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Abstract
We study the dynamical properties of a discrete population model with diffusion. We
survey the transcritical, pitchfork, and flip bifurcations of nonhyperbolic fixed points
by using the center manifold theorem. For the degenerate fixed point with
eigenvalues ±1 of the model, we obtain the normal form of the mapping by using
the coordinate transformation. Then we give an approximating system of the normal
form via an approximation by a flow. We give the local behavior near a degenerate
equilibrium of the vector field by the blowup technique. By the conjugacy between
the reflection of time-one mapping of a vector field and the model we obtain the
stability and qualitative structures near the degenerate fixed point of the model.
Finally, we carry out a numerical simulation to illustrate the analytical results of the
model.
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1 Introduction
In recent years, discrete dynamic systems developed rapidly and achieved fruitful results
(see [1–9]). Particularly, the dynamic properties of discrete population models received
extensive attention by many researchers [10–15]. In [10] the authors considered the fol-
lowing discrete population model with diffusion:

μt+1
i =

pμt
i

1 + qμt
i

+ d�2μt
i–1, (1)

with Dirichlet boundary condition μt
0 = 0 = μt

n+1, where d > 0 is the diffusion coefficient,
t ∈ Z+ = {0, 1, 2, . . .}, p > 1, q > 0, �2 is second-order difference operator, and �2μt

i–1 =
μt

i+1 – 2μt
i + μt

i–1, i ∈ {1, 2, . . . , n}.
When n = 2, p = q = b, and μt

1, μt
2 are written as μt , νt , respectively, and model (1) can be

transformed into a particular two-patch discrete-time metapopulation model of the form

⎧
⎨

⎩

μt+1 = bμt
1+bμt

+ d(–2μt + νt),

νt+1 = bνt
1+bνt

+ d(μt – 2νt).
(2)
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The properties of pitchfork bifurcation, one case (i.e., b = (d+1)2

3d–1 , d > 1
3 ) of flip bifurcation at

nontrivial fixed point E1(μ∗,ν∗) with μ∗ = ν∗ = b–d–1
b(d+1) , and Lyapunov exponential analysis

are given in [10].
In this paper, we study the following problems. First, we focus on the stability and bifur-

cations of the nonhyperbolic fixed point E0(0, 0) and on the case (i.e., b = (d+1)2

d–1 , d > 1) of
flip bifurcation at nontrivial fixed point E1. Second, we investigate the stability and qual-
itative structures near a degenerate fixed point Ẽ0(0, 0) formed by fixed points E0 and E1,
which collide and bond together when (d, b) = (1, 2).

Compared to continuous models, discrete models can have different dynamic properties
(see [1]), such as flip bifurcation (see [15]), Neimark–Sacker bifurcation (see [3, 14, 15]),
invariant curve (see [15]), fold-flip bifurcation (see [8]), and strong resonance (see [3]).

The stability and qualitative structures near a degenerate fixed point of a discrete dy-
namic system are paid attention by many researchers; for example, Elaydi and Luís [7]
proposed some open problems about stability of degenerate fixed point of discrete-time
Guzowska–Luís–Elaydi competition model and discrete-time Ricker competition model.
Due to the complexity of the degenerate fixed point, it is necessary to combine a variety
of mathematical tools to study, for example, coordinate transformation [3], normal form
theory (see [3, 16]), Picard iteration (see [3, 8]), approximation by a flow (see [3, 16]), qual-
itative theory of ordinary differential equations (see [17]), and blowup technique (see [17–
19]). In this paper, we survey the local behavior near a degenerate equilibrium of a vector
field by homogeneous polar blowup (see [18, 19]), which can avoid tedious calculations.

This paper is organized as follows. In Sect. 2, we give topological types of fixed point
of model (2). In Sect. 3, we study transcritical bifurcation, pitchfork bifurcation, flip bi-
furcation, and the stability of the fixed point E0 of model (2). In Sect. 4, a particular case
(b = (d+1)2

d–1 , d > 1) of flip bifurcation and stability of fixed point E1 of model (2) are sur-
veyed. In Sect. 5, we apply the coordinate transformation to obtain the normal form of
the mapping of model (2) near the degenerate fixed point Ẽ0. The approximate system
(also called a vector field) of the normal form of the mapping is given by Takens’s theorem
(see [16, pp. 142–148]) and Picard iteration. The local behavior near the degenerate equi-
librium (0, 0) of the vector field is obtained by using the blowup technique. The stability
and qualitative structures near the degenerate fixed point Ẽ0 of model (2) are obtained by
the conjugacy between reflection of time-one mapping of the vector field and model (2).
Finally, we perform numerical simulation analysis.

2 Topological types of the fixed point
In this section, we give topological types of fixed points E0 and E1 on the parameter (d, b)-
plane. We write model (2) as the following planar mapping T : R2 �→R

2:

T :

(
μ

ν

)

�→
(

bμ

1+bμ
+ d(–2μ + v)

bν
1+bν

+ d(μ – 2v)

)

.

The mapping T expanded by Taylor series at the fixed point E0 is

(
μ

ν

)

�→
(

b – 2d d
d b – 2d

)(
μ

ν

)

+

(
–b2μ2 + b3μ3

–b2ν2 + b3ν3

)

+ O(3), (3)
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where O(3) represents the terms of orders greater than or equal to 3. The Jacobian matrix
of T at the point E0 is

J(E0) =

(
b – 2d d

d b – 2d

)

.

The eigenvalues of matrix J(E0) are λ1 = b – d and λ2 = b – 3d.
Translating the fixed point E1 into the origin O by coordinate translation y1 = μ – μ∗,

y2 = ν – ν∗, the Taylor expansion at the fixed point E1 is

T̃ :

(
y1

y2

)

�→
⎛

⎝
(d+1)2

b – 2d d

d (d+1)2

b – 2d

⎞

⎠

(
y1

y2

)

+

(
– (d+1)3

b y2
1 + (d+1)4

b y3
1

– (d+1)3

b y2
2 + (d+1)4

b y3
2

)

+ O(3). (4)

The Jacobian matrix of T at the fixed point E1 (i.e., mapping T̃ at the fixed point O) is as
follows:

J(E1) =

(
(d+1)2

b – 2d d
d (d+1)2

b – 2d

)

.

The eigenvalues of matrix J(E1) are λ3 = (d+1)2

b – d and λ4 = (d+1)2

b – 3d.
For convenience, we give some notations: Di (i = 1, 2, . . . , 6) (see Fig. 1), and ℵi (i =

1, 2, . . . , 12) (see Fig. 2) are the regions of the parameter (d, b)-plane of E0 and E1, respec-
tively, divided by the curves βi (i = 1, 2, 3, 4) and γi (i = 1, 2, . . . , 6):

β1
�=

{
(d, b) ∈R

2|b = d + 1, d > 0
}

, β2
�=

{
(d, b) ∈R

2|b = d – 1, d > 1
}

,

β3
�=

{
(d, b) ∈R

2|b = 3d + 1, d > 0
}

, β4
�=

{

(d, b) ∈R
2
∣
∣
∣b = 3d – 1, d >

1
3

}

,

γ1
�=

{

(d, b) ∈R
2
∣
∣
∣b =

(d + 1)2

d – 1
, d > 1, b > 0

}

, γ2
�= β1,

γ3
�=

{

(d, b) ∈R
2
∣
∣
∣b =

(d + 1)2

3d – 1
, d >

1
3

, b > 0
}

,

Figure 1 Regions in the parameter (d,b)-plane of E0
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Figure 2 Regions in the parameter (d,b)-plane of E1

γ4
�=

{

(d, b) ∈R
2
∣
∣
∣b =

(d + 1)2

3d + 1
, d > 0

}

, γ5
�=

{
(d, b) ∈ R

2|b = 1, d > 0
}

,

γ6
�=

{

(d, b) ∈R
2
∣
∣
∣b =

1
3

, d > 0
}

.

Lemma 1 The fixed point E0 is nonhyperbolic if and only if (d, b) lies on the curves βi

(i = 1, 2, 3, 4). Otherwise, the fixed point E0 has the following properties:
(1) If (d, b) ∈ Di (i = 3), then it is a stable node;
(2) If (d, b) ∈ Di (i = 1, 5, 6), then it is an unstable node;
(3) If (d, b) ∈ Di (i = 2, 4), then it is a saddle.

Lemma 2 The fixed point E1 is nonhyperbolic if and only if (d, b) lies on the curves γi

(i = 1, 2, 3, 4, 5, 6). Otherwise, the fixed point E1 has the following properties:
(1) If (d, b) ∈ ℵi (i = 8, 12), then it is a stable node;
(2) If (d, b) ∈ ℵi (i = 1, 3, 5, 6, 10), then it is a unstable node;
(3) If (d, b) ∈ ℵi (i = 2, 4, 7, 9, 11), then it is a saddle.

3 Bifurcation at fixed point E0

In this section, the parameter b is regarded as a bifurcation parameter. We survey stability
and bifurcation properties of the mapping T at the fixed point E0.

Theorem 1 As (d, b) passes through the curve β1, the mapping T undergoes a transcritical
bifurcation at the fixed point E0. The details are as follows:

(1) The fixed points E0 and E1 collide and bond together to form a fixed point when (d, b)
passes through curve β1;

(2) The fixed point E0 is nonhyperbolic and stable for 0 < d < 1 when (d, b) lies on the
curve β1;

(3) The fixed point E0 is nonhyperbolic and unstable for d > 1 when (d, b) lies on the
curve β1.
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Proof Mapping (3) can be diagonalized by the linear transformation μ = x + y, ν = x – y
when b = d + 1. We obtain the following mapping:

⎛

⎜
⎝

x
y
b

⎞

⎟
⎠ �→

⎛

⎜
⎝

λ1 0 0
0 λ2 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

x
y
b

⎞

⎟
⎠ +

⎛

⎜
⎝

–b2(x2 + y2) + b3(x3 + 3xy2)
–2b2xy + b3(y3 + 3x2y)

0

⎞

⎟
⎠ + O(3). (5)

We choose b as a bifurcation parameter. According to the center manifold theorem [20],
a center manifold of mapping (5) is

W c =
{

(x, y, b)|y = h(x, b), h(0, b0) = Dh(0, b0) = 0, |x| < ε, |b – b0| < δ
}

,

where b0 := d + 1, and ε and δ are sufficiently small positives. Therefore assume that the
center manifold form is

y = h1(x, b) = d1x2 + e1(b – b0)x + f1(b – b0)2 + O(3),

which must satisfy

h1
(
λ1x – b2(x2 + h2

1(x, b)
)

+ b3(x3 + 3xh2
1(x, b)

)
+ O(3), b

)

= λ2h1(x, b) – 2b2xh1(x, b) + b3(h3
1(x, b) + 3x2(x, b)

)
.

By comparing the coefficients we obtain d1 = λ2d1, e1 = λ2e1, f1 = λ2f1. We havee λ1 = 1
and λ2 = 1 – 2d when (d, b) lies on the curve β1. Therefore d1 = e1 = f1 = 0. The center
manifold is

y = h1(x, b) = O(3).

By substituting the center manifold y = h1(x, b) into mapping (5) we obtain a one-
dimensional mapping reduced to the center manifold as follows:

x �→ f1(x) = x – b2x2 + b3x3 + O(3).

We can verify that the transversality and nondegeneracy conditions of transcritical bifur-
cation (see [4, pp. 504–507])

∂f1

∂x

∣
∣
∣
∣
(x,b)=(0,b0)

= 1,
∂2f1

∂x∂b

∣
∣
∣
∣
(x,b)=(0,b0)

= 1 �= 0,
∂2f1

∂x2

∣
∣
∣
∣
(x,b)=(0,b0)

= –2b2 �= 0

are established. Therefore the mapping T undergoes a transcritical bifurcation at the fixed
point E0 as (d, b) passes through the curve β1. We obtain by Theorem 1.15 in [5, p. 29] and
λ1 = 1, λ2 = 1–2d �= 1 that the fixed point E0 is stable and nonhyperbolic for 0 < d < 1 when
(d, b) lies on the curve β1. The fixed point E0 is unstable and nonhyperbolic for d > 1 when
(d, b) lies on the curve β1. The proof of the theorem is completed. �

Remark 1 The mapping

x �→ f1(x) = x – b2x2 + b3x3 + O(3)
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can be seen as

x �→ f1(x) = (b – d)x – b2x2 + b3x3 + O(3)

when (b, d) lies on β1. Therefore

∂2f1

∂x∂b

∣
∣
∣
∣
(x,b)=(0,b0)

= 1.

Theorem 2 As (d, b) passes through the curve β2, the mapping T undergoes a flip bifurca-
tion at fixed point E0. The details are as follows:

(1) The mapping T appears in a stable 2-period orbit near fixed point E0, and the
stability of fixed point does not change when (d, b) passes through the curve β2;

(2) The fixed point E0 is nonhyperbolic and unstable when (d, b) lies on the curve β2.

Proof Similarly, the center manifold has the form

y = h2(x, b) = d2x2 + e2(b – b1)x + f2(b – b1)2 + O(3)

when b = b1 := d – 1. The center manifold

y = h2(x, b) = O(3)

can be obtained by the same calculation method as in Theorem 1. By substituting the cen-
ter manifold into mapping (5) we obtain the following one-dimensional mapping reduced
to the center manifold:

x �→ f2(x) = –x – b2x2 + b3x3 + O(3).

We can verify that the transversality and nondegeneracy conditions of flip bifurcation (see
Theorem 4.3 in [3])

F1:=
∂2f2

∂x∂b

∣
∣
∣
∣
(x,b)=(0,b1)

= –1,

F2 :=
[

1
2

(
∂2f2

∂x2

)2

+
1
3

(
∂3f2

∂x3

)]∣
∣
∣
∣
(x,b)=(0,b1)

= 2b3(b + 1) > 0

are established. Note that the mapping T undergoes a flip bifurcation as (d, b) passes
through the curve β2. By Theorem 3.5.1 in [6] and F2 > 0 the mapping T appears in a
stable 2-period orbit as (d, b) passes through the curve β2. We have λ1 = –1 and λ2 < –1
when (d, b) lies on the curve β2. So the nonhyperbolic fixed point E0 is unstable. The proof
of the theorem is completed. �

Theorem 3 As (d, b) passes through the curve β3, the mapping T undergoes a pitchfork
bifurcation at the fixed point E0. The details are as follows:

(1) The stability of the fixed point E0 does not change when (d, b) passes through the
curve β3;
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(2) The fixed point E0 is nonhyperbolic and unstable when (d, b) lies on the curve β3.

Proof Applying the same calculation method as in Theorem 1, we obtain the center man-
ifold

x = h3(y, b) =
b2

2d
y2 + O(3)

when b = b2 := 3d + 1. Substituting the center manifold x = h3(y, b) into mapping (2) yields
a one-dimensional mapping reduced to the center manifold

y �→ f3(y) = y –
b4

d
y3 + O(3).

We can check that the transversality and nondegeneracy conditions of pitchfork bifurca-
tion (see [4, p. 511])

∂f3

∂y

∣
∣
∣
∣
(y,b)=(0,b2)

= 1,
∂2f3

∂y∂b

∣
∣
∣
∣
(y,b)=(0,b2)

= 1,

∂2f3

∂y2

∣
∣
∣
∣
(y,b)=(0,b2)

= 0,
∂3f3

∂y3

∣
∣
∣
∣
(y,b)=(0,b2)

=
18b3(b + 1)

1 – b

are established. Therefore the mapping T undergoes a pitchfork bifurcation at fixed point
E0 as (d, b) passes through the curve β3. We have λ1 = 3d + 1 > 1 and λ2 = 1 when (d, b)
lies on the curve β3. Therefore the fixed point E0 is nonhyperbolic and stable when (d, b)
lies on the curve β3. The proof of the theorem is completed. �

Theorem 4 As (d, b) passes through the curve β4, the mapping T undergoes a flip bifurca-
tion at fixed point E0. The details are as follows:

(1) For d ∈ ( 1
3 , 1), the mapping T appears in a stable 2-periodic orbit near fixed point E0,

and the stability of fixed point E0 has to change when (d, b) passes through the curve
β4;

(2) For d ∈ (1, +∞), the mapping T appears in a repellent 2-period orbit near fixed point
E0, and the stability of fixed point E0 does not change when (d, b) passes through the
curve β4;

(3) The fixed point E0 is stable and nonhyperbolic for d ∈ ( 1
3 , 1) when (d, b) lies on the

curve β4;
(4) The fixed point E0 is unstable and nonhyperbolic for d ∈ (1, +∞) when (d, b) lies on

the curve β4.

Proof Similarly, when b = b3 := 3d – 1, we obtain the center manifold as follows:

x = h4(y, b) =
b2

2(d – 1)
y2 + O(3).

Substituting the center manifold x = h4(y, b) into mapping (5), we obtain a one-dimensional
mapping reduced to the center manifold,

y �→ f4(y) = –y –
b4

d – 1
y3 + O(3).
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We can check that the transversality and nondegeneracy conditions of flip bifurcation

F3 :=
∂2f4

∂y∂b

∣
∣
∣
∣
(y,b)=(0,b3)

= –1, F4 :=
[

1
2

(
∂2f4

∂y2

)2

+
1
3

(
∂3f4

∂y3

)]∣
∣
∣
∣
(y,b)=(0,b3)

=
2b4

1 – d

are established. The mapping T undergoes a flip bifurcation as (d, b) passes through the
curve β4 at fixed point E0. By Theorem 3.5.1 in [6] the mapping T appears in a stable 2-
periodic orbit for d ∈ ( 1

3 , 1) and in a repellent 2-periodic orbit for d ∈ (1, +∞). We have
λ1 = 2d – 1 and λ2 = –1 when (d, b) lies on the curve β4. By Theorem 1.61 in [5] the fixed
point E0 is unstable and nonhyperbolic for d ∈ (1, +∞) and stable and nonhyperbolic for
d ∈ ( 1

3 , 1). The proof of the theorem is completed. �

4 Bifurcation at fixed point E1

In this section, we consider b as a bifurcation parameter and apply the center manifold
theorem to survey the stability and flip bifurcation of the fixed point E1 of the mapping T .

Theorem 5 As (d, b) passes through the curve γ1, the mapping T undergoes a flip bifurca-
tion at fixed point E1. The details are as follows:

(1) The mapping T appears in a stable 2-periodic orbit near fixed point E1, and the
stability of the fixed point E1 does not change when (d, b) passes through the curve γ1;

(2) The fixed point E1 is nonhyperbolic and unstable when (d, b) lies on the curve γ1.

Proof The mapping T̃ can be diagonalized into the following form by linear transforma-
tion y1 = x + y, y2 = x – y when b = b4 := (d+1)2

d–1 (d > 1):

⎛

⎜
⎝

x
y
b

⎞

⎟
⎠ �→

⎛

⎜
⎝

λ3 0 0
0 λ4 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

x
y
b

⎞

⎟
⎠ +

⎛

⎜
⎝

– 2(d+1)2

b (x2 + y2) + 6(d+1)4

b (x3 + 3xy2)
– 4(d+1)3

b xy + 6(d+1)4

b (y3 + 3x2y)
0

⎞

⎟
⎠ + O(3). (6)

Similarly to the previous proof method, we get that the center manifold of mapping (6) is

y = h5(x, b) = O(3).

Substituting the center manifold into mapping (6), we obtain the one-dimensional map-
ping reduced to the center manifold

x �→ f5(x) = –x – (d – 1)(d + 1)x2 + (d – 1)(d + 1)2x3 + O(3).

We can verify that the transversality and nondegeneracy conditions of flip bifurcation

F5 :=
∂2f5

∂x∂b

∣
∣
∣
∣
(x,b)=(0,b4)

= –1,

F6 :=
[

1
2

(
∂2f5

∂x2

)2

+
1
3

(
∂3f5

∂x3

)]∣
∣
∣
∣
(x,b)=(0,b4)

= 2d(d – 1)(d + 1)2

are established. The mapping T̃ undergoes a flip bifurcation as (d, b) passes through the
curve γ1 at fixed point E1. By Theorem 3.5.1 in [6] and F6 > 0 mapping (4) appears in a
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stable 2-period orbit near fixed point E1 for d ∈ (1, +∞) as (d, b) passes through the curve
γ1. We have λ1 = 2d – 1 > 1 and λ2 = –1 when (d, b) lies on the curve γ1, so the fixed point
E1 is nonhyperbolic and unstable. The proof of the theorem is completed. �

5 Qualitative structures and stability of degenerate fixed point
In this section, we apply Picard iteration, approximation by a flow, and near identity trans-
formation (see [3, 8, 16]) to investigate the degenerate fixed point of the mapping T when
(d, b) = (1, 2). We obtain qualitative structures and the stability of the degenerate fixed
point of model (2).

5.1 Normal form
To establish the normal form of the mapping T , we write it in the following form when
(d, b) = (1, 2):

x �→ f (x) = Ax + R(x), x = (μ,ν)T ∈R
2. (7)

The matrix A has the eigenvalues λ1 = 1 and λ2 = –1. From

Aq1 = λ1q1, Aq2 = λ2q2, AT p1 = λ1p1, AT p2 = λ2p2

we get the solution

p1 = q1 =
(

1√
2

,
1√
2

)T

, p2 = q2 =
(

1√
2

, –
1√
2

)T

.

Apply the reversible linear transformation


1 : x = ξ1q1 + ξ2q2

to mapping (7). Since 〈q1, p2〉 = 〈q2, p1〉 = 0, the linear transformation 
1 transforms map-
ping (7) into the mapping

F :

(
ξ1

ξ2

)

�→
(

λ1ξ1 +
∑

i+j=2,3
1

i!j! gijξ
i
1ξ

j
2

λ2ξ2 +
∑

i+j=2,3
1

i!j! hijξ
i
1ξ

j
2

)

+ O
(‖ξ‖4),

where

g20 = g02 = –4
√

2, g11 = g21 = g03 = 0, g30 = g12 = 24,

h11 = –4
√

2, h20 = h02 = h30 = h12 = 0, h21 = h03 = 24.

Theorem 6 The smooth mapping F can be transformed into the following normal form by
reversible near identity transformation:

F̃ :

(
η1

η2

)

�→
(

η1 + a0η
2
1 + b0η

2
2 + c0η

3
1 + d0η1η

2
2

–η1 + η1η2

)

+ O
(‖η‖4), (8)
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where

a0 =
1
2

, b0 = 16, c0 =
1
8

, d0 = 12.

Proof First, we apply the near identity transformation


2 : ξ1 = η1 –
h21

2h11
η2

1 –
h03

6h11
η2

2, ξ2 = η2

and scale transformation

η1 �→ η1

h11

to mapping F to eliminate quadratic and cubic items as much as possible. Then the reso-
nance term is left, and the normal form is obtained. The proof is complete. �

5.2 Approximation by a flow
For dealing with stability and qualitative structures near the degenerate fixed points of
a planar mapping with eigenvalues ±1, the general idea is embedding the reflection of
the normal form of a mapping into the flow of a vector field. Then we study the dynamic
behavior of the mapping by the properties of the vector field. In [3, p. 424], it is stated
that “any mapping sufficiently close to the identity mapping can be approximated up to
any order by a flow shift.” That is, an approximating system (see [3]) can be constructed,
in which the unit time shift ϕ1 along orbits coincides with (or, at least, approximates) the
near identity mapping up to order k. In this paper, we use the reflection transformation
(see [3, 8]) to transform the truncated normal form of the mapping F̃ into a near identity
mapping and embed it into the flow of a vector field. We use the vector field to investigate
the stability and qualitative structures near the degenerate fixed point of the mapping T
when (d, b) = (1, 2). The Taken theorem and the following lemma come from [21, p. 38].

Lemma 3 (Taken’s) Let F : Rn →R
n be the Cr-diffeomorphism (r ≥ 2) defined by

F(x) = Ax + F2(x) + F3(x) + · · · + Fr(x) + o
(|x|r) as x → 0,

where A = S(I + N), S is semisimple, N is nilpotent, SN = NS, and I is the identity. Let 1 < l <
r be any integer, and let Fk ∈ Hk

n , where Hk
n is the vector space of homogeneous polynomials

of order k in n variables with values in Cn. Then there exist a diffeomorphism ψl : � ⊆
R

n →R
n, where � is a neighborhood of the origin in R

n, and a vector field X(x) on R
n such

that
(i) jl(ψl ◦ F ◦ ψ–1

l ) is an A-normal form of diffeomorphism F(x) up to order l,
(ii) X(Sx) = SX(x) for all x ∈R

n,
(iii) jl(ψl ◦ F ◦ ψ–1

l )(x) = jl(
X(1, Sx)),
where jl is the truncation operator up to order l, and 
X(t, x) is the flow of X(x). Further-
more, for such a vector field X(x), jlX(x) is uniquely determined by jlF(x).

If there exist constants k, σ , η such that

∥
∥Y (x, y)

∥
∥ ≥ σ

∥
∥(x, y)

∥
∥k , (x, y) ∈R

2,
∥
∥(x, y)

∥
∥ ≤ η,
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then the C∞ vector field is of Łojasiewicz type, where ‖ · ‖ is the Euclidean norm
on R

2.

Lemma 4 Let g ∈ Diff(2) with associated formal normal form G̃ = R ◦ X̃1 (X �→ X1, i.e.,
time-one mapping), where X̃ has in 0 a singularity of Łojasiewicz type with a characteristic
orbit and Rn = I for some n > 0. Suppose, moreover, that all singularities in some nice de-
composition of X̃ are of type I and, restricted to a fundamental conic domain

∑
, we have

α(gn|∑) ∈ [Diff0
rot(2)]k (this especially is the case where X̃ has no elliptic sectors). Then

there exists a C∞-coordinate change H with j∞(H – I)(0) = 0 and an R-invariant repre-
sentative X of X̃ such that H–1 ◦ g ◦ H = R ◦ X̃1.

Remark 2 Lemmas 3 and 4 deal with many concepts, the details of which can be found in
[16] and [21], respectively.

For the truncated normal form of the mapping F̃ ,

N :

(
η1

η2

)

�→
(

η1 + a0η
2
1 + b0η

2
2 + c0η

3
1 + d0η1η

2
2

–η1 + η1η2

)

, (9)

we can see that

R ◦ N :

(
η1

η2

)

�→
(

η1 + a0η
2
1 + b0η

2
2 + c0η

3
1 + d0η1η

2
2

η1 – η1η2

)

and RN(x) = N(Rx). For R◦N embedded in the flow of a vector field, we have the following
results.

Theorem 7 The mapping R ◦ N satisfies

R ◦ N(η) = ϕt(η) + O
(‖η‖4)

in a small neighborhood of the origin O, where ϕt is the flow generated by the planar vector
field

(
η̇1

η̇2

)

=

(
1
2η2

1 + 16η2
2 – 1

8η3
1 + 20η1η

2
2

–η1η2 – 1
4η2

1η2 + 8η3
2

)

. (10)

The ϕ1 is the unit-time shift along orbits of planar vector field (10), and R = diag(1, –1),
R2 = I2×2.

Proof By Lemma 3 the reflection of the truncated normal form N can be embedded in the
flow of a vector field, and ϕt is constructed as follows:

X �→ φt(X) = ϕt , Ẋ = Y (X) = JX + Y2(X) + Y3(X) + · · · , X = (η1,η2)T ∈ R2, (11)

where J = 0 and Yk(X) = (Zk
1(X), Zk

2(X))T , where Zk
1,2(X) are homogeneous polynomial

functions with unknown coefficients. To facilitate the expression of the Picard iteration
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process, define M(X) = N(η), which is introduced to solve the explicit expression of the
vector field Y such that RM(X) = φt(X) + O(‖X‖4). Because the highest order of N(η) ex-
pressions is 3, it is only necessary to perform three Picard iterations on system (11) to
achieve the approximate purpose. We start the iterative from X(1)(t) = eJtX. The calcula-
tion shows that the linear part of X(1)(1) coincides with RM(X). The expression of Y2 can
be assumed of the following form

Y2 =
(

1
2

A20η
2
1 +

1
2

A02η
2
2, B11η1η2

)T

.

Therefore by Picard iteration we obtain

X(2)(t) = eJtX +
∫ t

0
eJ(t–τ )Y2

(
X(1)(τ )

)
dτ =

(
η1

η2

)

+

(
1
2 A20η

2
1t + 1

2 A02η
2
2t

B11η1η2t

)

+ O
(‖η‖2).

By comparing the quadratic terms of RM(X) and X(2)(1) we obtain A20 = 1, A02 = 32, and
B11 = –1. Then we put

Y3 =
(∑

i+j=3

Aijη
i
1η

j
2,

∑

i+j=3

Bijη
i
1η

j
2

)T

.

By iterating and letting t = 1 we get

X(3)(1) = eJ X +
∫ 1

0
eJ(1–τ )[Y2

(
X(2)(τ )

)
+ Y3

(
X(2)(τ )

)]
dτ

=

(
η1 + 1

2η2
1 + 16η2

2

η2 – η1η2

)

+

(
( 1

4 + 1
6 A30)η3

1 + 1
2 A21η

2
1η2 + (–8 + 1

2 A12)η1η
2
2 + 1

6 A03η
3
2

1
6 B30η

3
1 + (– 1

4 + 1
2 B21)η2

1η2 + 1
2 B12η1η

2
2 + ( 1

6 B03 – 8)η3
2

)

+ O
(‖x‖)4.

By comparing the cubic terms of MR(X) and X(3)(1) we obtain

A30 = –
3
4

, A21 = A03 = B30 = B12 = 0, A12 = 40, B21 = –
1
2

, B03 = 48.

By substituting the expressions of Y2, Y3 into system (11) we obtain a planar vector field
(10) and the following C∞ vector field:

X :

(
η̇1

η̇2

)

=

(
1
2η2

1 + 16η2
2 – 1

8η3
1 + 20η1η

2
2

–η1η2 – 1
4η2

1η2 + 8η3
2

)

+ O(4).

We can see from this expression that the C∞ vector field X is of Łojasiewicz type. The
proof of the theorem is completed. �

Theorem 8 In the sufficiently small neighborhood of the origin O, the degenerate fixed
point Ẽ0 of model (2) is unstable. The fixed points E0 and E1 of model (2) collide and bond
together to form a degenerate fixed point Ẽ0 when (d, b) = (1, 2). For a sufficiently small
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positive initial value P(μ0,ν0) ∈ R2
+, the sequences {Tn(P)}+∞

0 enter the third quadrant from
the first quadrant along both sides of straight line μ = ν . In this process the sequences

{
T2n(P)

}+∞
0 and

{
T2n+1(P)

}+∞
0

along both sides of straight line μ = ν first “repel” and then “attract”. The phase portraits of
model (2) near the degenerate fixed point Ẽ0 are shown in Fig. 4.

Proof Vector field (10) is η2 �→ –η2 invariant, and equilibrium (0, 0) is degenerate (i.e.,
equilibrium (0, 0) without linear part), so the phase portraits of vector field (10) are sym-
metric about the η1-axis, so we consider only η2 ≥ 0. To study the local behavior near the
degenerate equilibrium (0, 0) of the vector field X, we will desingularize it by using the
homogeneous polar blowup technique. Consider the mapping

φ : S1 × R → R2,

(θ , r) �→ (r cos θ , r sin θ ) = (η1,η2).

This mapping transforms {r = 0} into (0, 0), and inverse mapping φ–1 blows up the degen-
erate equilibrium (0, 0) of the vector field X to a circle (see [18, pp. 91–92]).

By using coordinate transformation η1 = r cos θ , η2 = r sin θ of vector field X, we obtain
the system

(
dr
dt
dθ
dt

)

=

(
r2 cos θ ( 1

2 cos2θ + 15 sin2 θ ) + O(r3)
–r sin θ ( 3

2 cos2θ + 15 sin2 θ ) + O(r2)

)

. (12)

We use the following time scale transformation rdt = dτ (see [3, 8, 19]) and convert system
(12) into the equivalent system

(
dr
dτ
dθ
dτ

)

=

(
r cos θ ( 1

2 cos2θ + 15 sin2 θ ) + O(r2)
– sin θ ( 3

2 cos2θ + 15 sin2 θ ) + O(r)

)

. (13)

To investigate the phase portrait of the vector field X in a neighborhood � of the origin
O, it clearly suffices to investigate the phase portrait of system (13) in the neighborhood
φ–1(�) of the circle S1 × {0}. The phase portrait of the vector field X near the degenerate
equilibrium (0, 0) is easily obtained by shrinking the circle S1 × {0} to a point.

Since

dθ

dt

∣
∣
∣
∣
θ=0,π

> 0,
dr
dt

∣
∣
∣
∣
θ=0

> 0,
dr
dt

∣
∣
∣
∣
θ=π

< 0,

the trajectory of the vector field X on the η1-axis tends to +∞ when θ = 0 and η1 > 0 and
tends to the origin O when θ = π and η1 < 0. The vector field X has an orbit connecting
with origin O in a definite direction. If r is sufficiently small, then

dr
dt

> 0, θ ∈
(

0,
π

2

)
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and

dr
dt

< 0, θ ∈
(

π

2
,π

)

.

Therefore the equilibrium (0, 0) of the vector field X is unstable. Vector field (10) is η2 �→
–η2 invariant. The phase portraits of vector field (10) near (0, 0) are shown in Fig. 3.

System (13) has equilibria Ej = (θj, 0), j = 1, 2, where θ1 = 0 and θ2 = π , on the circle
S1 × {0}, and the Jacobian matrices at equilibria E1 and E2 are

J
(
E1) =

(
1
2 0
0 – 3

2

)

, J
(
E2) =

(
– 1

2 0
0 3

2

)

.

The equilibria E1 and E2 are hyperbolic saddles on the circle S1 ×{0}. From the first equa-
tion of system (13) we have that

dr
dτ

> 0, θ ∈
(

0,
π

2

)

∪
(

3π

2
, 2π

)

and

dr
dτ

< 0, θ ∈
(

π

2
,

3π

2

)

.

From the second equation of system (13) we have that

dθ

dτ
> 0, θ ∈ (0,π )

and

dθ

dτ
< 0, θ ∈ (π , 2π ).

Therefore we can obtain the phase portrait of system (13) on the circle S1 ×{0}. By shrink-
ing the circle S1 ×{0} to a point we can obtain the local behavior of the vector field X near
the degenerate equilibrium (0, 0). Figure 3 also can be seen as the phase portrait of the
vector field X near the degenerate equilibrium (0, 0).

From the previous proof process we can see that the vector field X has no elliptic sectors
and that the vector field X obtained by desingularization has only hyperbolic equilibrium.
Therefore the vector field X satisfies the assumption of Lemma 4. From Lemma 4 we see
that there is a C∞ diffeomorphism � satisfying j∞(� – I) = 0 such that


1 ◦ T = �̃ ◦ R ◦ ϕX(1, ·) ◦ �̃–1, �̃ = 
2 ◦ �

at the origin O. Thus the degenerate fixed point Ẽ0 of model (2) is unstable.
We see from [3] that the orbit unit-time shift ϕ1 along vector field (10) coincides with the

near-identity mapping at least up to order 3. For a sufficiently small initial value P(μ0,ν0) ∈
R2

+, by means of C∞ diffeomorphism � , linear transformation 
1, and the local behavior
of the vector field X near the origin O we can see that the sequence {Tn(P)}+∞

0 enters
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Figure 3 Phase portraits of vector field (10) near
origin O

Figure 4 Phase portraits of model (2) near fixed
point Ẽ0

the third quadrant from the first quadrant along both sides of straight line μ = ν . In this
process the sequences

{
T2n(P)

}+∞
0 and

{
T2n+1(P)

}+∞
0

along both sides of straight line μ = ν “repel” and then “attract”. The proof is completed. �

Remark 3 For dynamic properties of the normal form N , the general description is given
in [8] when a0b0 �= 0. In this paper, the normal form N satisfies a0 = 1

2 , b0 = 16, which is
one of the situations given in [8].

Remark 4 In [17] the author investigates qualitative properties of the vector field near de-
generate equilibrium by desingularization. This desingularization is obtained by homoge-
neous directional blowup. In this paper, we realize desingularization by homogeneous po-
lar blowup. As can be seen from Remark 3.1 in [19], the homogeneous directional blowup
and the homogeneous polar blowup are equivalent.

6 Numerical simulation
In this section, we select appropriate parameters and initial values for the numerical sim-
ulation to verify our results. The details are as follows.
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Figure 5 Trajectory of model (1) with the initial value
P2

Figure 6 Trajectory of model (2) with the initial
value P1

(1) Comparing Figs. 3 and 4, we find that the phase portraits of the vector field (10) near
the origin O and the phase portraits of model (2) near origin O are very“similar”.
This indicates that the topological structures of vector field (10) and model (2) near
the origin O are “similar” when (d, b) = (1, 2), which confirms Theorem 8, where
initial values 1, 2, 3, 4 of Fig. 4 are (0.03, 0.03111), (0.02, 0.02111), (0.01, 0.0111),
(0.04, 0.04111), respectively.

(2) From Figs. 7 and 8 we can find that the sequence {Tn(P)}+∞
0 enters the third

quadrant from the first quadrant along the straight line μ = ν . In the process the
sequence {Tn(P)}+∞

0 is constantly “oscillating” along the straight line μ = ν , which
also confirms Theorem 8.

(3) Figs. 4, 5, 11, and 12 are very “similar” to subfigures 1, 3, 4–, and F+ of Fig. 8 in [8],
respectively, which means that model (2) can have a fold-flip bifurcation near the
degenerate fixed point Ẽ0.

Case 1: Suppose the parameters b = 2.0001 and d = 1 and the initial value P1 := (μ0,ν0) =
(0.00001, 0.0000111). Model (2) has fixed points (0, 0) and (2.499875 × 10–5, 2.499875 ×
10–5), and the trajectory of model (2) with initial value P1 near the fixed point (0, 0) is
shown in Fig. 6.

Case 2: Suppose the parameters b = 2.000434 and d = 1.00001 and the initial value
P2 := (μ0,ν0) = (0.00001, 0.00096). Model (2) has fixed points (0, 0) and (1.109748 ×
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Figure 7 Trajectory of model (2) with initial value 4
when (d,b) = (1, 2)

Figure 8 Trajectory of model (2) with initial values 2
and 4 when (d,b) = (1, 2)

Figure 9 Trajectory of model (2) with the initial value
P3

10–5, 1.109748 × 10–5), and the trajectory of model (2) with initial value P2 near the fixed
point (0, 0) is shown in Fig. 5.

Case 3: Suppose the parameter b = 2 and d = 1 and the initial value P3 := (μ0,ν0) =
(0.001, 0.00111). Model (2) has only the fixed point (0, 0), and the trajectory of model (2)
with initial value P3 near the fixed point (0, 0) is shown in Fig. 9.
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Figure 10 Flip bifurcation diagrams of model (2)

Figure 11 Trajectory of model (2) with different
parameters b and initial value P4

Figure 12 Trajectory of model (2) with different
parameters b and initial value P5

Case 4: Suppose the parameter d = 0.432 and initial value (μ0,ν0) = (0.153, 0.033). The
flip bifurcation diagram of model (2) is shown in Fig. 10.

Case 5: Suppose the parameters b1 = 2.000105, b2 = 2.00012, b3 = 2.00013, and b4 =
2.00014. The trajectory of model (2) with initial value P4 := (μ0,ν0) = (0.00001, 0000111)
is shown in Fig. 11.
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Case 6: Suppose the parameters b5 = 1.899, b6 = 1.889, and b7 = 1.879. The trajectory of
model (2) with initial value P5 := (μ0,ν0) = (0.0001, 0.000096) is shown in Fig. 12.

7 Conclusion
In this paper, we systematically studied bifurcation properties of model (2) near nonhyper-
bolic fixed points. We obtained the stability and qualitative structures of the degenerate
fixed point Ẽ0. We used the homogeneous polar blowup to study the local behavior of the
vector field near the degenerate equilibrium, which avoids complex calculation. By com-
paring Figs. 5 with Fig. 8 and Fig. 11 with Fig. 12 we can see that the dynamic properties
of model (2) vary greatly near (d, b) = (1, 2) when the initial value is sufficiently small.
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