
u of problem (1.1)–(1.4) satisfies

I
(

u(t)
)

< 0 for t ∈ [0, T) (5.1)

and

∥
∥u(t)

∥
∥

2 >
4E1

γ
for t ∈ [0, T), (5.2)

where T is the maximal existence time of solutions.

Proof Since I(u0) < 0 and u is continuous on [0, T), we know that

I
(

u(t)
)

< 0 for some interval [0, t1) ⊂ [0, T). (5.3)

Let t0 be the maximal time satisfying (5.3) and suppose t0 < T , then I(u(t0)) = 0, that is,

u(t0) ∈N .

Thus, we have

d ≤ J
(

u(t0)
)

=
1
2

I
(

u(t0)
)

+
γ

4
∥
∥u(t0)

∥
∥

2 ≤ E
(

u(t0)
) ≤ E(0) < E1.

This is in contradiction to Lemma 2.4. So, (5.1) is proved. From Lemma 2.4, (2.13), and
(5.1), we find

E1 ≤ d ≤ J
(

λ∗u(t)
)

= exp

(2‖∇u(t)‖2 – 2
∫

�
u2(x, t) ln |u(x, t)|γ dx

γ ‖u(t)‖2

)
γ

4
∥
∥u(t)

∥
∥

2

<
γ

4
∥
∥u(t)

∥
∥

2.

Thus, we complete the proof. �

Theorem 5.1 Assume that (H1) and (H2) hold. Assume that E(0) < ζE1, where 0 < ζ < 1,
and I(u0) < 0. Then the solution of problem (1.1)–(1.4) blows up at infinity.
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Proof We set

F(t) = ζE1 – E(t). (5.4)

From (4.3), we have

F ′(t) = –E′(t) ≥ C1
∥
∥ut(t)

∥
∥

2 + C2
∥
∥y(1, t)

∥
∥

2 ≥ 0. (5.5)

From (5.5), (4.1), and (5.2), we observe

0 < F(0) ≤ F(t) ≤ ζE1 +
1
2

∫

�

u2(x, t) ln
∣
∣u(x, t)

∣
∣
γ dx

<
γ

4
∥
∥u(t)

∥
∥

2 +
1
2

∫

�

u2(x, t) ln
∣
∣u(x, t)

∣
∣
γ dx. (5.6)

Now, we define

G(t) = F(t) + ε
(

u(t), ut(t)
)

+
εα

2
∥
∥u(t)

∥
∥

2.

Using (3.2), (4.1), we have

G′(t) = F ′(t) + ε
∥
∥ut(t)

∥
∥

2 – ε
∥
∥∇u(t)

∥
∥

2 – εβ
(

u(t), y(1, t)
)

+ ε

∫

�

u2(x, t) ln
∣
∣u(x, t)

∣
∣
γ dx

= F ′(t) + 2ε
∥
∥ut(t)

∥
∥

2 – εβ
(

u(t), y(1, t)
)

– 2εE(t)

+
εγ

2
∥
∥u(t)

∥
∥

2 + ωτ
∥
∥y(t)

∥
∥

2
L2(�×(0,1)). (5.7)

By Young’s inequality and (5.5), we get

β
(

u(t), y(1, t)
) ≤ |β|

(

δ
∥
∥u(t)

∥
∥

2 +
1
4δ

∥
∥y(1, t)

∥
∥

2
)

≤ δ|β|∥∥u(t)
∥
∥

2 +
|β|

4δC2
F ′(t).

Adapting this to (5.7) and using (5.4) and (5.2), we get

G′(t) ≥
(

1 –
ε|β|
4δC2

)

F ′(t) + 2ε
∥
∥ut(t)

∥
∥

2 +
(

εγ

2
– ε|β|δ

)
∥
∥u(t)

∥
∥

2

+ 2εF(t) – 2εζE1 + ωτ
∥
∥y(t)

∥
∥

2
L2(�×(0,1))

≥
(

1 –
ε|β|
4δC2

)

F ′(t) + 2ε
∥
∥ut(t)

∥
∥

2 + ε

(

(1 – ζ )
γ

2
– |β|δ

)
∥
∥u(t)

∥
∥

2

+ 2εF(t) + ωτ
∥
∥y(t)

∥
∥

2
L2(�×(0,1)). (5.8)

First, we fix δ > 0 such that (1 – ζ ) γ

2 – |β|δ > 0, then choose ε > 0 sufficiently small so that
1 – ε|β|

4δC2
> 0. Then we have from (5.5)

G′(t) ≥ c8
(

F(t) +
∥
∥ut(t)

∥
∥

2 +
∥
∥u(t)

∥
∥

2) ≥ 0. (5.9)
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On the other hand, we can easily see that

G(t) ≤ c9
(

F(t) +
∥
∥ut(t)

∥
∥

2 +
∥
∥u(t)

∥
∥

2). (5.10)

Let us take ε > 0 sufficiently small again to get

G(0) = F(0) + ε(u0, u1) +
εα

2
‖u0‖2 > 0. (5.11)

Then we obtain from (5.9) and (5.11)

G(t) ≥ G(0) > 0.

From (5.9) and (5.10), we observe

G′(t) ≥ c10G(t),

and hence

G(t) ≥ ec10tG(0) > 0.

Thus, G(t) blows up at infinity. �
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