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Abstract
This paper deals at first with a fully integrable evolution system of nonlinear partial
differential equations (PDEs) which is a generalization of the classical Heisenberg
ferromagnet equation. Then the scalar variant of this system is considered. Looking
for solutions of special form, the problem of finding explicit solutions of the
above-mentioned equations is reduced to the global solvability of overdetermined
real-valued systems of nonlinear PDEs. In many cases particular solutions which are
not solitons are expressed by classical functions including some special ones as
Jacobi elliptic functions, Legendre elliptic functions, and Weierstrass normal elliptic
integrals. A geometrical visualization of several solutions is also proposed.
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1 Introduction
This paper deals at first with a 2 × 2 fully integrable evolution system of nonlinear par-
tial differential equations. It is a generalization of the classical Heisenberg ferromagnet
equation, where the solution S is the unit spin vector (see [2]). A relatively new integrable
model was proposed in [6], and two types of soliton solutions, namely quadruplet and
doublet solution, were found. In [12] other particular solutions of the same system were
constructed. They turn out to be either soliton type ones or quasi-rational ones. In both
cases the Zakharov–Shabat dressing method was applied (for this method, see for exam-
ple [13–15]). The inverse scattering method is a good approach for finding exact solutions
of different equations of mathematical physics, too. The above-mentioned methods were
intensively used in the last 60 years, and due to them a big progress in the investigation of
nonlinear evolution equations and systems was made.

We propose here another classical method on the subject which is applied to the evo-
lution system under consideration (see Sect. 2, Eq. (1)) as well to its scalar variant. The
latter is a generalization of the derivative Schrödinger equation studied in [8] from the
point of view of the explicit solutions. Some results on the Cauchy problem iut + uxx +
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F(u, ū, uxūx) = 0 can be found in [3]. Here we look for solutions of special form (Ansatz)
reducing this way our problem to the global solvability of (over) determined real-valued
systems of PDEs. Inverse scattering theory is avoided but rather complicated systems of
real PDEs could appear. On the other hand, this simple and direct approach guarantees in
several special cases the expression of the corresponding solutions by some well-studied
special functions as Jacobi elliptic functions, Legendre elliptic functions, and Weierstrass
normal elliptic integrals of first, second, and third kinds (see for details [4, 5, 7]). As one
can guess thereby different kinds of non-soliton solutions can be constructed. Theorem 1
of our paper for (1) can be compared with some results of [12] where it is supposed addi-
tionally that u(±∞, t) = 0, v(±∞, t) = 1. Certainly, the solution (u, v) in Theorem 1(b) does
not satisfy the latter assumption and is not soliton. Some of the stationary soliton solu-
tions from [12] are (u = 0, v = eiϕ(x),ϕ(±∞) ∈ 2πZ), while in Theorem 1(a) the stationary
solution is (cos k0eiϕ(x), sin k0eiϕ(x)), ϕ being arbitrary real-valued function, k0 = const. For
a special choice of the rational amplitudes f1, f2 in Anzatz (2) the corresponding solution
can blow up at some curve in the plane 0xt. Similar effect is found in [12] on the level
of rather complicated example (117), (118) (quasi-rational solution). The solutions of the
scalar equation (8) in [6, 12] are of soliton type (see [6], Sect. 3.2, [12] Sects. 2.2, 2.3),
while the solutions u from our Theorem 2 are completely different. They are not solitons,
of course. The solutions u are expressed by Legendre functions E(ϕ, k), F(ϕ, k), �(ϕ,α2, k),
Jacobi elliptic functions, and Weierstrass functions ℘ and ζ .

In what follows, we propose geometrical visualization of u. For example in Theorem 2, 2)
the amplitude f is located between two parallel oblique asymptotes and can be expressed
by some Jacobi elliptic functions. In Theorem 2, 3) the amplitude f (k) = cos k, k = k(x)
and k can be written by Weierstrass ℘ and zeta functions. Geometrically, k(x) is possibly
periodic cuspon or soliton-cuspon. In the papers devoted to Eq. (8) mainly soliton solu-
tions are proposed due to the used tools—inverse scattering and dressing methods. The
appearance of autonomous ordinary differential equations satisfied by Ansatz (9) enables
us to enlarge the classes of the particular solutions, to express them by some special func-
tions, and to propose geometrical interpretation. The soliton solutions for (8) in the lit-
erature we know are usually written by elementary functions, i.e., exponents, logarithms,
and trigonometric ones (see [6, 12], and others).

We do not know papers on the subject in which solutions of other form are found ex-
plicitly and studied geometrically. We do not discuss the possible applications of those
solutions in physics being concentrated on the mathematical part of the study of the aris-
ing differential equations. The results from Theorem 2 are illustrated by four figures.

2 Formulation of the main results
1. Consider the fully integrable nonlinear evolution system

∣
∣
∣
∣
∣

iut + uxx + [(uūx + vv̄x)u]x = 0,
ivt + vxx + [(uūx + vv̄x)v]x = 0.

(1)

Usually, the additional condition |u|2 + |v|2 = 1 is imposed on (1). In vector form the
Heisenberg ferromagnet equation is given by St = S × Sxx, S(x, t) ∈ R3, |S| = 1.
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We look for a solution of (1) having the form

u = f1
(

k(x, t)
)

eiϕ(x,t),

v = f2
(

k(x, t)
)

eiϕ(x,t),
(2)

where f1(k), f2(k), k, ϕ are real-valued smooth functions.
Putting (2) into (1), doing the corresponding calculations, and splitting the real and

imaginary parts of the expressions, we get the following overdetermined system of four
PDEs that should be satisfied by k, ϕ:

–f1ϕt + kxx

(

f ′
1 +

1
2

f1g ′
)

+ k2
x

d
dk

(

f ′
1 +

1
2

d
dk

(

f1g ′)
)

+ ϕ2
x f1(g – 1) = 0, (3)

f ′
1kt + f1ϕxx(1 – g) + ϕxkx

[

f ′
1(2 – g) –

1
2

f1g ′
]

= 0, (4)

–f2ϕt + kxx

(

f ′
2 +

1
2

f2g ′
)

+ k2
x

d
dk

(

f ′
2 +

1
2

d
dk

(

f2g ′)
)

+ ϕ2
x f2(g – 1) = 0, (5)

f ′
2kt + f2ϕxx(1 – g) + ϕxkx

[

f ′
2(2 – g) –

1
2

f2g ′
]

= 0, (6)

where g(k) = f 2
1 + f 2

2 .
The simplest case to system (3)–(6) is the following case:
(A) f1 = cos k, f2(k) = sin k ⇒ g ≡ 1, i.e., g ′(k) = 0. Therefore, |u|2 + |v|2 = 1.
In case (A) system (3)–(6) can be reduced to

kxx = 0, kt + ϕxkx = 0, ϕt + k2
x = 0. (7)

Theorem 1 Consider system (1), |u|2 + |v|2 = 1, under condition (A). Then:
(a) (1) possesses infinitely many stationary solutions

u = cos k0eiϕ(x),

v = sin k0eiϕ(x),

k0 = const, ϕ(x) arbitrary smooth real-valued function.
(b) Let k = A(t)x + B(t).
(b1) If A(t) �≡ const, the function k = C3xeC1t + C2C3

C1
eC1t , C1, C3 �= 0, while ϕ = – C2

3
2C1

e2C1t –
C1

x2

2 – C2x; C1, C2, C3 are constants.
(b2) A(t) ≡ C1 = const �= 0 implies that k = C1x + C1C2t, while ϕ = –C2

1 t – C2x.
(b3) A ≡ 0 coincides with (a): k = k0 = const, ϕ = ϕ(x).

The solutions in Theorem 1 are globally defined in R2. For some rational functions f1, f2

smooth in R2, we can find solutions k that blow up along some curves in the plane. The
corresponding example is given at the end of the proof of Theorem 1.

2. Our next step is to study system (1) for v ≡ 0, i.e., the nonlinear evolution equation of
Schrödinger type, namely

iut + uxx + 2u|ux|2 + u2ūxx = 0. (8)

u is not obliged to satisfy the condition |u| = 1.
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As in the previous system, we look for its solution of the form

u = f
(

k(x, t)
)

eiϕ(x,t), (9)

f (k), k, ϕ being again real-valued smooth functions. Putting (9) into (8) and splitting the
real and imaginary parts of the corresponding expression, we conclude that k, ϕ satisfy
the following nonlinear system of PDEs:

f
(

–ϕt + ϕ2
x
(

f 2 – 1
))

+ f ′((1 + f 2)kxx + 2ff ′k2
x
)

+ f ′′(k2
x + f 2k2

x
)

= 0, (10)

f ′kt +
(

1 – f 2)(2ϕxkxf ′ + f ϕxx
)

= 0. (11)

We shall construct solutions of (8) written in the form of (9) in several different cases.
They are formulated in what follows.

Theorem 2 Consider the nonlinear evolution scalar Eq. (8). Then we give its solutions of
the form (9) in the following four cases.

1) f ≡ 1. Then u = eiϕ(x), ϕ - arbitrary, is a stationary solution.
Equation (8) does not possess nontrivial traveling wave solutions ψ(x + ct), |ψ | = 1 with

velocity c �= 0. Each smooth complex-valued function ψ(x), |ψ | = 1 is a solution of (8). There-
fore, the Blaschke type functions

ψ(x) = eiγ
m

∏

n=1

zn – αjz̄n

z̄n – ᾱjzn , (12)

where γ ∈ R1, αj with |αj| < 1 are arbitrary complex numbers, and the complex-valued
function z(x) �= 0 everywhere, satisfy (8). Let A, B ∈ C2, A, B - real-valued and |A(x)| > 0
everywhere. Then (12) takes the trigonometric form

ψ(x) = eiγ
m

∏

n=1

e2 inarctg B(x)
A(x) – αj

1 – ᾱje
2 inarctg B(x)

A(x)
. (13)

2) Suppose that f �≡ 1 and k, ϕ are linear functions with respect to (t, x). Then there exists a
smooth solution f of (10), (11) possessing two oblique parallel each to other asymptotes and
f is located between them. Moreover, f can be expressed by the Legendre elliptic functions
as well as by some Jacobi elliptic functions.

3) Suppose that f (k) = cos k, k = k(x), and ϕ = t + ϕ1(x) satisfy (10)–(11). Then there is a
simple link between k(x), ϕ1(x), while k(x) satisfies a second order autonomous ODE and
can be expressed by Weierstrass normal elliptic integrals of first and second kind, i.e., by ℘

and zeta functions. Under several conditions k turns out to be periodic cuspon or soliton-
cuspon.

4) Let f (k) = ek , k = k(x), ϕ = t + ϕ1(x). The function ϕ1(x) can be expressed explicitly by
k(x), while k(x) is expressed by the Weierstrass normal elliptic integrals of first and second
kinds.

There are other interesting cases as for example f (k) = sin k, f (k) = Pm(k), Pm being real-
valued polynomial of k of order m. We left them to the reader, as they can be studied in
the same way as in Theorem 2.
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In a similar way one can study the system

∣
∣
∣
∣
∣

iut + uxx + [(uūx – vv̄x)u]x = 0,
ivt + vxx + [(uūx – vv̄x)v]x = 0

under the condition |u|2 – |v|2 = 1 looking for a solution of the form (2).

3 Proof of Theorems 1 and 2
1. We shall begin the proof of Theorem 1 by the observation that if g(k) ≡ 1 then system
(3)–(6) takes the form

kt + kxϕx = 0,

–f1ϕt + kxxf ′
1 + k2

x f ′′
1 = 0,

–f2ϕt + kxxf ′
2 + k2

x f ′′
2 = 0,

i.e.,

kt + kxϕx = 0,

ϕt = kxx
f ′
1

f1
+ k2

x
f ′′
1
f1

= kxx
f ′
2

f2
+ k2

x
f ′′
2
f2

, f1.f2 �= 0.

Thus, ϕ must satisfy the standard condition of total differential ϕxt = ϕtx, where

ϕx = –
kt

kx
, kx �= 0,

ϕt = kxx
f ′
1

f1
+ k2

x
f ′′
1
f1

under the assumption that k is a solution of the autonomous ODE with respect to x

kxx

(
f ′
1

f1
–

f ′
2

f2

)

+ k2
x

(
f ′′
1
f1

–
f ′′
2
f2

)

= 0,

f = f1(k), f = f2(k), t being a parameter, k = k(x, t).
The standard change dk

dx = p(k) ⇒ d2k
dx2 = p dp

dk reduces the latter to the following linear
ODE:

p
dp
dk

(
f ′
1

f1
–

f ′
2

f2

)

+ p2
(

f ′′
1
f1

–
f ′′
2
f2

)

= 0.

If p(k) = 0 ⇒ k = k(t) ⇒ k′
x = 0 ⇒ k′

t = 0 ⇒ k = const ⇒ ϕ = ϕ(x).
If p(k) �= 0 then p(k) = –A(t)e–G(k) = –A(t)

f ′
1f2–f ′

2f1
, where

G(k) =
∫ f ′′

1
f1

– f ′′
2
f2

f ′
1

f1
– f ′

2
f2

dk.
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This way we conclude that

F(k) =
∫

(

f ′
1f2 – f ′

2f1
)

dk = –A(t)x – B(t).

If the inverse function F–1 exists, we get that

k = F–1(–A(t)x – B(t)
)

.

Our overdetermined system (3)–(6) possesses a solution if the above total differential
exists for k = F–1(–A(t)x – B(t)), i.e., iff ϕxt = ϕtx.

In case (A), (b) F(k) = –k = –A(t)x – B(t) ⇒ k = A(t)x + B(t), ϕx = – A′(t)x+B′(t)
A(t) for A(t) �≡

const, ϕt = –A2(t).
Therefore we have total differential iff A′(t)

A(t) = C1 = const �= 0, B′(t)
A(t) = C2 = const. So A(t) =

C3eC1t , C3 �= 0, B(t) = C2C3
C1

eC1t .

Evidently, ϕ = –
∫

A2(t)dt + p(x) = – C2
3

2C1
e2C1t + p(x), while p′(x) = –C1x – C2 ⇒ p(x) =

–C1
x2

2 – C2x up to an additive constant.
Suppose now that f1 = cn(k, l), f2 = sn(k, l), l ∈ [0, 1] being the modulus of the corre-

sponding Jacobi elliptic functions. Certainly, f 2
1 + f 2

2 = g ≡ 1. Then F(k) = –
∫

dn k dk =
– arcsin(sn k) according to formula 314.01 from [4], i.e.,

sn k = sin
(

A(t)x + B(t)
) ⇒ cn k = ± cos

(

A(t)x + B(t)
)

.

It is well known [4] that if z = sn(u, l) then

u = sn–1(z, l) = dn–1(
√

1 – l2z2, l
)

= tn–1
(

z√
1 – z2

, l
)

.

Consequently, ϕx = – A′(t)x+B′(t)
A(t) and after some computations

ϕt = kxx
f ′
1

f1
+ k2

x
f ′′
1
f1

= –C2(t),

as k = sn–1(sin(A(t)x + B(t))) and d
dx sn–1(x, l) = 1√

(1–x2)(1–l2x2)
, 0 < x < 1. We conclude that

the Ansatz u = cn(k(x, t), l)eiϕ , v = sn(k(x, t), l)eiϕ gives us the same solutions as Theorem 1,
cases (a) and (b).

It is interesting to point out that (1) can have solutions with singularities if f1(k), f2(k) are
rational functions. In fact, let f1(k) = k2–1

k2+1 , f2(k) = 2k
k2+1 , i.e., f 2

1 + f 2
2 = g(k) ≡ 1 everywhere.

Then

F(k) =
∫

(

f ′
1f2 – f ′

2f1
)

dk = 2 arctg k = –A(t)x – B(t).

We take 2A1 = –A, 2B1 = –B that implies

k = tg
(

A1(t)x + B1(t)
)

, A1(t) �≡ const.

Therefore, ϕx = – A′
1(t)

A1(t) x – B′
1(t)

A1(t) .
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Easy calculations show that

ϕt = kxx
f ′
1

f1
+ k2

x
f ′′
1
f1

= –4A2
1(t)

as f ′
1

f1
= 4k

k4–1 , f ′′
1
f1

= 4(1–3k2)
(k4–1)(k2+1) .

Consequently, A1(t) = C3eC1t , C1, C3 �= 0, B1(t) = C2C3
C1

eC1t , ϕ = –2 C2
3

C1
e2C1t – C1

x2

2 – C2x.
The solution k is classical (i.e., smooth) if there exists some n0 ∈ Z and such that C3eC1t(x +
C2
C1

) ∈ ( π
2 (2n0 – 1), π

2 (2n0 + 1)) for (x, t) describing some domain in R2. As an example we
assume that C1 > 0 and |x| ≤ const. Then, for t 
 –1: C3eC1t(x+ C2

C1
) ∈ (– π

2 , π
2 ), the function

k(x, t) blows up for C3eC1t(x + C2
C1

) = π
2 (2n0 – 1), i.e., on the exponential (smooth) curve x =

π
2 (2n0 – 1) e–C1t

C3
– C2

C1
. It will be interesting to find other cases of amplitude functions f1(k),

f2(k) for which the solution k of the overdetermined system (3)–(6) develops singularities.
2. We shall prove now Theorem 2, the proof being divided into several steps depending

on the cases.
Case 1. Let f ≡ 1. Then (11) is identity, while (10) gives ϕt = 0, i.e., ϕ = ϕ(x).
We are looking now for traveling wave solutions ψ = ψ(x + ct), ξ = x + ct, |ψ | = 1 of

(8). Certainly, ψ = A(ξ ) + iB(ξ ), where A(ξ ), B(ξ ) are real-valued functions. Evidently,
icψ ′ + ψ ′′ + (ψ2ψ̄ ′)′ = 0 ⇒ icψ(ξ ) + ψ ′(ξ ) + ψ2ψ̄ ′(ξ ) = d = const. The real part of the last
expression is

–cB + A′ +
(

A2 – B2)A′ + 2ABB′ = Re d,

A2 + B2 = 1, i.e., 2BB′ = d
dξ

B2 = –2AA′, B′ = ∓ AA′√
1–A2 .

Therefore, for c �= 0,

∓c
√

1 – A2 = Re d ⇒ 1 – A2 =
(

Re d
c

)2

⇒ A = const

if it exists ⇒ B = const ⇒ ψ(ξ ) = eiϕ0 , ϕ0 = const.
Nontrivial traveling waves exist only for velocity c = 0.
It is obvious that if |ψ(x)|2 = 1, then ψ ′ = – ψ̄ ′

ψ̄2 = –ψ̄ ′ψ2 ⇒ ψ ′′ + ∂
∂x (ψ2ψ̄ ′) = 0. So ψ(x)

satisfies (8) (stationary solution). We can take ψ(x) = z(x)
z̄(x) , where z(x) �= 0 everywhere. Then

ψ is a solution of (8). Another form (trigonometric) of the stationary solution is the fol-
lowing one: ψ(x) = e2i arctg B(x)

A(x) , |A(x)| > 0 everywhere. This way we obtain via the Blaschke
function solution (12) of (8). The identity z

z̄ = e2iϕ , ϕ = arctg Im z
Re z , where z = |z|eiϕ gives us

solution (13).
Case 2. Let f �≡ 1, ϕ = A1x + B1t, A2

1 + B2
1 > 0, k = A2x + B2t, A2

2 + B2
2 > 0. We are looking

for f from (9). According to (11),

f ′(B2 + 2A1A2
(

1 – f 2)) = 0.

As the case f = const is trivial, we concentrate on f �≡ const ⇒ B2 + 2A1A2(1 – f 2) = 0.
Consequently, A1A2 = 0 ⇒ B2 = 0 ⇒ k = A2x for A1 = 0, A2 �= 0, ϕ = B1t for B1 �= 0, and we
suppose that B1 > 0.
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According to (10), f satisfies the ODE

–B1f + 2
(

f ′)2fA2
2 + f ′′A2

(

1 + f 2) = 0. (14)

We equip (14) with the Cauchy data f (k0) = f0, f ′(k0) = f ′
0. The standard change in (14)

df
dk = f ′(k) = p(f ) ⇒ f ′′(k) = 1

2
d
df (p2) and the substitution p2 = q(f ) transform (14) into the

linear first order ODE with respect to q:

dq
df

+
4fq

1 + f 2 –
2B1

A2
2

f
1 + f 2 = 0, (15)

q(f0) = p2(f0) = (f ′)2(k0) = (f ′
0)2.

Then q can be written as

q(f ) =
1

(1 + f 2)2

[

C +
B1

2A2
2

(

1 + f 2)2
]

, (16)

where C = [(f ′
0)2 – B1

2A2
2

](1 + f 2
0 )2. We suppose that C > 0 (to fix the ideas) if C = 0 ⇒ q =

B1
2A2

2
> 0 ⇒ f (k) = ±

√
B1

2A2
2

(k – k0).

After some calculations we obtain for f (k) the relation df
dk = p ± √

q(f ) with
√

q(f ) =
√

B1
2

1
A2

(C2
1 +(1+ f 2)2), where C2

1 = 2A2
2C

B1
> 0, B1 > 0. Here we apply some technique from [1].

We shall study the case with the sign + in front of √q as the other case is similar.
Thus,

∫ f (k)

f0

dλ
√

q(λ)
= k – k0. (17)

Put

F(f ) =
∫ f

f0

dλ
√

q(λ)
= A2

√

2
B1

∫ f

f0

(1 + λ2) dλ
√

C2
1 + (1 + λ2)2

, (18)

A2 > 0 - without loss of generality.
Evidently, F ′ > 0 for each f ∈ R1, F(f0) = 0, F(f ) > 0 for f > f0, F(f ) < 0 for f < f0. More-

over, F(f )f →∞ → ∞, F(f )f →–∞ → –∞, i.e., F : R1 → R1 is a diffeomorphism. More pre-
cisely, F(f ) ∼ A2

√
2

B1
.f for |f | → ∞. One can guess that the function z = F(f ) possesses

two oblique parallel each to other asymptotes

I : z+ = fA2

√

2
B1

+ A+, f → ∞, II : z– = fA2

√

2
B1

+ A–, f → –∞.

Therefore, f = F–1(k – k0), k ∈ R1, f (k0) = f0 and f has the following oblique asymptotes:

I ′ : f =
√

B1

2
k – k0 – A+

A2
, k → ∞, II ′ : f =

√

B1

2
k – k0 – A–

A2
, k → –∞

(see Fig. 1).
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Figure 1 Graph of the solution f = f (k) of Eq. (14)
having two parallel asymptotes I′ and II′

We will show now that integral (18) can be expressed by the Legendre elliptic functions
of first, second, and third kinds. To do this we shall use formulas 267.00, 267.01, 342.05,
342.00, 342.01, 342.03, 342.04 from the Handbook [4]. Thus, consider

∫ 1 + x2
√

(1 + x2)2 + A2
1

, A1 > 0.

The biquadratic polynomial P4(x) = x4 + 2x2 + (1 + A2
1) possesses the complex roots α, ᾱ,

β , β̄ (Imα �= 0, Imβ �= 0)
α = (1 + A2

1) 1
4 ei ϕ1

2 , 0 < ϕ1 < π , ᾱ = (1 + A2
1) 1

4 e–i ϕ1
2 , β = –(1 + A2

1) 1
4 ei ϕ1

2 , β̄ = –(1 + A2
1) 1

4 e–i ϕ1
2 .

In fact, P4 = (x2 + Dx + E)(x2 – Dx + E), where E =
√

1 + A2
1 > 1, D =

√
2
√

√

1 + A2
1 – 1.

Put
√

(x – α)(x – ᾱ)(x – β)(x – β̄) =
√

[(x – b1)2 + a2
1][(x – b2)2 + a2

2], where b1 = Reα,
b2 = Reβ , a2

1 = – (α–ᾱ)2

4 , a2
2 = – (β–β̄)2

4 , and denote A2 = (b1 – b2)2 + (a1 + a2)2, B2 = (b1 –
b2)2 + (a1 – a2)2, k2 = 4AB

(A+B)2 (this constant k is different from the variable k, f = f (k)). It is
not confusing in our situation; k ∈ (0, 1) stands for the modulus of the corresponding ellip-
tic function, while k′ =

√
1 – k2 is called complimentary modulus, g = 2

A+B , g2
1 = 4a2

1–(A–B)2

(A+B)2–4a2
1

,

y1 = b1 – a1g1, ϕ = amu1 = arctg[ y–b1+a1g1
a1+g1b1–g1y ], the elliptic tangent tn u = x–b1+a1g1

a1+g1b1–g1x , tn u1 =
tgϕ.

According to formula (267.00) from [4],

∫ y

y1

dx√
P4(x)

= gu1 = g tn–1(tgϕ, k) = gF(ϕ, k),

where F(ϕ, k) is Legendre’s elliptic integral of the first kind (see (110.02) from [4] for the
definition of F(ϕ, k)). By using (267.01) from [4] we have

∫ y

y1

x2dx√
P4(x)

=
g(b1 – g1a1)2

g2
1

2
∑

j=0

2α
2–j
1 (g1 – α1)j

(2 – j)!j!

∫ u

0

du
(1 + g1 tn u)j ,

where α1 = a1+b1g1
b1–a1g1

.
The last integral is given explicitly by formula (342.05) and via formulas (342.00),

(342.01), (342.02), (342.03), (342.04) from [4]. As the result is rather complicated, we shall
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mention only that the corresponding formula contains Legendre’s elliptic functions of the
three kinds E(ϕ, k), F(ϕ, k), �(ϕ,α2, k) as well as different Jacobi elliptic functions such as
dn u, tn u, dcu, ncu.

Case 3. Let f (k) = cos k, k = k(x), ϕ = t + ϕ1(x). By using (11) we get 2ϕ′
1k′ = ctg kϕ′′

1 . We
shall consider here only the case ϕ′

1 �= 0. ϕ′
1 ≡ 0 is simpler to deal with, and we omit it.

In what follows we suppose that k(x0) = k0, k′(x0) = k′
0, sin k0 �= 0, cos k0 �= 0, 0 < k0 < π

2 .
Evidently,

ϕ1(x) = D
∫ x

x0

dλ

cos2 k(λ)
+ E, D, E = const, D �= 0. (19)

Thus, ϕ1(x0) = E, ϕ′
1(x0) = D

cos2 k0
.

Putting ϕ1(x) in (10) we get

– ctg k
(

1 + sin2 k
D2

cos4 k
+

(

k′)2(x) +
(

k′)2
cos2 k(x)

)

=
(

1 + cos2 k
)

k′′(x) – sin 2k
(

k′)2(x), (20)

k(x0) = k0, k′(x0) = k′
0.

The classical change k′(x) = p(k) ⇒ k′′ = 1
2

d
dk q, q = p2, q(k0) = p2(k0) = (k0

′)2 and easy
computations lead to the following linear first order ODE satisfied by q:

dq
dk

+ 2q
(

ctg k –
sin 2k

1 + cos2 k

)

+ 2 ctg k
cos4 k + D2(1 – cos2 k)

cos4 k(1 + cos2 k)
= 0, (21)

q(k0) = (k′
0)2.

Thus,

q(k) =
1

sin2 k(1 + cos2 k)2

[

C – 2
∫

cos4 k + D2(1 – cos2 k)
cos3 k

(

1 + cos2 k
)

sin k dk
]

, (22)

C = const.
The last indefinite integral can be calculated by the change w = cos k. Thus,

p2(k) = q(k) =
1

sin2 k(1 + cos2 k)2

[

C +
cos4 k

2
+

(

1 – D2) cos2 k –
D2

cos2 k

]

, (23)

where C = (k′
0)2 sin2 k0(1 + cos2 k0)2 – cos4 k0

2 – (1 – D2) cos2 k0 + D2

cos2 k0
.

To fix the ideas and by using some technique from [1], we shall investigate only the ODE
with separate variables

k′(x) = p(k) =
√

q(k), k(x0) = k0. (24)

Then

F(k) =
∫ k

k0

dλ
√

q(λ)
= x – x0, (25)
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where

F(k) =
√

2
∫ k

k0

cosλ sinλ(1 + cos2 λ) dλ
√

2C cos2 λ + cos6 λ + 2(1 – D2) cos4 λ – 2D2
. (26)

Our study is in the interval 0 < k < π
2 , i.e., 0 < k0 < π

2 .
We observe here that the indefinite integral

√
2
∫

sin k cos k(1 + cos2 k) dk
√

cos6 λ + 2(1 – D2) cos4 λ + 2C cos2 λ – 2D2

after the change v = cos2 k takes the form

–
√

2
2

[∫ dv√
P3(v)

+
∫ v dv√

P3(v)

]

, (27)

where P3(v) = v3 + 2(1 – D2)v2 + 2Cv – 2D2. According to the Appendix in [4], the integrals
in (27) can be expressed by the Weierstrass elliptic function ℘ and the Weierstrass zeta
function ζ . Several details on the subject will be given below.

Consider now the function

r(λ) = cos6 λ + 2
(

1 – D2) cos4 λ + 2C cos2 λ – 2D2

in the interval 0 ≤ λ ≤ π
2 . Then r(0) = 3 – 4D2 + 2C. We assume that

r(0) > 0. (28)

On the other hand, r( π
2 ) = –2D2 < 0. Such choice of r(0) is possible in some cases. Assume

that there is a link among the initial conditions k0, k′
0, D given by

3 + 2
(

k′
0
)2

sin2 k0
(

1 + cos2 k0
)2 > cos4 k0 + 2 cos2 k0 + 2D2

(

2 –
1

cos2 k0
– cos2 k0

)

,

where k0 ∈ (0, π
2 ), D �= 0. Then (28) holds. Let λ̃ be the first zero of r(λ) in (0, π

2 ), i.e., r(λ̃) = 0,
0 < λ < λ̃ < π

2 ⇒ r(λ) > 0. Then there are two possibilities:

r′(λ̃) �= 0, (29)

r′(λ̃) = 0. (30)

Certainly, we shall take 0 < k0 < λ̃; 0 < k < λ̃; λ̃ is a simple (multiple) root of r(λ) = 0 depend-
ing on the roots of the biquadratic equation 3 cos4 λ + 4(1 – D2) cos2 λ + 2C = 0 in (0, π

2 ).
Evidently, F ′(k) > 0 in (0, λ̃), F ′(0) = 0, while (29) implies that there exists F(λ̃ – 0) �= ∞,
F ′(λ̃ – 0) = ∞ and (30) implies that F(λ̃ – 0) = +∞. Thus, in case (29) the mapping
F : [0, λ̃) → [F(0), F(λ̃ – 0)) is a diffeomorphism on (0, λ̃), k = F–1(x – x0), k(x0) = k0,
k0 = F–1(0). We construct k(x) on the interval [F(0) + x0, F(λ̃ – 0) + x0] and then continue it
in an even way with respect to the end point F(λ̃ – 0) + x0. Put T = 2(F(λ̃ – 0) – F(0)). Our
last step is to continue k(x) periodically with period T on R1, obtaining this way periodic
cuspon (see Fig. 2). The terminology used here can be found, for example, in [9–11].
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Figure 2 The graph of the solution k = k(x) of Eq. (24) is periodic cuspon under condition (29)

Figure 3 The graph of the solution k = k(x) of Eq. (24) is soliton-cuspon under condition (30), i.e., it has cusp
type singularity at F(0) + x0

In case (30) the mapping F : [0, λ̃) → [F(0),∞) is a diffeomorphism on (0, λ̃) and k(x) =
F–1(x – x0) forms the configuration soliton-cuspon (see Fig. 3).

The solution k(x) is even with respect to x = F(0) + x0.
Below is the last remark concerning Weierstrass elliptic functions. The integrals from

(27) have the form
∫ R1(x1) dx1√

a0x3
1+bx2

1+cx1+d
, a0 �= 0, R1 being a rational function. The standard

change in this integral x1 = 3
√

4
a0

t – b
3a0

reduces it to the general elliptic integral

∫ R(t) dt
√

4t3 – g2t – g3
, (31)

where the relative invariants g2, g3 are given by g2 = ( b3

3a0
– c) 3

√
4

a0
, g3 = cb

3a0
– 2b3

27a2
0

– d. The
inverse of the Weierstrass elliptic function y = ℘(u, g2, g3) is defined by the formula u =



Slavova and Popivanov Advances in Difference Equations        (2020) 2020:592 Page 13 of 15

℘–1(y) =
∫ ∞

y
dt1√

4t3
1 –g2t1–g3

and ℘ satisfies the ODE (℘ ′)2 = 4℘3(u) – g2℘(u) – g3. Evidently,
∫ ℘(u)
∞

dt√
4t3–g2t–g3

≡ u.

According to (1036.02) from [4] the values of (31) and therefore of (27) can al-
ways be expressed by the following normal elliptic integrals of first, second, and third
kinds respectively: 1)

∫ ℘(u)
∞

dt√
4t3–g2t–g3

, 2)
∫ ℘(u)
℘(u0)

tdt√
4t3–g2t–g3

=
∫ u

u0
℘(u) du = –ζ (u) + ζ (u0),

3)
∫ ℘(u)
∞

dt
(t–α2)

√
4t3–g2t–g3

.

In case (27) only the first two integrals are important. We remind that ζ (u) is the Weier-
strass zeta function, ζ ′(u) = –℘(u).

Case 4. Suppose that f (k) = ek . Then (11) implies 2ϕ′
1k′ + ϕ′′

1 = 0.
Again we shall consider the case ϕ′

1 �= 0 only.
Therefore,

ϕ1(x) = E
∫ x

x0

e–2k(x) dx + F , E = const �= 0, F = const. (32)

Applying (10) we obtain the second order autonomous ODE

k′′(x) +
(

k′)2 (1 + 3e2k(x))
1 + e2k(x) +

–1 + E2e–4k(x)(e2k – 1)
1 + e2k(x) = 0. (33)

The changes k′ = p(k), p2 = q lead to linear first order ODE for q = q(k). Standard calcula-
tions enable us to find the formula

q(k) =
1

e2k(1 + e2k)2

(

C +
(1 + e2k)2

2
– 2E2 ch 2k

)

, C = const. (34)

Thus, we can concentrate on the case

dk
dx

= p(k) =
√

q(k),

i.e., F(k) =
∫ k

k0
dλ√
q(λ)

= x – x0, where more precisely

F(k) =
√

2
∫ k

k0

eλ(1 + e2λ) dλ
√

2C + (1 + e2λ)2 – 4E2 ch 2λ
. (35)

We will show at first that F(k) can be expressed by the Weierstrass elliptic integrals. In
fact, the change λ = 1

2 lnγ , i.e., γ = e2λ in the indefinite integral G(λ) corresponding to the
definite integral (35) leads to

G(λ) =
√

2
2

∫ (1 + γ ) dγ
√

γ 3 + 2γ 2(1 – E2) + γ (2C + 1) – 2E2
.

The latter integral is of the type (31) and as in case 3 can be written by the Weierstrass
elliptic integrals 1), 2).

Remark 1 To explain better the things, put r(λ) = e6λ + 2(1 – E2)e4λ + e2λ(2C + 1) – 2E2

and assume that r(0) = 2(C – 2E2 + 2) > 0. Having in mind that r(λ) →λ→–∞ –2E2 < 0, we
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Figure 4 The graph of the function k = k(x) satisfying Eq. (33) has a logarithmic growth at infinity and
horizontal tangent at x0 + F(λ̃)

denote by λ̃ < 0 the first negative zero of r(λ) = 0, i.e., r(λ) �= 0 for λ̃ < λ ≤ 0 and suppose
that r(λ) > 0 for λ > 0. Let λ̃ < k, λ̃ < k0. Evidently, F(k) ∼ √

2ek for k → ∞. For the sake
of simplicity, let λ̃ be simple zero. Then x – x0 = F(k), k = F–1(x – x0), k(x) ∼ ln x–x0√

2 for
x → ∞ and horizontal tangent at x0 + F(λ̃) exists (see Fig. 4).

4 Discussion
1. By using Ansatz (2) we found special solutions of system (21), respectively Ansatz (9)
enables us to construct different solutions of (8) via special functions. Possible generaliza-
tions can be given for (1) where [(uūx – vv̄x)u]x and [(uūx – vv̄x)v]x participate instead of
[(uūx + vv̄x)u]x and [(uūx + vv̄x)v]x. Then the additional condition is |u|2 – |v|2 = 1 and (2)
holds with f1 = ch k, f2 = sh k, k = C3eC1t(x + C2

C1
for C1, C3 �= 0, ϕ = C2

3
2C1

e2C1t – C1
x2

2 – C2x.
Certainly, u, v are not solitons.

It is interesting to look for and to find solutions of (1) in another possible form. Under
the influence of [12], we look for rather different Ansatz. Put z = x+ iy = Ae� +Be–� + iCe–�

with A, B, C �= 0 real constants, i.e., z�,� = z, denote � = Dx + Et, D, E being real constants
and suppose that z = z(�(x, t)). Instead of (2) we take the Ansatz

u = K
z
z̄2 e–i(Fx+Gt), F , G ∈ R1, K ∈ C1, (36)

v = 1 – L
1
z̄2 , L ∈ C1, |u|2 + |v|2 = 1. (37)

We have above nine unknown constants. Substituting (36), (37) in (1), after tiresome com-
putations we come to a complicated nonlinear algebraic system (overdetermined) satisfied
by the parameters A, B, C, D, E, F , G, K , L. It should be solved.

So we can formulate the following open problem. Find solutions of (1), (18) in some
other form instead of (2), (9) or (36), (37). It is interesting if they are not of soliton type
because the latter can be constructed in several cases by the dressing method. The ge-
ometrical constraints |u|2 + |v|2 = 1, |u|2 – |v|2 = 1 can be omitted or replaced by other
ones—algebraic, trigonometrical, etc.

Another open problem is to solve the overdetermined system (3), (4), (5), (6) for larger
classes of functions f1, f2. In fact, f1 = cos k, f2 = sin k, respectively, f1 = ch k, f2 = sh k are very
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special. Imposing other restrictions on f1, f2, we can obtain other classes of solutions of (1).
As we mentioned above, the solutions of (1), (8) can develop singularities. It is evident for
(8) as then autonomous ODEs appear. It is worth studying the 2× system of PDEs (10), (11)
satisfied by k, ϕ for some fixed smooth amplitude f . In this case there are no constraints
imposed on u. What about blow-up of u?

2. Interesting open problem is the interaction of the solutions of (1), (8) which are not of
soliton type. The quadruplet soliton interactions in the case of odd dispersion laws were
studied in [6]. More precisely, two soliton interaction reduces to shifts of the relative center
of mass and phases of each of the solutions. To do this the dressing method was applied.
Is it possible to obtain new results on the subject for non-soliton solutions? Qualitative
properties of the solutions are also of interest. Some of them are related to (1) containing
large parameter R and under the assumption |u|2 + |v|2 = R2. Then the number N(R2) of
the integer points located in the disc |u|2 + |v|2 ≤ R2 is given asymptotically by N(R2) ∼
πR2 + O(Rν), R → ∞, 1/2 ≤ ν ≤ 2/3. The reader can propose some other properties of the
solution (uR, vR) of system (1) with R → ∞.
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