An efficient finite element method and error analysis for eigenvalue problem of Schrödinger equation with an inverse square potential on spherical domain

Yubing Sui ${ }^{1 \dagger}$, Donghao Zhang ${ }^{2 \dagger}$, Junying Cao ${ }^{3 *}$ and Jun Zhang ${ }^{4 \dagger}$

Correspondence:

caojunying@gzmu.edu.cn
${ }^{3}$ School of Data Science and Information Engineering, Guizhou Minzu University, 550025 Guiyang, China
Full list of author information is available at the end of the article
${ }^{\dagger}$ Equal contributors

Abstract

We provide an effective finite element method to solve the Schrödinger eigenvalue problem with an inverse potential on a spherical domain. To overcome the difficulties caused by the singularities of coefficients, we introduce spherical coordinate transformation and transfer the singularities from the interior of the domain to its boundary. Then by using orthogonal properties of spherical harmonic functions and variable separation technique we transform the original problem into a series of one-dimensional eigenvalue problems. We further introduce some suitable Sobolev spaces and derive the weak form and an efficient discrete scheme. Combining with the spectral theory of Babuška and Osborn for self-adjoint positive definite eigenvalue problems, we obtain error estimates of approximation eigenvalues and eigenvectors. Finally, we provide some numerical examples to show the efficiency and accuracy of the algorithm.

MSC: 65N15; 65N30
Keywords: Eigenvalue problem; Singularity; Dimension reduction scheme; Finite element method; Error estimation

1 Introduction

The Schrödinger eigenvalue problem with the inverse-square (IS) or centrifugal potential is widely used in nuclear physics, quantum physics, nonlinear optics, and so on [1-6]. The potential in many electronic equations produces singularity and can describe the attraction or repulsion between objects, which usually leads to strong singularities of the eigenfunctions, and this cannot be simply regarded as a perturbation term [7-11]. Therefore new tools and techniques, different from linear elliptic operators with bounded coefficients, are urgently needed for such an eigenvalue problem with the IS potential, both in analysis and in numerics. Ghanbari et al. [12-15] and Khater et al. [16-20] discussed some effective numerical methods to remove the singularity of nonlocal operators. In addition, some other works [21-26] mainly focus on studying exact solitary wave solutions.
© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

In the last decade, increasing attention is paid to the numerical approximation of Schrödinger operators with similar singular potentials [1,27-30]. If we solve the Schrödinger eigenvalue problem directly in a three-dimensional domain, it will take a lot of computing time and memory capacity to obtain high-precision numerical solutions [11, 31, 32]. In practice, we usually need to solve the Schrödinger eigenvalue problem on a three-dimensional spherical domain. As far as we know, there is little work discussing the eigenvalue problem with IS potential on a spherical domain.

The purpose of this work is developing an effective finite element method for the eigenvalue problem of the Schrödinger equation with an IS potential on spherical domain. To overcome the difficulties caused by the singularities of coefficients, we introduce spherical coordinate transformation and transfer the singularities from the interior of the domain to the boundary of the domain. Then by using orthogonal properties of spherical harmonic functions and variable separation technique we reduce the original problem to a series of one-dimensional eigenvalue problems. We further introduce some suitable Sobolev spaces and derive an effective discrete scheme. Combined with the theory of self-adjoint eigenvalues, we obtain error estimates of approximation eigenvalues and eigenvectors. Finally, we give several numerical examples to verify the convergence and accuracy of the algorithm.
The rest of the paper is organized as follows. In Sect. 2, we obtain a dimensional reduction scheme for the Schrödinger eigenvalue problem with IS potential. In Sect. 3, we construct a weak form and numerical discretization scheme. In Sect. 4, we obtain error estimates of approximation eigenvalues and eigenfunctions. In Sect. 5, we study the implementation details of the algorithm. In Sect. 6, we test the accuracy and convergence of the numerical algorithm. Finally, in Sect. 7, we provide some concluding remarks.

2 Dimension reduction scheme

In this paper, we consider the following eigenvalue problem with Dirichlet boundary conditions:

$$
\begin{align*}
& -\Delta u+\frac{c^{2}}{x^{2}+y^{2}+z^{2}} u=\lambda u \quad \text { in } \Omega \tag{1}\\
& u=0 \quad \text { on } \partial \Omega \tag{2}
\end{align*}
$$

where c is a bounded constant, and $\Omega=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq a<r<b\right\}$ with $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Let $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta, \psi(r, \theta, \phi)=u(x, y, z)$. We take the Laplacian in spherical coordinates

$$
\begin{equation*}
\mathcal{L} \psi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2}} \Delta_{S} \psi, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{S}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \tag{4}
\end{equation*}
$$

Then (1)-(2) can be rewritten as the eigenvalue problem of the Schrödinger equation in spherical coordinates:

$$
\begin{equation*}
-\mathcal{L} \psi+\frac{c^{2}}{r^{2}} \psi=\lambda \psi, \quad(r, \theta, \phi) \in(a, b) \times[0, \pi] \times[0,2 \pi], \tag{5}
\end{equation*}
$$

(1) $\psi(b, \theta, \phi)=0, \quad(\theta, \phi) \in[0, \pi] \times[0,2 \pi]$ for $a=0$,
(2) $\psi(a, \theta, \phi)=\varphi(b, \theta, \phi)=0, \quad(\theta, \phi) \in[0, \pi] \times[0,2 \pi]$ for $a>0$.

We recall that an important property of the spherical harmonics $\left\{Y_{m}^{l}\right\}$ (as normalized in [33]) is that they are eigenfunctions of the Laplace-Beltrami operator Δ_{S}. More precisely,

$$
\begin{equation*}
\Delta_{S} Y_{l}^{m}=-l(l+1) Y_{l}^{m}, \quad l \geq 0,|m| \leq l, \tag{8}
\end{equation*}
$$

and from the definition of $L^{2}(S)$ we find

$$
\begin{equation*}
\int_{S} Y_{l}^{m} Y_{l^{\prime}}^{m^{\prime}} d S=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{9}
\end{equation*}
$$

Using spherical harmonic expansion, we obtain that

$$
\begin{equation*}
\psi(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{|m|=0}^{l} \psi_{l}^{m} Y_{l}^{m} . \tag{10}
\end{equation*}
$$

First of all, we take into account the case $a=0$. Define the differential operator $\tilde{L}_{l} \psi_{l}^{m}=$ $\frac{1}{r^{2}}\left(\partial_{r}\left(r^{2} \partial_{r} \psi_{l}^{m}\right)-l(l+1) \psi_{l}^{m}\right)$. By substituting expression (10) into (5) and (6) we can obtain a series of equivalent one-dimensional eigenvalue problems:

$$
\begin{align*}
& -\tilde{L}_{l} \psi_{l}^{m}+\frac{c^{2}}{r^{2}} \psi_{l}^{m}=\lambda_{l} \psi_{l}^{m}, \quad r \in(0, b), \tag{11}\\
& \psi_{l}^{m}(b)=0 . \tag{12}
\end{align*}
$$

Let $r=\frac{t+1}{2} b, u_{l}^{m}(t)=\psi_{l}^{m}\left(\frac{t+1}{2} b\right)$, and $\mathcal{L}_{l} u_{l}^{m}=\frac{1}{(t+1)^{2}} \partial_{t}\left((t+1)^{2} \partial_{t} u_{l}^{m}\right)-\frac{l(l+1)}{(t+1)^{2}} u_{l}^{m}$. Then (11)(12) can be rewritten as

$$
\begin{align*}
& -\mathcal{L}_{l} u_{l}^{m}+\frac{c^{2}}{(t+1)^{2}} u_{l}^{m}=\frac{b^{2}}{4} \lambda_{l} u_{l}^{m}, \quad t \in(-1,1), \tag{13}\\
& u_{l}^{m}(1)=0 . \tag{14}
\end{align*}
$$

Analogously, for the case $a>0$, inserting expression (10) into (5) and (7), we can derive the following one-dimensional eigenvalue problem:

$$
\begin{align*}
& -\tilde{L}_{l} \psi_{l}^{m}+\frac{c^{2}}{r^{2}} \psi_{l}^{m}=\lambda_{l} \psi_{l}^{m}, \quad r \in(0, b), \tag{15}\\
& \psi_{l}^{m}(a)=\psi_{l}^{m}(b)=0 \tag{16}
\end{align*}
$$

Let $r=\frac{b-a}{2} t+\frac{b+a}{2}, u_{l}^{m}(t)=\psi_{l}^{m}(r)$, and $L_{l} u_{l}^{m}=\frac{4}{(b-a)^{2} r^{2}} \partial_{t}\left(r^{2} \partial_{t} u_{l}^{m}\right)-\frac{l(l+1)}{r^{2}} u_{l}^{m}$. From (15)-(16) we derive that

$$
\begin{align*}
& -\mathcal{L}_{l} u_{l}^{m}+\frac{c^{2}}{r^{2}} u_{l}^{m}=\lambda_{l} u_{l}^{m}, \quad t \in(-1,1) \tag{17}\\
& u_{l}^{m}(-1)=u_{l}^{m}(1)=0 \tag{18}
\end{align*}
$$

3 Weak form and discrete scheme

When $a=0$, we can define the space

$$
H_{0, l}^{1}(I):=\left\{u_{l}^{m}: \int_{I}(t+1)^{2}\left|\partial_{t} u_{l}^{m}\right|^{2}+\left[l(l+1)+c^{2}\right] u^{2} d t<\infty, u_{l}^{m}(1)=0\right\} .
$$

The inner product and norm can be defined as follows:

$$
\begin{aligned}
& \left(u_{l}^{m}, v_{l}^{m}\right)_{1, l}=\int_{I}(t+1)^{2} \partial_{t} u_{l}^{m} \partial_{t} v_{l}^{m}+\left[l(l+1)+c^{2}\right] u_{l}^{m} v_{l}^{m} d t \\
& \left\|u_{l}^{m}\right\|_{1, l}=\left(u_{l}^{m}, u_{l}^{m}\right)_{1, l}^{\frac{1}{2}}
\end{aligned}
$$

Thus the weak form of (13)-(14) is: Find $\left(\lambda_{l}, u_{l}^{m}\right) \in \mathbb{R} \times H_{0, l}^{1}(I)$ such that

$$
\begin{equation*}
a_{l}\left(u_{l}^{m}, v_{l}^{m}\right)=\lambda_{l} b_{l}\left(u_{l}^{m}, v_{l}^{m}\right), \quad \forall v_{l}^{m} \in H_{0, l}^{1}(I), \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{l}\left(u_{l}^{m}, v_{l}^{m}\right)=\int_{I}(t+1)^{2} \partial_{t} u_{l}^{m} \partial_{t} v_{l}^{m}+\left[l(l+1)+c^{2}\right] u_{l}^{m} v_{l}^{m} d t \\
& b_{l}\left(u_{l}^{m}, v_{l}^{m}\right)=\frac{b^{2}}{4} \int_{I}(t+1)^{2} u_{l}^{m} v_{l}^{m} d t
\end{aligned}
$$

We denote by $\tilde{V}_{h}(l)=\tilde{P}_{1 h} \cap H_{0, l}^{1}(I)$ the approximation space, where $\tilde{P}_{1 h}$ is a piecewise linear interpolation polynomial space. Thus the corresponding numerical scheme of (19) is: Find $\left(\lambda_{l h}, u_{l h}^{m}\right) \in \mathbb{R} \times \tilde{V}_{h}(l)$ such that

$$
\begin{equation*}
a_{l}\left(u_{l h}^{m}, v_{l h}^{m}\right)=\lambda_{l h} b_{l}\left(u_{l h}^{m}, v_{l h}^{m}\right), \quad \forall v_{l h}^{m} \in \tilde{V}_{h}(l) . \tag{20}
\end{equation*}
$$

When $a>0$, the usual space can be denoted as

$$
H_{0}^{1}(I):=\left\{u_{l}^{m}: u_{l}^{m}, \partial_{t} u_{l}^{m} \in L^{2}(I), u_{l}^{m}(-1)=u_{l}^{m}(1)=0\right\} .
$$

We define the inner product and norm as

$$
\left(u_{l}^{m}, v_{l}^{m}\right)_{1, I}=\int_{I}\left(\partial_{t} u_{l}^{m} \partial_{t} v_{l}^{m}+u_{l}^{m} v_{l}^{m}\right) d t, \quad\left\|u_{l}^{m}\right\|_{1, I}=\left(u_{l}^{m}, u_{l}^{m}\right)_{1, I}^{\frac{1}{2}}
$$

Thus the weak form of (17)-(18) is: Find $\left(\lambda_{l}, u_{l}^{m}\right) \in \mathbb{R} \times H_{0}^{1}(I)$ such that

$$
\begin{equation*}
a_{l}\left(u_{l}^{m}, v_{l}^{m}\right)=\lambda_{l} b_{l}\left(u_{l}^{m}, v_{l}^{m}\right), \quad \forall v_{l}^{m} \in H_{0}^{1}(I), \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{l}\left(u_{l}^{m}, v_{l}^{m}\right)=\int_{I} \frac{4}{(b-a)^{2}} r^{2} \partial_{t} u_{l}^{m} \partial_{t} v_{l}^{m}+\left[l(l+1)+c^{2}\right] u_{l}^{m} v_{l}^{m} d t \\
& b_{l}\left(u_{l}^{m}, v_{l}^{m}\right)=\int_{I} r^{2} u_{l}^{m} v_{l}^{m} d t .
\end{aligned}
$$

We denote by $V_{h}=P_{1 h} \cap H_{0}^{1}(I)$ the approximation space, where $P_{1 h}$ is a piecewise linear interpolation polynomial space. Then the corresponding numerical scheme of (21) is: Find $\left(\lambda_{l h}, u_{l h}^{m}\right) \in \mathbb{R} \times S_{h}(l)$ such that

$$
\begin{equation*}
a_{l}\left(u_{l h}^{m}, v_{l h}^{m}\right)=\lambda_{l h} b_{l}\left(u_{l h}^{m}, v_{l h}^{m}\right), \quad \forall v_{l h}^{m} \in V_{h} . \tag{22}
\end{equation*}
$$

4 Error estimation of approximation solutions

In this section, we prove error estimates of approximate eigenvalues and eigenfunctions. Without loss of generality, we only consider the case $a>0$.

Use the technique of [34], we deduce the following results.

Theorem $1 a_{l}\left(u_{l}^{m}, v_{l}^{m}\right)$ is positive definite and continuous on $H_{0}^{1}(I) \times H_{0}^{1}(I)$, that is,

$$
\begin{aligned}
& \left|a_{l}\left(u_{l}^{m}, v_{l}^{m}\right)\right| \lesssim\left\|u_{l}^{m}\right\|_{1, I}\left\|v_{l}^{m}\right\|_{1, I}, \\
& a_{l}\left(u_{l}^{m}, u_{l}^{m}\right) \gtrsim\left\|u_{l}^{m}\right\|_{1, I}^{2}
\end{aligned}
$$

Proof Using the Cauchy-Schwarz inequality, we find

$$
\begin{aligned}
\left|a_{l}\left(u_{l}^{m}, v_{l}^{m}\right)\right| & =\left|\int_{I} \frac{4}{(b-a)^{2}} r^{2} \partial_{t} u_{l}^{m} \partial_{t} v_{l}^{m}+\left[l(l+1)+c^{2}\right] u_{l}^{m} v_{l}^{m} d t\right| \\
& \leq \int_{I} \frac{4}{(b-a)^{2}} b^{2}\left|\partial_{t} u_{l}^{m} \partial_{t} v_{l}^{m}\right|+\left[l(l+1)+c^{2}\right]\left|u_{l}^{m} v_{l}^{m}\right| d t \\
& \lesssim \int_{I}\left|\partial_{t} u_{l}^{m} \partial_{t} v_{l}^{m}\right|+\left|u_{l}^{m} v_{l}^{m}\right| d t \\
& \leq\left(\int_{I}\left|\partial_{t} u_{l}^{m}\right|^{2} d t\right)^{\frac{1}{2}}\left(\int_{I}\left|\partial_{t} v_{l}^{m}\right|^{2} d t\right)^{\frac{1}{2}}+\left(\int_{I}\left|u_{l}^{m}\right|^{2} d t\right)^{\frac{1}{2}}\left(\int_{I}\left|v_{l}^{m}\right|^{2} d t\right)^{\frac{1}{2}} \\
& \leq\left[\int_{I}\left|\partial_{t} u_{l}^{m}\right|^{2}+\left|u_{l}^{m}\right|^{2} d t\right]^{\frac{1}{2}}\left[\int_{I}\left|\partial_{t} v_{l}^{m}\right|^{2}+\left|v_{l}^{m}\right|^{2} d t\right]^{\frac{1}{2}} \\
& =\left\|u_{l}^{m}\right\|_{1, I}\left\|v_{l}^{m}\right\|_{1, I} .
\end{aligned}
$$

From the Poincaré inequality we derive that

$$
\begin{aligned}
a_{l}\left(u_{l}^{m}, u_{l}^{m}\right) & =\int_{I} \frac{4}{(b-a)^{2}} r^{2}\left(\partial_{t} u_{l}^{m}\right)^{2}+\left[l(l+1)+c^{2}\right]\left(u_{l}^{m}\right)^{2} d t \\
& \geq \int_{I} \frac{4}{(b-a)^{2}} a^{2}\left(\partial_{t} u_{l}^{m}\right)^{2} d t \gtrsim\left|u_{l}^{m}\right|_{1, I}^{2} \gtrsim\left\|u_{l}^{m}\right\|_{1, I}^{2}
\end{aligned}
$$

Similarly, we have the following conclusions.

Theorem $2 b_{l}\left(u_{l}^{m}, v_{l}^{m}\right)$ is also positive definite and continuous on $L^{2}(I) \times L^{2}(I)$, that is,

$$
\begin{align*}
& \left|b_{l}\left(u_{l}^{m}, v_{l}^{m}\right)\right| \lesssim\left\|u_{l}^{m}\right\|_{0, I}\left\|v_{l}^{m}\right\|_{0, I^{\prime}} \tag{23}\\
& b_{l}\left(u_{l}^{m}, u_{l}^{m}\right) \gtrsim\left\|u_{l}^{m}\right\|_{0, I^{2}}^{2} \tag{24}
\end{align*}
$$

Let $V\left(\lambda_{l}\right)$ and $V\left(\lambda_{l l}\right)$ be the eigenfunction spaces corresponding to the eigenvalues λ_{l} and $\lambda_{l h}$, respectively. Let

$$
\varepsilon_{h}=\sup _{u_{l}^{m} \in V\left(\lambda_{l}\right),\left\|u_{l}^{m}\right\| a_{l}=1} \inf _{v_{l h}^{m} \in V_{h}}\left\|u_{l}^{m}-v_{l h}^{m}\right\|_{a_{l}},
$$

where $\left\|u_{l}^{m}\right\|_{a_{l}}=\sqrt{a_{l}\left(u_{l}^{m}, u_{l}^{m}\right)}$. From Theorems 1 and 2 we know that $a_{l}\left(u_{l}^{m}, v_{l}^{m}\right)$ (resp., $b_{l}\left(u_{l}^{m}, v_{l}^{m}\right)$) is a symmetric, continuous, and coercive bilinear form on $H_{0}^{1}(I) \times H_{0}^{1}(I)$ (resp., $\left.L^{2}(I) \times L^{2}(I)\right)$.

By the spectral theory of eigenvalue problems [34] we have the following theorem.

Theorem $3 \operatorname{Let}\left(\lambda_{l}, u_{l}^{m}\right)$ and $\left(\lambda_{l h}, u_{l h}^{m}\right)$ be respectively the eigenpairs of (21) and (22). Then the following inequalities hold:

$$
\begin{align*}
& \left\|u_{l}^{m}-u_{l h}^{m}\right\|_{a_{l}} \lesssim \varepsilon_{h}, \tag{25}\\
& \lambda_{l h}-\lambda_{l} \lesssim \varepsilon_{h}^{2} . \tag{26}
\end{align*}
$$

Define the piecewise linear interpolation operator $I_{h}: H_{0}^{1}(I) \rightarrow V_{h}$ by

$$
I_{h} u_{l}^{m}(t)=p_{l i}(t), \quad t \in I_{i},
$$

where $p_{l i}(t)$ denotes the linear interpolation polynomial of u_{l}^{m} on the interval $I_{i}=\left[t_{i-1}, t_{i}\right]$. Let

$$
u_{l i}^{m}(t)=u_{l}^{m}(t), \quad t \in I_{i} .
$$

Then from an error formula of linear interpolating remainder term we derive that

$$
u_{l i}^{m}(t)-p_{l i}(t)=\frac{\left(u_{l i}^{m}\right)^{(2)}\left(\xi_{i}(t)\right)}{2!}\left(t-t_{i-1}\right)\left(t-t_{i}\right),
$$

where $\xi_{i}(t) \in I_{i}$ is a function depending on t.
For u_{l}^{m}, we have the following error results.
Theorem 4 Let $K_{l i}(t)=\frac{\left(u_{l i}^{m}\right)^{(2)}\left(\xi_{i}(t)\right)}{2!}, u_{l}^{m} \in H_{0}^{1}(I)$. Suppose that u_{l}^{m} is smooth enough such that $\left|\partial_{t}^{k} K_{l i}(t)\right| \leq M(k=0,1)$, where M is a positive constant. Then

$$
\begin{equation*}
\left|I_{h} u_{l}^{m}-u_{l}^{m}\right|_{1, I} \lesssim h, \tag{27}
\end{equation*}
$$

where $h=\max _{1 \leq i \leq n}\left\{h_{i}\right\}, h_{i}=t_{i}-t_{i-1}$.

Proof Since

$$
u_{l i}^{m}(t)-p_{l i}(t)=K_{l i}(t)\left(t-t_{i-1}\right)\left(t-t_{i}\right),
$$

we have

$$
\partial_{t}\left(u_{l i}^{m}(t)-p_{l i}(t)\right)=\partial_{t} K_{l i}(t)\left(t-t_{i-1}\right)\left(t-t_{i}\right)+K_{l i}(t) \partial_{t}\left(\left(t-t_{i-1}\right)\left(t-t_{i}\right)\right) .
$$

Thus we obtain

$$
\begin{aligned}
\left|\partial_{t}\left(u_{l i}^{m}(t)-p_{l i}(t)\right)\right|^{2} & \lesssim\left|\left(t-t_{i-1}\right)\left(t-t_{i}\right)\right|^{2}+\left|\partial_{t}\left(\left(t-t_{i-1}\right)\left(t-t_{i}\right)\right)\right|^{2} \\
& =\left|\left(t-t_{i-1}\right)\left(t-t_{i}\right)\right|^{2}+\left|\left(t-t_{i}\right)+\left(t-t_{i-1}\right)\right|^{2} \\
& \leq\left(\frac{h_{i}}{2}\right)^{4}+\left(2 h_{i}\right)^{2} \lesssim h_{i}^{2} .
\end{aligned}
$$

From the Poincaré inequality we derive that

$$
\begin{aligned}
\left\|I_{h} u_{l}^{m}-u_{l}^{m}\right\|_{1, I}^{2} & \lesssim\left|I_{h} u_{l}^{m}-u_{l}^{m}\right|_{1, I}^{2} \\
& =\sum_{i=1}^{n}\left|I_{h} u_{l}^{m}-u_{l}^{m}\right|_{1, I_{i}}^{2}=\sum_{i=1}^{n}\left|p_{l i}-u_{l i}^{m}\right|_{1, I_{i}}^{2} \\
& =\sum_{i=1}^{n} \int_{I_{i}}\left|\partial_{t}\left(u_{l i}^{m}(t)-p_{l i}(t)\right)\right|^{2} d t \\
& \lesssim \sum_{i=1}^{n} h_{i}^{3} \lesssim h^{2} .
\end{aligned}
$$

This ends the proof.

We can get the following standard error estimation results.

Theorem 5 Let $\left(\lambda_{l}, u_{l}^{m}\right)$ and $\left(\lambda_{l h}, u_{l h}^{m}\right)$ be the eigenpairs of (21) and (22), respectively. If $u_{l}^{m} \in H_{0}^{1}(I)$ satisfy the condition of Theorem 4, then the following inequalities hold:

$$
\begin{equation*}
\left\|u_{l}^{m}-u_{l h}^{m}\right\|_{a_{l}} \lesssim h, \quad \lambda_{l h}-\lambda_{l} \lesssim h^{2} \tag{28}
\end{equation*}
$$

Proof Since

$$
\begin{aligned}
\varepsilon_{h} & =\sup _{u_{l}^{m} \in V\left(\lambda_{l}\right),\left\|u_{l}^{m}\right\| a_{l}=1} \inf _{l l h}^{m_{l}^{m} \in V_{h}} \\
& \left\|u_{l}^{m}-v_{l h}^{m}\right\|_{a_{l}} \\
& \sup _{u_{l}^{m} \in V\left(\lambda_{l}\right),\left\|u_{l}^{m}\right\| a_{l}=1}\left\|u_{l}^{m}-I_{h} u_{l h}^{m}\right\|_{a_{l}} \\
& \lesssim \sup _{u_{l}^{m} \in V\left(\lambda_{l}\right),\left\|u_{l}^{m}\right\|_{l}=1}\left\|u_{l}^{m}-I_{h} u_{l h}^{m}\right\|_{1, I}
\end{aligned}
$$

from the Poincaré inequality and Theorem 4 we derive that

$$
\begin{aligned}
\varepsilon_{h} & \lesssim \sup _{u_{l}^{m} \in V\left(\lambda_{l}\right),\left\|u_{l}^{m}\right\|_{a_{l}}=1}\left\|u_{l}^{m}-I_{h} u_{l h}^{m}\right\|_{1, I} \\
& \lesssim \sup _{u_{l}^{m} \in V\left(\lambda_{l}\right),\left\|u_{l}^{m}\right\|_{a_{l}}=1}\left|u_{l}^{m}-I_{h} u_{l h}^{m}\right|_{1, I} \\
& \lesssim h .
\end{aligned}
$$

Combining this with Theorem 3, we obtain (28).

5 Implementation of the numerical scheme

In this section, we present the algorithm to solve problems (20) and (22). First, we define some basis functions. Let

$$
\begin{aligned}
& \psi_{0}(t)= \begin{cases}-\frac{t-t_{1}}{h_{1}}, & t_{0} \leq t \leq t_{1}, \\
0, & \text { otherwise }\end{cases} \\
& \psi_{i}(t)= \begin{cases}\frac{t-t_{i-1}}{h_{i}}, & t_{i-1} \leq t \leq t_{i}, \\
-\frac{t-t_{i+1}}{h_{i+1}}, & t_{i} \leq t \leq t_{i+1}, \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

where $i=1, \ldots, N-1$. We find that

$$
\begin{aligned}
& \tilde{V}_{h}=\operatorname{span}\left\{\psi_{0}(t), \ldots, \psi_{N-1}(t)\right\}, \\
& V_{h}=\operatorname{span}\left\{\psi_{1}(t), \ldots, \psi_{N-1}(t)\right\}
\end{aligned}
$$

Case 1. $a=0$. Set

$$
\begin{aligned}
& a_{i j}=\int_{I}(t+1)^{2}\left(\psi_{j}\right)^{\prime}\left(\psi_{i}\right)^{\prime} d t, \quad b_{i j}=\int_{I} \psi_{j} \psi_{i} d t, \\
& c_{i j}=\int_{I}(t+1)^{2} \psi_{j} \psi_{i} d t .
\end{aligned}
$$

Let

$$
\begin{equation*}
u_{l h}^{m}=\sum_{i=0}^{N-1} u_{i} \psi_{i} . \tag{29}
\end{equation*}
$$

Substituting expression (29) into (20) and noticing the $v_{l h}^{m}$, we can observe the linear system

$$
\begin{equation*}
\left[\mathbb{A}+\left(l^{2}+l+c^{2}\right) \mathbb{B}\right] \mathbb{U}=\frac{b^{2}}{4} \lambda_{l h} \mathbb{C} \mathbb{U} \tag{30}
\end{equation*}
$$

where

$$
\mathbb{A}=\left(a_{i j}\right), \quad \mathbb{B}=\left(b_{i j}\right), \quad \mathbb{C}=\left(c_{i j}\right), \quad \mathbb{U}=\left(u_{0}, \ldots, u_{N-1}\right)^{T} .
$$

From the properties of the basis functions we know that the stiff matrices and mass matrix in (30) are all tridiagonal sparse matrices.
Case 2. $a>0$. Let

$$
\begin{equation*}
u_{l h}^{m}=\sum_{i=1}^{N-1} u_{i} \psi_{i} . \tag{31}
\end{equation*}
$$

Substituting expression (31) into (22) and taking $v_{l h}^{m}$ in V_{h}, we obtain the linear system

$$
\begin{equation*}
\mathcal{A} \mathcal{U}=\lambda_{\operatorname{lh}} \mathcal{B} \mathcal{U}, \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathcal{A}=\left(a_{i j, l}\right), \quad \mathcal{B}=\left(b_{i j, l}\right), \quad a_{i j, l}=a_{l}\left(\psi_{j}, \psi_{i}\right), \quad b_{i j, l}=b_{l}\left(\psi_{j}, \psi_{i}\right), \\
& \mathcal{U}=\left(u_{1}, \ldots, u_{N-1}\right)^{T} .
\end{aligned}
$$

Similarly, from the properties of the basis functions we know that the stiff matrices and mass matrix in (32) are all tridiagonal sparse matrices.

Remark 1 Our numerical method can transform three-dimensional problems into a series of eigenvalue problems. By constructing appropriate basis functions these onedimensional value problems will be discretized into asparse stiffness matrix and mass matrix, which can be efficiently solved.

6 Numerical experiments

In this section, we present several numerical examples to check the convergence and accuracy of the numerical algorithm.

Example 1 We take $c=0, a=0, b=1$, and $l=0,1,2$ as our example. In Tables $1-3$, we provide the first four eigenvalues with different l and h of Example 1.

Example 2 We take $c=\frac{1}{3}, a=0, b=1$, and $l=0,1,2$ as our example. In Tables $1-3$, we give the first four eigenvalues with different l and h of Example 2.
We know from Tables 1-6 that the approximation eigenvalues achieve at least threedigit accuracy with $h \leq \frac{1}{512}$ for $l=0,1,2$. To further show the convergence of approximation eigenvalues, we let the numerical solution of $h=\frac{1}{1024}$ be the reference solution. The error of the approximate eigenvalues with different h are provided in Figs. 1-6.
We observe from Figs. 1-6 that the numerical eigenvalues are convergent.

Table $1 a=0$, the four eigenvalues with $/=0$ and h

h	$\lambda_{0 h}^{1}$	$\lambda_{0 h}^{2}$	$\lambda_{0 h}^{3}$	$\lambda_{0 h}^{4}$
$1 / 64$	9.869857717467	39.497938355087	88.947662545164	158.330138143300
$1 / 128$	9.869667769569	39.483298848912	88.856747023505	158.017765253015
$1 / 256$	9.869620245684	39.479637982214	88.834016573723	157.939692761527
$1 / 512$	9.869608362394	39.478722703012	88.828333857921	157.920175919198
$1 / 1024$	9.869605391441	39.478493879297	88.826913172297	157.915296787651

Table $2 a=0$, the four eigenvalues with $\mathrm{I}=1$ and h

h	$\lambda_{1 h}^{1}$	$\lambda_{1 h}^{2}$	$\lambda_{1 h}^{3}$	$\lambda_{1 h}^{4}$
$1 / 64$	20.192597755854	59.718503283484	119.092115617980	198.448082264746
$1 / 128$	20.191196002143	59.689264430485	118.947930249028	198.005334602179
$1 / 256$	20.190845426967	59.681953168655	118.911884395986	197.894689220523
$1 / 512$	20.190757774611	59.680125256653	118.902872969163	197.867030522764
$1 / 1024$	20.190735860985	59.679668272588	118.900620114823	197.860116014585

Table $3 a=0$, the four eigenvalues with $/=2$ and h

h	$\lambda_{2 h}^{1}$	$\lambda_{2 h}^{2}$	$\lambda_{2 h}^{3}$	$\lambda_{2 h}^{4}$
$1 / 64$	33.221527912004	82.779965293070	152.120849702143	241.466504738343
$1 / 128$	33.218478774072	82.734418406613	151.921374315241	240.893774149263
$1 / 256$	33.217716151749	82.723028162111	151.871499583334	240.750621394948
$1 / 512$	33.217525475045	82.720180381294	151.859030542575	240.714835156415
$1 / 1024$	33.217477804567	82.719468422366	151.855913260174	240.705888719943

Table $4 a=0$, the four eigenvalues with $/=0$ and h

h	$\lambda_{0 h}^{1}$	$\lambda_{0 h}^{2}$	$\lambda_{0 h}^{3}$	$\lambda_{0 h}^{4}$
$1 / 64$	10.784422087149	41.409061237094	91.862254368608	162.255452978584
$1 / 128$	10.783897714384	41.391953774531	91.763361765200	161.924692186926
$1 / 256$	10.783722018000	41.387479496580	91.738161486718	161.841125052992
$1 / 512$	10.783658754253	41.386276025201	91.731657235236	161.819852309708
$1 / 1024$	10.783634535429	41.385938328125	91.729942732668	161.814368929169

Table $5 a=0$, the four eigenvalues with $I=1$ and h

h	$\lambda_{1 h}^{1}$	$\lambda_{1 h}^{2}$	$\lambda_{1 h}^{3}$	$\lambda_{1 h}^{4}$
$1 / 64$	20.622531429872	60.512755868097	120.249994940413	199.970863052496
$1 / 128$	20.621082705047	60.482989673348	120.103951531653	199.523657856357
$1 / 256$	20.620720381598	60.475546521030	120.067441003649	199.411897858243
$1 / 512$	20.620629791855	60.473685633053	120.058313398197	199.383960493605
$1 / 1024$	20.620607143877	60.473220404839	120.056031498617	199.376976318024

Table 6 The first four eigenvalues for $I=2$ and different h with $a=0$

h	$\lambda_{2 h}^{1}$	$\lambda_{2 h}^{2}$	$\lambda_{2 h}^{3}$	$\lambda_{2 h}^{4}$
$1 / 64$	33.539386696208	83.321688069218	152.883872499399	242.450993494860
$1 / 128$	33.536292906786	83.275738174388	152.683074749736	241.875210146000
$1 / 256$	33.535519115145	83.264247113685	152.632869196580	241.731293670130
$1 / 512$	33.535325645709	83.261374124815	152.620317436233	241.695316468978
$1 / 1024$	33.535277277012	83.260655863631	152.617179473073	241.686322289850

Example 3 We take $c=\frac{1}{2}, a=1, b=2$, and $l=0,1,2$ as our example. The first four eigenvalues for different l and h are listed in Tables 7-9.
We know from Tables 7-9 that the numerical eigenvalues can achieve six-digit accuracy at least for $h \leq \frac{1}{512}$ for $l=0,1,2$. Similarly, we select the solutions with $h=\frac{1}{1024}$ as the reference solutions. In Figs. 7-8, we plot the error of the approximate eigenvalues. We observe from Figs. 7-8 that the numerical eigenvalues are also convergent.

Figure 1 Errors for $I=0$

Figure 2 Errors for $/=1$

Figure 3 Errors for $/=2$

Figure 4 Errors for $I=0$

Figure 5 Errors for $/=1$

Figure 6 Errors for $1=2$

Table $7 a>0$, the four eigenvalues with $/=0$ and h

h	$\lambda_{0 h}^{1}$	$\lambda_{0 h}^{2}$	$\lambda_{0 h}^{3}$	$\lambda_{0 h}^{4}$
$1 / 64$	9.988012930043	39.633375167001	89.112712061030	158.549222565147
$1 / 128$	9.986375926619	39.608980395076	88.990846603507	158.165675283969
$1 / 256$	9.985966717519	39.602883767284	88.960402033368	158.069907148956
$1 / 512$	9.985864417864	39.601359739506	88.952792255536	158.045972559582
$1 / 1024$	9.985838843186	39.600978740678	88.950889896467	158.039989377952

Table $8 a>0$, the four eigenvalues with $/=1$ and h

h	$\lambda_{1 h}^{1}$	$\lambda_{1 h}^{2}$	$\lambda_{1 h}^{3}$	$\lambda_{1 h}^{4}$
$1 / 64$	10.915762724023	40.613236009777	90.103550633775	159.544012021946
$1 / 128$	10.914153283961	40.588873995812	89.981719322438	159.160499469372
$1 / 256$	10.913750964537	40.582785551208	89.951283273667	159.064739988704
$1 / 512$	10.913650387204	40.581263568823	89.943675625219	159.040807561191
$1 / 1024$	10.913625243058	40.580883081317	89.941773798436	159.034824919945

Table $9 a>0$, the four eigenvalues with $/=2$ and h

h	$\lambda_{2 h}^{1}$	$\lambda_{2 h}^{2}$	$\lambda_{2 h}^{3}$	$\lambda_{2 h}^{4}$
$1 / 64$	12.7606082907083	42.5751685615016	92.0871194476254	161.5348743615320
$1 / 128$	12.7590444146313	42.5508636384775	91.9653485323629	161.1514235895622
$1 / 256$	12.7586534825387	42.5447894481584	91.9349275389073	161.0556794745995
$1 / 512$	12.7585557518340	42.5432710282045	91.9273236515782	161.0317508835969
$1 / 1024$	12.7585313192603	42.5428914311462	91.9254227648108	161.0257692010616

Figure 7 Errors for $I=2$

7 Conclusions

In this work, an efficient finite element method is constructed to solve the Schrödinger eigenvalue problem with the IS potential on a spherical domain. By using spherical coordinate transformation and variable separation technique, we reduce the original problem into a series of equivalent and independent eigenvalue problems, which not only overcomes the difficulty brought by the singular coefficient, but also reduces the degrees of freedom greatly by dimension reduction. Thus we can spend less computing time and memory capacity to obtain high-precision numerical solutions. Numerical results show

Figure 8 Errors for $I=1$ (left) and $I=2$ (right)
that our algorithm is very effective. We believe that this method can be extended to more complex practical problems.

Acknowledgements

The authors will thank editors and reviewers for their help.

Funding

The work of Junying Cao was supported by NSFC (Grant Nos. 11901135, 11961009) and Foundation of Guizhou Science and Technology Department (Grant No. [2020]1Y015). Yubing Sui was supported by Humanities and Social Science Research Projects of Ministry of Education of the People's Republic of China (No. 18YJC790142). Donghao Zhang was supported by Humanities and Social Science Research Projects of Ministry of Education of the People's Republic of China (No. 19YJC790180).

Availability of data and materials

Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

We agree.
Authors' contributions
YS and ZD carried out an efficient numerical approach to the eigenvalue problem of Schrödinger equation. JC helped to draft the manuscript. JZ is responsible for numerical experiments and proofs. All authors read and approved the final manuscript.

Author details

${ }^{1}$ College of Economics, Shenzhen University, 518060 Shenzhen, China. ${ }^{2}$ School of Insurance, Southwestern University of Finance and Economics, 610074, Chendu, China. ${ }^{3}$ School of Data Science and Information Engineering, Guizhou Minzu University, 550025 Guiyang, China. ${ }^{4}$ Guizhou Key Laboratory of Big Data Statistics Analysis, Guizhou University of Finance and Economics, 550025 Guiyang, China.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 17 July 2020 Accepted: 6 October 2020 Published online: 17 October 2020

References

1. Felli, V., Marchini, E., Terracini, S.: On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete Contin. Dyn. Syst. 21, 91-119 (2008)
2. Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T..: Analytic structure of solutions to multiconfiguration equations. J. Phys. A 42, 315208 (2009)
3. Moroz, S., Schmidt, R.: Nonrelativistic inverse square potential, scale anomaly, and complex extension. Ann. Phys. 325, 491-513 (2010)
4. Wu, H., Sprung, D.W.L.: Inverse-square potential and the quantum vortex. Phys. Rev. A 49, 4305-4311 (1994)
5. Case, K.M.: Singular potentials. Phys. Rev. 80, 797-806 (1950)
6. Frank, W.M., Land, D.J., Spector, R.M.: Singular potentials. Rev. Mod. Phys. 43, 36-98 (1971)
7. Cao, D., Han, P.: Solutions to critical elliptic equations with multi-singular inverse square potentials. J. Differ. Equ. 224, 332-372 (2006)
8. Felli, V., Marchini, E.M., Terracini, S.: On Schrödinger operators with multipolar inverse-square potentials. J. Differ. Equ. 250, 265-316 (2007)
9. Felli, V., Terracini, S.: Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Commun. Partial Differ. Equ. 31, 469-495 (2006)
10. Kalf, H., Schmincke, U.W., Walter, J., Wüst, R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. In: Spectral Theory and Differential Equations. Comm. Lecture Notes in Math., vol. 448, pp. 182-226. Springer, Berlin (1975)
11. Li, H., Ovall, J.S.: A posteriori eigenvalue error estimation for the Schrödinger operator with the inverse square potential. Discrete Contin. Dyn. Syst., Ser. B 20, 1377-1391 (2015)
12. Ghanbari, B., Atangana, A.: Some new edge detecting techniques based on fractional derivatives with non-local and non-singular kernels. Adv. Differ. Equ. 2020, 435 (2020)
13. Rahman, G., Nisar, K.S., Ghanbari, B., Abdeljawad, T.: On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals. Adv. Differ. Equ. 2020, 368 (2020)
14. Ghanbari, B., Nisar, K.S., Ghanbari, B., Aldhaifallah, M.: Abundant solitary wave solutions to an extended nonlinear Schrödinger's equation with conformable derivative using an efficient integration method. Adv. Differ. Equ. 2020, 328 (2020)
15. Ghanbari, B., Rada, L., Chen, K.: A restarted iterative homotopy analysis method for two nonlinear models from image processing. Int. J. Comput. Math. 91, 661-687 (2014)
16. Khater, M.M.A., Khater, C., et al.: Analytical, semi-analytical, and numerical solutions for the Cahn-Allen equation. Adv. Differ. Equ. 2020, 9 (2020)
17. Khater, M.M.A., Khater, C., et al.: On the numerical investigation of the interaction in plasma between frequency of waves. Results Phys. 18, 103317 (2020)
18. Khater, M.M.A., Khater, C., et al.: Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms. Chaos Solitons Fractals 136, 109824 (2020)
19. Li, J., Attia, R.A.M., Khater, M.M.A., Lu, D.: The new structure of analytical and semi-analytical solutions of the Iongitudinal plasma wave equation in a magneto-electro-elastic circular rod. Mod. Phys. Lett. B 12, 2050123 (2020)
20. Khater, M.M.A., Attia, R.A.M., Lu, D.: Computational and numerical simulations for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov (FKPP) equation. Phys. Scr. 95, 055213 (2020)
21. Munusamy, K., Ravichandran, C., Nisar, K.S., Ghanbari, B.: Existence of solutions for some functional integro-differential equations with nonlocal conditions. Math. Methods Appl. Sci. 328 (2020). https://doi.org/10.1002/mma. 6698
22. Ghanbari, B., Yusuf, A., Inc, M., Baleanu, D.: The new exact solitary wave solutions and stability analysis for the $(2+1)$-dimensional Zakharov-Kuznetsov equation. Adv. Differ. Equ. 2019, 49 (2019)
23. Srivastava, H.M., Günerhan, H., Ghanbari, B.: Exact traveling wave solutions for resonance nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma. 5827
24. Christiansen, P.L., Muto, V., Rionero, S.: Solitary wave solutions to a system of Boussinesq-like equations. Chaos Solitons Fractals 1, 45-50 (1992)
25. Khater, M.M.A., Attia, R.A.M., Abdel-Aty, A.H., et al.: Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term. Results Phys. 12, 103000 (2020)
26. Khater, M.M.A., Attia, R.A.M., Abdel-Aty, A.H., et al.: Analytical and numerical solutions for the current and voltage model on an electrical transmission line with time and distance. Phys. Scr. 95, 055206 (2020)
27. Felli, V., Ferrero, A., Terracini, S.: Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. 13, 119-174 (2011)
28. Hunsicker, E., Li, H., Nistor, V., Ville, U.: Analysis of Schrödinger operators with inverse square potentials I: regularity results in 3D. Bull. Math. Soc. Sci. Math. Roum. 55, 157-178 (2012)
29. Li, H., Nistor, V.: Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM. J. Comput. Appl. Math. 224, 320-338 (2009)
30. Li, H., Zhang, Z.: Efficient spectral and spectral element methods for eigenvalue problems of Schrödinger equations with an inverse square potential. SIAM J. Sci. Comput. 39(1), A114-A140 (2017)
31. Li, H., Ovall, J.S.: A posteriori estimation of hierarchical type for the Schrödinger operator with the inverse square potential on graded meshes. Numer. Math. 128, 707-740 (2014)
32. Reddien, G.W.: Finite-difference approximations to singular Sturm-Liouville eigenvalue problems. Math. Comput. 30, 278-282 (1976)
33. Ma, L., Shen, J., Wang, L.L.: Spectral approximation of time-harmonic Maxwell equations in three-dimensional exterior domains. Int. J. Numer. Anal. Model. 12, 1-18 (2015)
34. Babuška, I., Osborn, J.: Eigenvalue Problems. Handbook of Numerical Analysis, vol. II, pp. 640-787. Elsevier, Amsterdam (1991)
