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1 Introduction
Let N, Z, R, C be the sets of natural, whole, real, and complex numbers, respectively, and
N0 = N∪ {0}. If k, l ∈ Z, then j = k, l stands for the set of all j ∈ Z such that k ≤ j ≤ l.

Finding closed-form formulas for solutions to difference equations is one of the basic
problems in the area. The equation

yn+2 = ayn+1 + byn, n ∈N0, (1)

when b �= 0 and a2 +4b �= 0, was solved by de Moivre in [1] (see also [2]). He found a formula
for solution to equation (1), which is called the de Moivre formula for solutions to linear
homogeneous second-order difference equation with constant coefficients, which is one
of the first nontrivial results on solvability of difference equations. Before it, some special
cases of equation (1) had been solved in [3].

These results attracted some attention, and soon after that Bernoulli in [4] found another
method for solving linear difference equations with constant coefficients. A presentation
of some old results on solvability can be found in [5]. For some later results see [6, 7], as
well as [8], where many classes of difference equations and systems were solved. For some
twentieth century presentations of the theory, see, for example, [9–13]. Some recent re-
sults on solvability of difference equations and systems have been obtained and guessed by
computer packages for symbolic calculations. They can help in getting or guessing some
closed-form formulas for solutions to the equations and systems, but using only such tools
could also produce some issues (see some comments, e.g., in [14–17]). This has been one
of the reasons which motivated us to conduct more serious investigations on solvability of
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difference equations and systems. Recent investigations show that still a great majority of
papers on solvability use some substitutions of various complexity, which transform dif-
ference equations and systems to known solvable ones (see, for example, [14, 18–26] and
the references therein). It should be mentioned that solvable difference equations and sys-
tems have many applications (see, e.g., [2, 4, 7–10, 12, 27–29]). For invariants for difference
equations and systems, and their applications in solvability, see, for example, [30–35].

Recently, solvability of the so-called hyperbolic-cotangent-type difference equations, as
well as of the corresponding systems of difference equations, has been studied (see [22–
26]). The difference equations and systems therein resemble the hyperbolic-cotangent
sum formula which has been a good hint for solvability of the equations and systems.
Generally speaking, the difference equations and systems which resemble some trigono-
metric or hyperbolic trigonometric formulas are natural candidates to be solvable. This is
an observation known to mathematicians for a long time.

Now, as a motivation for the study, we present a known example along with the most
important details related to solvability of the equation in the example.

Example 1 The following difference equation

xn+1 = x2
n – 2, n ∈N0, (2)

was already known to Laplace [8]. He noticed that equation (2) is solvable. Namely, if
x0 ∈C, then there is a ∈C \ {0} such that

x0 = a +
1
a

(3)

(see, e.g., [36]).
By using (3) in (2), then repeating the procedure, he noticed that

x1 =
(

a +
1
a

)2

– 2 = a2 +
1
a2 ,

x2 =
(

a2 +
1
a2

)2

– 2 = a4 +
1
a4 ,

x3 =
(

a4 +
1
a4

)2

– 2 = a8 +
1
a8 ,

and concluded

xn = a2n +
1

a2n , n ∈N0, (4)

which is easily proved by induction. Laplace did not conduct further analysis of solutions
to equation (2).

In what follows we mention several simple folklore things related to solvability of the
equation in the case when x0 is a real number. If x0 ≥ 2, then x0 can be written in the form
given in (3) for some a > 0. For x0 = 2, we have x1 = 2, and by the method of induction,
constant solution xn = 2 for every n ∈ N0 is easily obtained. In this case there is unique a
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such that (3) holds, namely a = 1. If x0 > 2, then there are two positive values of a such that
(3) holds. They are the roots of the quadratic polynomial t2 – x0t + 1, that is,

a1,2 =
x0 ±

√
x2

0 – 4

2
. (5)

If one of the numbers a1,2 is denoted by a, by the Viète formulas, we see that the second
one is 1/a. So, since formula (4) is invariant under the transformation a → 1/a, whichever
of these two numbers is used, the formula is always obtained.

By combining (4) and (5), we see that the solution to equation (2) in this case can be
written as follows:

xn =
(x0 +

√
x2

0 – 4

2

)2n

+
(x0 +

√
x2

0 – 4

2

)–2n

, n ∈ N0.

If x0 ≤ –2, then x1 = x2
0 – 2 ≥ 2. This means that this case is reduced to the previous one.

Namely, if

x2
0 – 2 = x1 = b +

1
b

(6)

for some b > 0, then

xn = b2n–1
+

1
b2n–1 , n ∈N. (7)

From (6) we have b2 – (x2
0 – 2)b + 1 = 0, so that

b1,2 =
x2

0 – 2 ± |x0|
√

x2
0 – 4

2
,

and b1 = 1/b2. Using this in (7), we get

xn =
(x2

0 – 2 – x0

√
x2

0 – 4

2

)2n–1

+
(x2

0 – 2 – x0

√
x2

0 – 4

2

)–2n–1

, n ∈N. (8)

If a > 0, note that (4) can be written in the following form:

xn = e2n ln a +
1

e2n ln a = 2 cosh
(
2n ln a

)
= 2 cosh

(
2nâ

)
, n ∈N0, (9)

where â = ln a. This means that if x0 = 2 cosh â, then xn = 2 cosh(2nâ), n ∈N0.
Bearing in mind the form of formula (9), we see that equation (2) is closely related to

the hyperbolic cosine function. This connection is not so strange at all. Namely, by using
the change of variables xn = 2x̃n, n ∈N0, in equation (2), it is transformed to the following
one:

x̃n+1 = 2x̃2
n – 1, n ∈N0,
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which resembles the formula

cosh 2x = 2 cosh2 x – 1.

Because of this, it is natural to say that equation (2) in the case |x0| ≥ 2 is an example of
hyperbolic-cosine-type difference equations.

If x0 ∈ [–2, 2], then x0 can be written in the form given in (3) for some a = eiθ , where
θ ∈ [0, 2π ). In this case we have x0 = 2 cos θ , whereas from (4) we get

xn = 2 cos
(
2nθ

)
, n ∈N0.

Hence, in the case x0 ∈ [–2, 2], equation (2) is an example of cosine-type difference equa-
tions.

A natural problem is to try to find related hyperbolic-cosine-type difference equations,
which are also solvable. This problem seems classical one, but we could not find a complete
solution to the problem in the literature so far. Beside this, it is good to have all the things,
some of which seem scattered in the literature, in the same place. Hence, we consider here
the problem in detail. We show that there is a natural sequence of hyperbolic-cosine-type
difference equations which are solvable in closed form and describe a simple constructive
way for obtaining the sequence of equations.

2 A basic class of solvable hyperbolic-cosine-type difference equations
In this section we explain how a natural class/sequence of hyperbolic-cosine-type differ-
ence equations related to equation (2) is obtained, which are also solvable.

2.1 Basic ideas and equations
First, note that the main thing connected to solvability of equation (2) is the fact that the
following relation holds:

a2 +
1
a2 =

(
a +

1
a

)2

– 2 (10)

for every a ∈ C \ {0}, which is a simple, but no doubt very useful, relation between the
quantities

Ik := ak +
1
ak

for k = 1 and k = 2.
The consideration in Example 1 suggests that if we can express the quantity I3 in terms

of I1 in a similar way, then we can obtain another solvable difference equation. It is not
difficult to see that such a relation exists. Namely, we have

(
a +

1
a

)3

= a3 +
1
a3 + 3

(
a +

1
a

)
(11)

for every a ∈C \ {0}.
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Let the sequence (xn)n∈N0 be a solution to the following difference equation:

xn+1 = x3
n – 3xn, n ∈N0, (12)

and x0 ∈C.
Write the initial value x0 in the form in (3). Then we have

x1 =
(

a +
1
a

)3

– 3
(

a +
1
a

)
= a3 +

1
a3 ,

and by a simple inductive argument, we obtain

xn = a3n +
1

a3n , n ∈N0. (13)

The corresponding consideration in Example 1 shows that equation (12) when |x0| ≥
2 is also an example of a hyperbolic-cosine-type difference equation, which is solvable.
Moreover, we see that the following result holds.

Proposition 1 Consider equation (12). Then the following statements hold:
(a) If x0 ∈ C is given by (3), then the solution to the equation is given by (13).
(b) If x0 ≥ 2, then the solution to the equation is given by

xn =
(x0 +

√
x2

0 – 4

2

)3n

+
(x0 +

√
x2

0 – 4

2

)–3n

, n ∈N0.

(c) If x0 ≤ –2, then the solution to the equation is given by

xn =
(x2

0 – 2 – x0

√
x2

0 – 4

2

)3n–1

+
(x2

0 – 2 – x0

√
x2

0 – 4

2

)–3n–1

, n ∈N.

(d) If |x0| ≤ 2 and x0 = 2 cos θ for some θ ∈ [0, 2π ), then the solution to the equation is
given by

xn = 2 cos
(
3nθ

)
, n ∈N0.

Following the above idea, we can try to express the quantity I4 in terms of I1 in a similar
way, and then use the relation in order to obtain another solvable difference equation.
Namely, we have

(
a +

1
a

)4

= a4 +
1
a4 + 4

(
a2 +

1
a2

)
+ 6 = a4 +

1
a4 + 4

(
a +

1
a

)2

– 2. (14)

Let the sequence (xn)n∈N0 be a solution to the following difference equation:

xn+1 = x4
n – 4x2

n + 2, n ∈ N0, (15)

and x0 ∈C.
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Write the initial value x0 in the form in (3). Then we have

x1 =
(

a +
1
a

)4

– 4
(

a +
1
a

)2

+ 2 = a4 +
1
a4 ,

and by a simple inductive argument, we obtain

xn = a4n
+

1
a4n (16)

for n ∈N0.
So, equation (15) is also an example of a hyperbolic-cosine-type difference equation,

which is solvable. Moreover, we see that the following result holds.

Proposition 2 Consider equation (15). Then the following statements hold:
(a) If x0 ∈ C is given by (3), then the solution to the equation is given by (16).
(b) If x0 ≥ 2, general solution to the equation is given by

xn =
(x0 +

√
x2

0 – 4

2

)4n

+
(x0 +

√
x2

0 – 4

2

)–4n

, n ∈N0.

(c) If x0 ≤ –2, general solution to the equation is given by the following formula:

xn =
(x2

0 – 2 – x0

√
x2

0 – 4

2

)4n–1

+
(x2

0 – 2 – x0

√
x2

0 – 4

2

)–4n–1

, n ∈N.

(d) If |x0| ≤ 2 and x0 = 2 cos θ for some θ ∈ [0, 2π ), then the solution to the equation is
given by

xn = 2 cos
(
4nθ

)
, n ∈N0.

The corresponding relation between I5 and I1 is the following:

(
a +

1
a

)5

= a5 +
1
a5 + 5

(
a3 +

1
a3

)
+ 10

(
a +

1
a

)

= a5 +
1
a5 + 5

(
a +

1
a

)3

– 5
(

a +
1
a

)
, (17)

where in the last equality we have used relation (11).
Let the sequence (xn)n∈N0 be a solution to the following difference equation:

xn+1 = x5
n – 5x3

n + 5xn, n ∈N0, (18)

and x0 ∈C.
Write the initial value x0 in the form in (3). Then we have

x1 =
(

a +
1
a

)5

– 5
(

a +
1
a

)3

+ 5
(

a +
1
a

)
= a5 +

1
a5 ,
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and by a simple inductive argument, we obtain

xn = a5n
+

1
a5n , n ∈N0. (19)

So, equation (18) is another example of a hyperbolic-cosine-type difference equation,
which is solvable. Moreover, we see that the following result holds.

Proposition 3 Consider equation (18). Then the following statements hold:
(a) If x0 ∈ C is given by (3), then the solution to the equation is given by (19).
(b) If x0 ≥ 2, general solution to the equation is given by

xn =
(x0 +

√
x2

0 – 4

2

)5n

+
(x0 +

√
x2

0 – 4

2

)–5n

, n ∈N0.

(c) If x0 ≤ –2, general solution to the equation is given by the following formula:

xn =
(x2

0 – 2 – x0

√
x2

0 – 4

2

)5n–1

+
(x2

0 – 2 – x0

√
x2

0 – 4

2

)–5n–1

, n ∈N.

(d) If |x0| ≤ 2 and x0 = 2 cos θ for some θ ∈ [0, 2π ), then the solution to the equation is
given by

xn = 2 cos
(
5nθ

)
, n ∈N0.

The corresponding relation between I6 and I1 is the following:

(
a +

1
a

)6

= a6 +
1
a6 + 6

(
a4 +

1
a4

)
+ 15

(
a2 +

1
a2

)
+ 20

= a6 +
1
a6 + 6

(
a +

1
a

)4

– 9
(

a +
1
a

)2

+ 2, (20)

where in the last equality we have used (10) and (14).
Let the sequence (xn)n∈N0 be a solution to the following difference equation:

xn+1 = x6
n – 6x4

n + 9x2
n – 2, n ∈N0, (21)

and x0 ∈C.
Write the initial value x0 in the form in (3). Then we have

x1 =
(

a +
1
a

)6

– 6
(

a +
1
a

)4

+ 9
(

a +
1
a

)2

– 2 = a6 +
1
a6 ,

and by a simple inductive argument, we obtain

xn = a6n
+

1
a6n , n ∈N0. (22)

So, equation (21) is another example of a hyperbolic-cosine-type difference equation,
which is solvable on a domain. Moreover, we see that the following result holds.
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Proposition 4 Consider equation (21). Then the following statements hold:
(a) If x0 ∈ C is given by (3), then the solution to the equation is given by (22).
(b) If x0 ≥ 2, general solution to the equation is given by

xn =
(x0 +

√
x2

0 – 4

2

)6n

+
(x0 +

√
x2

0 – 4

2

)–6n

, n ∈N0.

(c) If x0 ≤ –2, general solution to the equation is given by the following formula:

xn =
(x2

0 – 2 – x0

√
x2

0 – 4

2

)6n–1

+
(x2

0 – 2 – x0

√
x2

0 – 4

2

)–6n–1

, n ∈N.

(d) If |x0| ≤ 2 and x0 = 2 cos θ for some θ ∈ [0, 2π ), then the solution to the equation is
given by

xn = 2 cos
(
6nθ

)
, n ∈N0.

Remark 1 Relations (10), (11), (14), (17), and (20) are well known and are frequently used
in various situations such as in solving the polynomial equations

akxk + ak–1xk–1 + · · · + a1x + a0 = 0,

in the case aj = ak–j, j = 0, k (see, e.g., [37]).

2.2 Main equation
By using the procedure preceding Propositions 1–4, other solvable hyperbolic-cosine-type
difference equations can be found. However, the corresponding relations become more
and more complicated, so the method is not so effective. Note that equations (2), (12),
(15), (18), and (21) can be written in the form

xn+1 = Pk(xn), n ∈ N0, (23)

where

P2(t) = t2 – 2,

P3(t) = t3 – 3t,

P4(t) = t4 – 4t2 + 2,

P5(t) = t5 – 5t3 + 5t,

P6(t) = t6 – 6t4 + 9t2 – 2.

Hence, it is of some interest to find a polynomial class (Pk)k∈N containing them.
To do this, it should be said that a very useful fact related to the sequence of polynomials

Pk(t), k ∈N, is that they satisfy a linear recursive relation of second order. Namely, let

t := a +
1
a

,
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then

Pk(t) = ak +
1
ak . (24)

Since
(

ak +
1
ak

)(
a +

1
a

)
= ak+1 +

1
ak+1 + ak–1 +

1
ak–1 ,

we have Pk+1(t) – P1(t)Pk(t) + Pk–1(t) = 0, that is,

Pk+1(t) – tPk(t) + Pk–1(t) = 0 (25)

for k ≥ 2, which is the desired recursive relation.
From this, since initial values are

P1(t) = t and P2(t) = t2 – 2, (26)

all the polynomials Pk(t) can be calculated recursively. Moreover, since it is a homogeneous
linear difference equation, it can be solved in a closed form.

Indeed, the characteristic polynomial associated with equation (25) is P̂2(λ) = λ2 – tλ+1,
and its roots are

λ1,2 =
t ± √

t2 – 4
2

. (27)

Hence, general solution to equation (25) has the following form:

Pk(t) = c1

(
t +

√
t2 – 4
2

)k

+ c2

(
t –

√
t2 – 4
2

)k

, k ∈ N. (28)

From (26) and (28), we have

c1

(
t +

√
t2 – 4
2

)
+ c2

(
t –

√
t2 – 4
2

)
= t,

c1

(
t +

√
t2 – 4
2

)2

+ c2

(
t –

√
t2 – 4
2

)2

= t2 – 2.

(29)

The determinant of system (29) is

� =

∣∣∣∣∣∣
t+

√
t2–4
2

t–
√

t2–4
2

( t+
√

t2–4
2 )2 ( t–

√
t2–4
2 )2

∣∣∣∣∣∣ = –
√

t2 – 4.

Hence, after some calculations, we have

c1 =
1
�

∣∣∣∣∣∣
t t–

√
t2–4
2

t2 – 2 ( t–
√

t2–4
2 )2

∣∣∣∣∣∣ = 1 (30)
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and

c2 =
1
�

∣∣∣∣∣∣
t+

√
t2–4
2 t

( t+
√

t2–4
2 )2 t2 – 2

∣∣∣∣∣∣ = 1. (31)

By using (30) and (31) in (28), we have

Pk(t) =
(

t +
√

t2 – 4
2

)k

+
(

t –
√

t2 – 4
2

)k

(32)

for k ∈N, which is the desired closed-form formula for Pk .

Remark 2 Related recursive relations to the one in (25) appeared frequently in mathemat-
ics. A close relative to it is the following recursive relation:

Pk+1(t) – 2tPk(t) + Pk–1(t) = 0, k ∈N,

with the initial conditions

P0(t) = 1 and P1(t) = t,

defining Chebyshev polynomials, which are usually denoted by Tk(t).
If |t| ≥ 1, then we have

Tk(t) =
(t +

√
t2 – 1)k + (t –

√
t2 – 1)k

2

for k ∈N0 (see, e.g., [38, 39]).

Remark 3 Using (25), (26), and a simple inductive argument, we can easily prove the fol-
lowing representations:

P2k–1(t) = t2k–1 – (2k – 1)t2k–3 +
k–1∑
j=2

ajt2(k–j)–1,

P2k(t) = t2k – 2kt2k–2 +
k∑

j=2

bjt2(k–j)

for some aj, j = 2, k – 1, and bj, j = 2, k. The simple proof is left to the reader.

From the above consideration similar to Example 1, the following result is obtained,
which completely solves the solvability problem for the class of difference equations in
(23).

Theorem 1 Consider equation (23), where k ∈ N \ {1} and the polynomial Pk is given by
(32). Then the following statements hold:
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(a) If x0 ∈ C is given by (3), then the solution to the equation is given by

xn = akn
+

1
akn , n ∈N0.

(b) If x0 ≥ 2, general solution to the equation is given by

xn =
(x0 +

√
x2

0 – 4

2

)kn

+
(x0 +

√
x2

0 – 4

2

)–kn

, n ∈N0.

(c) If x0 ≤ –2, general solution to the equation is given by

xn =
(x2

0 – 2 – x0

√
x2

0 – 4

2

)kn–1

+
(x2

0 – 2 – x0

√
x2

0 – 4

2

)–kn–1

, n ∈N.

(d) If |x0| ≤ 2 and x0 = 2 cos θ for some θ ∈ [0, 2π ), then the solution to the equation is
given by

xn = 2 cos
(
knθ

)
, n ∈N0.
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16. Stević, S., Iričanin, B., Kosmala, W., Šmarda, Z.: Representation of solutions of a solvable nonlinear difference equation

of second order. Electron. J. Qual. Theory Differ. Equ. 2018, Article ID 95 (2018)
17. Stević, S., Iričanin, B., Šmarda, Z.: On a symmetric bilinear system of difference equations. Appl. Math. Lett. 89, 15–21

(2019)
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Beograd (1986) (in Serbian)


	Solvability of a class of hyperbolic-cosine-type difference equations
	Abstract
	MSC
	Keywords

	Introduction
	A basic class of solvable hyperbolic-cosine-type difference equations
	Basic ideas and equations
	Main equation

	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


