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Abstract
Dedekind sums occur in the transformation behavior of the logarithm of the
Dedekind eta-function under substitutions from the modular group. In 1892,
Dedekind showed a reciprocity relation for the Dedekind sums. Apostol generalized
Dedekind sums by replacing the first Bernoulli function appearing in them by any
Bernoulli functions and derived a reciprocity relation for the generalized Dedekind
sums. In this paper, we consider the poly-Dedekind sums obtained from the Dedekind
sums by replacing the first Bernoulli function by any type 2 poly-Bernoulli functions of
arbitrary indices and prove a reciprocity relation for the poly-Dedekind sums.
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1 Introduction
To give concise definition of the Dedekind sums, we introduce the notation

((x)) =

{
x – [x] – 1

2 if x /∈ Z,
0 if x ∈ Z,

(see [1, 4]), (1)

where [x] denotes the greatest integer not exceeding x.
It is well known that the Dedekind sums are defined by

S(h, m) =
m∑

μ=1

((
μ

m

))((
hμ

m

))
(see [1, 4, 6–8, 11–13]), (2)

where h is any integer.
From (2) we note that

S(h, m) =
m∑

μ=1

(
μ

m
–

1
2

)((
hμ

m

))
=

m∑
μ=1

μ

m

((
hμ

m

))
(see [7, 8]). (3)

As is well known, the Bernoulli polynomials are given by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(see [1–13]). (4)
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When x = 0, Bn = Bn(0) (n ≥ 0) are called the Bernoulli numbers.
From (4) we note that

Bn(x) =
n∑

l=0

(
n
l

)
Blxn–l = (B + x)n (n ≥ 0) (see [2–5, 7, 8]), (5)

with the usual convention about replacing Bn by Bn.
We observe that

n–1∑
l=0

elt =
t

t(et – 1)
(
ent – 1

)
=

∞∑
j=0

(
Bj+1(n) – Bj+1

j + 1

)
tj

j!
(n ∈N). (6)

Thus by (6) we get

n–1∑
l=0

lj =
1

j + 1
(
Bj+1(n) – Bj+1

)
(n ∈N, j ≥ 0). (7)

Recently, Kim and Kim [5, 9] considered the polyexponential function of index k given by

Eik(x) =
∞∑

n=1

xn

nk(n – 1)!
(k ∈ Z). (8)

Note that Ei1(x) = ex – 1.
In [5] the type 2 poly-Bernoulli polynomials of index k are defined in terms of the poly-

exponential function of index k as

Eik(log(1 + t))
et – 1

ext =
∞∑

n=0

B(k)
n (x)

tn

n!
(k ∈ Z). (9)

When x = 0, B(k)
n = B(k)

n (0) (n ≥ 0) are called the type 2 poly-Bernoulli numbers of index k.
Note that B(1)

n (x) = Bn(x) are the Bernoulli polynomials.
The fractional part of x is denoted by

〈x〉 = x – [x]. (10)

The Bernoulli functions are defined by

Bn(x) = Bn
(〈x〉) (n ≥ 0) (see [1, 4, 11]). (11)

Thus by (3) and (11) we get

S(h, m) =
m–1∑
μ=1

μ

m

(
hμ

m
–

[
hμ

m

]
–

1
2

)
(12)

=
m–1∑
μ=1

μ

m
B1

(
hμ

m

)
=

m–1∑
μ=1

B1

(
μ

m

)
B1

(
hμ

m

)
,

where h, m are relatively prime positive integers.



Kim et al. Advances in Difference Equations        (2020) 2020:563 Page 3 of 13

We need the following lemma, which is well-known and easily shown.

Lemma 1 Let n be a nonnegative integer, and let d be a positive integer. Then we have:
(a)

∑d–1
i=0 Bn( x+i

d ) = d1–nBn(x),
(b)

∑d–1
i=0 Bn( x+i

d ) = d1–nBn(x), and
(c)

∑d–1
i=0 Bn( 〈x〉+i

d ) =
∑d–1

i=0 Bn( x+i
d ) for all real x.

Dedekind showed that the quantity S(h, m) =
∑m–1

μ=1
μ

m B1( hμ

m ) occurs in the transforma-
tion behavior of the logarithm of the Dedekind eta-function under substitutions from the
modular group. In 1892, he showed the following reciprocity relation for Dedekind sums:

S(h, m) + S(m, h) =
1

12

(
h
m

+
1

hm
+

m
h

)
–

1
4

if h and m are relatively prime positive integers.
Apostol [1] considered the generalized Dedekind sums given by

Sp(h, m) =
m–1∑
μ=1

μ

m
Bp

(
hμ

m

)
(13)

and showed that they satisfy the reciprocity relation

(p + 1)
(
hmpSp(h, m) + mhpSp(m, h)

)

= pBp+1 +
p+1∑
s=0

(
p + 1

s

)
(–1)sBsBp+1–shsmp+1–s.

In this paper, we consider the poly-Dedekind sums defined by

S(k)
p (h, m) =

m–1∑
μ=1

μ

m
B(k)

p

(
hμ

m

)
,

where B(k)
p (x) are the type 2 poly-Bernoulli polynomials of index k (see (9)), and B(k)

p (x) =
B(k)

p (〈x〉) are the type 2 poly-Bernoulli functions of index k. Note that S(1)
p (h, m) = Sp(h, m).

We show the following reciprocity relation for the poly-Dedekind sums (see Theorem 10):

hmpS(k)
p (h, m) + mhpS(k)

p (m, h)

=
m–1∑
μ=0

p∑
j=0

h–1∑
ν=0

p–j+1∑
l=1

(mh)j–1(p
j
)
S1(p – j + 1, l)

(p – j + 1)lk–1

(
(μh)mp–j + (mν)hp–j)Bj

(
ν

h
+

μ

m

)
.

For k = 1, this reciprocity relation for the poly-Dedekind sums reduces to that for the
generalized Dedekind sums given by (see Corollary 11)

hmpSp(h, m) + mhpSp(m, h)

=
m–1∑
μ=0

h–1∑
ν=0

(mh)p–1(μh + mν)Bp

(
ν

h
+

μ

m

)
.
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In Sect. 2, we derive various facts about the type 2 poly-Bernoulli polynomials, which
will be needed in the next section. In Sect. 3, we define the poly-Dedekind sums and
demonstrate a reciprocity relation for them.

2 On type 2 poly-Bernoulli polynomials
Note that by (9)

Eik(log(1 + t))
et – 1

ext =
∞∑
l=0

B(k)
l

tl

l!

∞∑
m=0

xm

m!
tm (14)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
B(k)

l xn–l

)
tn

n!
.

Thus by (14) we get

B(k)
n (x) =

n∑
l=0

(
n
l

)
B(k)

l xn–l (n ≥ 0). (15)

By (15) we get

d
dx

B(k)
n (x) = nB(k)

n–1(x) (n ≥ 1). (16)

From (9) we have

Eik
(
log(1 + t)

)
=

∞∑
l=0

B(k)
l

tl

l!
(
et – 1

)
(17)

=
∞∑

n=0

(
B(k)

n (1) – B(k)
n

) tn

n!
=

∞∑
n=1

(
B(k)

n (1) – B(k)
n

) tn

n!
.

On the other hand,

Eik
(
log(1 + t)

)
=

∞∑
m=1

(log(1 + t))m

mk(m – 1)!
=

∞∑
m=1

1
mk–1

1
m!

(
log(1 + t)

)m (18)

=
∞∑

m=1

1
mk–1

∞∑
n=m

S1(n, m)
tn

n!

=
∞∑

n=1

( n∑
m=1

1
mk–1 S1(n, m)

)
tn

n!
,

where S1(n, m) are the Stirling numbers of the first kind.
Therefore by (17) and (18) we obtain the following theorem.

Theorem 2 For n ≥ 1, we have

B(k)
n (1) – B(k)

n =
n∑

m=1

S1(n, m)
1

mk–1 (k ∈ Z).
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By Theorem 2 we get

B(1)
n – B(1)

n = δ1,n, B(k)
0 = 1, B(k)

1 = –1 +
1
2k , . . . ,

where δn,k is the Kronecker symbol.
With (16) in mind, we now compute

(
d

dx

)s–1(
xB(k)

p (x)
)∣∣∣∣

x=1
=

s–1∑
l=0

(
s – 1

l

)((
d

dx

)l

x
)((

d
dx

)s–1–l

B(k)
p (x)

)∣∣∣∣
x=1

(19)

=
(

d
dx

)s–1

B(k)
p (x)

∣∣∣∣
x=1

+
(

s – 1
1

)(
d

dx

)s–2

B(k)
p (x)

∣∣∣∣
x=1

=
s!

p + 1

(
p + 1

s

)
B(k)

p–s+1(1) +
(s – 1)s!

(p + 1)(p + 2)

(
p + 2

s

)
B(k)

p–s+2(1).

On the other hand, by (15) we get

(
d

dx

)s–1(
xB(k)

p (x)
)∣∣∣∣

x=1
=

p∑
ν=0

(
p
ν

)
B(k)

ν

((
d

dx

)s–1

xp–ν+1
)∣∣∣∣

x=1
(20)

=
p∑

ν=0

(
p
ν

)
B(k)

ν (p – ν + 1) · · · (p – ν – s + 3)

=
p∑

ν=0

(
p
ν

)
s!B(k)

ν

p – ν + 2

(
p – ν + 2

s

)
.

Therefore by (19) and (20) we obtain the following theorem.

Theorem 3 For s, p ∈N, we have

p∑
ν=0

(
p
ν

)(
p – ν + 2

s

)
B(k)

ν

p – ν + 2
=

(
p + 1

s

)B(k)
p–s+1(1)
p + 1

+
s – 1
p + 1

(
p + 2

s

)B(k)
p–s+2(1)
p + 2

.

Now we observe that

p∑
ν=0

(
p
ν

)(
p – ν + 2

s

)
B(k)

ν

p – ν + 2
=

p–s+2∑
ν=0

(p
ν

)(p–ν+2
s

)
p – ν + 2

B(k)
ν (21)

=
p–s+1∑
ν=0

(p
ν

)(p–ν+2
s

)
p – ν + 2

B(k)
ν +

1
s

(
p

s – 2

)
B(k)

p–s+2.

Therefore by Theorem 3 and (21) we obtain the following corollary.

Corollary 4 For s, p ∈N, we have

p–s+1∑
ν=0

(
p
ν

)(
p – ν + 2

s

)
B(k)

ν

p – ν + 2

=
(

p + 1
s

)B(k)
p–s+1(1)
p + 1

+
s – 1
p + 1

(
p + 2

s

)B(k)
p–s+2(1)
p + 2

–
1
s

(
p

s – 2

)
B(k)

p–s+2.



Kim et al. Advances in Difference Equations        (2020) 2020:563 Page 6 of 13

From (16) we have

∫ 1

0
xB(k)

p (x) dx =
[

x
B(k)

p+1(x)
p + 1

]1

0
–

1
p + 1

∫ 1

0
B(k)

p+1(x) dx (22)

=
B(k)

p+1(1)
p + 1

–
1

p + 1

[
1

p + 2
B(k)

p+2(x)
]1

0

=
B(k)

p+1(1)
p + 1

–
B(k)

p+2(1)
(p + 1)(p + 2)

+
B(k)

p+2

(p + 1)(p + 2)
.

On the other hand, by (15) we get

∫ 1

0
xB(k)

p (x) dx =
p∑

s=0

(
p
s

)
B(k)

s

∫ 1

0
xp–s+1 dx (23)

=
p∑

s=0

(
p
s

)
B(k)

s
1

p + 2 – s
.

Therefore by (22) and (23) we obtain the following theorem.

Theorem 5 For p ∈N, we have

p∑
s=0

(
p
s

)
B(k)

s
1

p + 2 – s
=

B(k)
p+1(1)
p + 1

–
B(k)

p+2(1)
(p + 1)(p + 2)

+
B(k)

p+2

(p + 1)(p + 2)
.

3 Poly-Dedekind sums
Apostol considered the generalized Dedekind sums given by

Sp(h, m) =
m–1∑
μ=1

(μ/m)Bp(hμ/m) (h, m, p ∈N), (24)

where Bp(hμ/m) = Bp(〈hμ/m〉).
Note that, for any relatively prime positive integers h, m, we have

S1(h, m) =
m–1∑
μ=1

(μ/m)B1(hμ/m)

=
m–1∑
μ=1

((μ/m))((hμ/m)) = S(h, m).

In this section, we consider the poly-Dedekind sums given by

S(k)
p (h, m) =

m–1∑
μ=1

(μ/m)B(k)
p (hμ/m), (25)

where h, m, p ∈ N, k ∈ Z, and B(k)
p (x) = B(k)

p (〈x〉) are the type 2 poly-Bernoulli functions of
index k.
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Note that

S(1)
p (h, m) =

m–1∑
μ=1

(μ/m)Bp(hμ/m) = Sp(h, m).

Assume now that h = 1. Then we have

S(k)
p (1, m) =

m–1∑
μ=1

(μ/m)B(k)
p (μ/m) (26)

=
m–1∑
μ=1

(μ/m)
p∑

ν=0

(
p
ν

)
B(k)

ν (μ/m)p–ν

=
p∑

ν=0

(
p
ν

)
B(k)

ν m–(p–ν+1)
m–1∑
μ=1

μp+1–ν

=
p∑

ν=0

(
p
ν

)
B(k)

ν m–(p+1–ν) 1
p + 2 – ν

(
Bp+2–ν(m) – Bp+2–ν

)
.

From (5) we have

Bp+2–ν(m) – Bp+2–ν =
p+2–ν∑

i=0

(
p + 2 – ν

i

)
Bimp+2–ν–i – Bp+2–ν (27)

=
p+1–ν∑

i=0

(
p + 2 – ν

i

)
Bimp+2–ν–i.

By (26) and (27) we get

S(k)
p (1, m) =

p∑
ν=0

(
p
ν

)
B(k)

ν m–(p+1–ν) 1
p + 2 – ν

p+1–ν∑
i=0

(
p + 2 – ν

i

)
Bimp+2–ν–i (28)

=
1

mp

p∑
ν=0

(
p
ν

)
B(k)

ν

p + 2 – ν

p+1–ν∑
i=0

(
p + 2 – ν

i

)
Bimp+1–i.

Now we assume that p ≥ 3 is an odd positive integer, so that Bp = 0. Then we have

mpS(k)
p (1, m) =

p∑
ν=0

(
p
ν

)
B(k)

ν

p + 2 – ν

p+1–ν∑
i=0

(
p + 2 – ν

i

)
Bimp+1–i (29)

=
p∑

ν=0

(
p
ν

)
B(k)

ν

p + 2 – ν
mp+1 +

p∑
ν=0

(
p
ν

)
B(k)

ν

p + 2 – ν

p+1–ν∑
i=1

(
p + 2 – ν

i

)
Bimp+1–i

=
p∑

ν=0

(
p
ν

)
B(k)

ν

p + 2 – ν
mp+1 +

p+1∑
i=1

p+1–i∑
ν=0

(
p
ν

)(
p + 2 – ν

i

)
B(k)

ν

p + 2 – ν
Bimp+1–i

=
p∑

ν=0

(
p
ν

)
B(k)

ν

p + 2 – ν
mp+1 +

p–1∑
i=1

p+1–i∑
ν=0

(
p
ν

)(
p + 2 – ν

i

)
B(k)

ν

p + 2 – ν
Bimp+1–i
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+
1

p + 2

(
p + 2
p + 1

)
Bp+1 +

1∑
ν=0

(
p
ν

)(
p + 2 – ν

p

)
B(k)

ν

p + 2 – ν
Bpm

=
p∑

ν=0

(
p
ν

)
B(k)

ν

p + 2 – ν
mp+1 +

p–1∑
i=1

p+1–i∑
ν=0

(
p
ν

) (p+2–ν

i
)

p + 2 – ν
B(k)

ν Bimp+1–i + Bp+1.

Therefore by (29) we obtain the following proposition.

Proposition 6 Let p ≥ 3 be an odd positive integer. Then we have

mpS(k)
p (1, m) =

p∑
ν=0

(
p
ν

)
B(k)

ν

p + 2 – ν
mp+1 +

p–1∑
i=1

p+1–i∑
ν=0

(
p
ν

)(
p + 2 – ν

i

)
B(k)

ν

p + 2 – ν
Bimp+1–i

+ Bp+1.

We still assume that p ≥ 3 is an odd positive integer, so that Bp = 0. Then from Corol-
lary 4, Theorem 5, and Proposition 6 we note that

mpS(k)
p (1, m) (30)

=
p∑

ν=0

(
p
ν

)
B(k)

ν

p + 2 – ν
mp+1 +

p–1∑
i=1

p+1–i∑
ν=0

(
p
ν

)(
p + 2 – ν

i

)
B(k)

ν

p + 2 – ν
Bimp+1–i + Bp+1

=
(B(k)

p+1(1)
p + 1

–
B(k)

p+2(1)
(p + 1)(p + 2)

+
B(k)

p+2

(p + 1)(p + 2)

)
mp+1 + Bp+1

+
p–1∑
i=1

((
p + 1

i

)B(k)
p+1–i(1)
p + 1

+
(i – 1)

(p + 1)(p + 2)

(
p + 2

i

)
B(k)

p+2–i(1)

–
(

p
i – 2

)
1
i

B(k)
p+2–i

)
Bimp+1–i.

To proceed further, we note that
( p

i–2
) p+1

i = 1
p+2

(p+2
i

)
(i–1) for i ≥ 1 and that B(k)

1 (1)–B(k)
1 = 1

by Theorem 2. Then from (30) we see that

(p + 1)mpS(k)
p (1, m) =

(
B(k)

p+1(1) –
B(k)

p+2(1)
p + 2

+
B(k)

p+2

p + 2

)
mp+1 (31)

+
p–1∑
i=1

(
p + 1

i

)
BiB(k)

p+1–i(1)mp+1–i + (p + 1)Bp+1

+
1

p + 2

p–1∑
i=1

(
p + 2

i

)
(i – 1)BiB(k)

p+2–i(1)mp+1–i

–
p–1∑
i=1

(
p

i – 2

)
(p + 1)

i
B(k)

p+2–iBimp+1–i

= mp+1B(k)
p+1(1) +

p–1∑
i=1

(
p + 1

i

)
Bimp+1–iB(k)

p+1–i(1) + Bp+1

+
1

p + 2
(–1)mp+1(B(k)

p+2(1) – B(k)
p+2

)
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+
1

p + 2

p–1∑
i=1

(
p + 2

i

)
(i – 1)Bimp+1–i(B(k)

p+2–i(1) – B(k)
p+2–i

)

+ pBp+1

=
p+1∑
i=0

(
p + 1

i

)
Bimp+1–iB(k)

p+1–i(1)

+
1

p + 2

p+1∑
i=0

(
p + 2

i

)
(i – 1)Bimp+1–i(B(k)

p+2–i(1) – B(k)
p+2–i

)
.

Therefore by (31) we obtain the following theorem.

Theorem 7 For m ∈ N and any odd positive integer p ≥ 3, we have

(p + 1)mpS(k)
p (1, m)

=
p+1∑
i=0

(
p + 1

i

)
Bimp+1–iB(k)

p+1–i(1)

+
1

p + 2

p+1∑
i=0

(
p + 2

i

)
(i – 1)Bimp+1–i(B(k)

p+2–i(1) – B(k)
p+2–i

)
.

Now we employ the notation

Bn(x) = (B + x)n, B(k)
n (x) =

(
B(k) + x

)n (n ≥ 0).

Assume that h, m are relatively prime positive integers. Then we see that

mp
m–1∑
μ=0

p+1∑
s=0

(
p + 1

s

)
hsB(k)

s (μ/m)Bp+1–s
(
h – [hμ/m]

)
(32)

= mp
m–1∑
μ=0

p+1∑
s=0

(
p + 1

s

)
hs(B(k) + μm–1)s(B + h – [hμ/m]

)p+1–s

= mp
m–1∑
μ=0

(
hB(k) + hμm–1 + B + h – [hμ/m]

)p+1

= mp
m–1∑
μ=0

(
hB(k) + h + B +

1
2

+
hμ

m
– [hμ/m] –

1
2

)p+1

= mp
m–1∑
μ=0

(
hB(k) + h + B +

1
2

+ B1(hμ/m)
)p+1

.

Now, as the index μ ranges over the values μ = 0, 1, 2, . . . , m – 1, the product hμ ranges
over a complete residue system modulo m, and due to the periodicity of B1(x), the term
B1(hμ/m) may be replaced by B1(μ/m) without altering the sum over μ. Thus the sum
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(32) is equal to

mp
m–1∑
m=0

(
hB(k) + h + B +

1
2

+ B1

(
μ

m

))p+1

(33)

= mp
m–1∑
m=0

(
h
(
B(k) + 1

)
+ B +

μ

m

)
)p+1

= mp
m–1∑
μ=0

p+1∑
s=0

(
p + 1

s

)(
B +

μ

m

)s

hp+1–s(B(k) + 1
)p+1–s

= mp
m–1∑
μ=0

p+1∑
s=0

(
p + 1

s

)
Bs

(
μ

m

)
hp+1–sB(k)

p+1–s(1)

=
p+1∑
s=0

(
p + 1

s

)
ms–1

m–1∑
μ=0

Bs

(
μ

m

)
(mh)p+1–sB(k)

p+1–s(1)

=
p+1∑
s=0

(
p + 1

s

)
Bs(mh)p+1–sB(k)

p+1–s(1),

where we used the fact (a) in Lemma 1.
Therefore we obtain the following theorem.

Theorem 8 For m, n, h ∈N with (h, m) = 1 and any positive odd integer p ≥ 3, we have

p+1∑
s=0

(
p + 1

s

)
BsB(k)

p+1–s(1)(mh)p+1–s

= mp
m–1∑
μ=0

p+1∑
s=0

(
p + 1

s

)
hsB(k)

s (μ/m)Bp+1–s

(
h –

[
hμ

m

])
.

Now we observe that

∞∑
n=0

B(k)
n (x)

tn

n!
=

Eik(log(1 + t))
et – 1

ext =
Eik(log(1 + t))

edt – 1

d–1∑
i=0

e(i+x)t (34)

=
Eik(log(1 + t))

dt

d–1∑
i=0

e(i+x)t dt
edt – 1

=
∞∑
j=0

dj–1
d–1∑
i=0

Bj

(
x + i

d

)
tj

j!
1
t

∞∑
l=1

(log(1 + t))l

(l – 1)!lk

=
∞∑
j=0

dj–1
d–1∑
i=0

Bj

(
x + i

d

)
tj

j!
1
t

∞∑
l=1

1
lk–1

∞∑
m=l

S1(m, l)
tm

m!

=
∞∑
j=0

dj–1
d–1∑
i=0

Bj

(
x + i

d

)
tj

j!
1
t

∞∑
m=1

m∑
l=1

S1(m, l)
lk–1

tm

m!

=
∞∑
j=0

dj–1
d–1∑
i=0

Bj

(
x + i

d

)
tj

j!

∞∑
m=0

m+1∑
l=1

S1(m + 1, l)
lk–1(m + 1)

tm

m!
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=
∞∑

n=0

( n∑
j=0

d–1∑
i=0

n–j+1∑
l=1

(
n
j

)
dj–1Bj

(
x + i

d

)
S1(n – j + 1, l)
(n – j + 1)lk–1

)
tn

n!
,

where d is a positive integer.
Therefore by comparing the coefficients on both sides of (34) we obtain the following

theorem.

Theorem 9 For k ∈ Z, d ∈N, and n ≥ 0, we have

B(k)
n (x) =

n∑
j=0

d–1∑
i=0

n–j+1∑
l=1

(
n
j

)
dj–1Bj

(
x + i

d

)
S1(n – j + 1, l)
(n – j + 1)lk–1 .

From (25), using Theorem 9 and (c) in Lemma 1, we see that

hmpS(k)
p (h, m) + mhpS(k)

p (m, h) (35)

= hmp
m–1∑
μ=0

μ

m
B(k)

p

(
hμ

m

)
+ mhp

h–1∑
ν=0

ν

h
B(k)

p

(
mν

h

)

= hmp
m–1∑
μ=0

μ

m

p∑
j=0

hj–1
(

p
j

) h–1∑
ν=0

p–j+1∑
l=1

S1(p – j + 1, l)
(p – j + 1)lk–1 Bj

(
μ

m
+

ν

h

)

+ mhp
h–1∑
ν=0

ν

h

p∑
j=0

mj–1
(

p
j

) m–1∑
μ=0

p–j+1∑
l=1

S1(p – j + 1, l)
(p – j + 1)lk–1 Bj

(
ν

h
+

μ

m

)

=
m–1∑
μ=0

μ

m

p∑
j=0

mp–j(mh)j
(

p
j

) h–1∑
ν=0

p–j+1∑
l=1

Bj

(
μ

m
+

ν

h

)
S1(p – j + 1, l)
(p – j + 1)lk–1

+
h–1∑
ν=0

ν

h

p∑
j=0

hp–j(mh)j
(

p
j

) m–1∑
μ=0

p–j+1∑
l=1

Bj

(
ν

h
+

μ

m

)
S1(p – j + 1, l)
(p – j + 1)lk–1

=
m–1∑
μ=0

p∑
j=0

h–1∑
ν=0

p–j+1∑
l=1

(μh)(mh)–1mp–j(mh)j
(

p
j

)
Bj

(
μ

m
+

ν

h

)
S1(p – j + 1, l)
(p – j + 1)lk–1

+
m–1∑
μ=0

p∑
j=0

h–1∑
ν=0

p–j+1∑
l=1

(mν)(mh)–1hp–j(mh)j
(

p
j

)
Bj

(
ν

h
+

μ

m

)
S1(p – j + 1, l)
(p – j + 1)lk–1

=
m–1∑
μ=0

p∑
j=0

h–1∑
ν=0

p–j+1∑
l=1

(mh)j–1(p
j
)
S1(p – j + 1, l)

(p – j + 1)lk–1

(
(μh)mp–j + (mν)hp–j)Bj

(
ν

h
+

μ

m

)
.

Therefore we obtain the following reciprocity relation.

Theorem 10 For m, h, p ∈ N and k ∈ Z, we have

hmpS(k)
p (h, m) + mhpS(k)

p (m, h)

=
m–1∑
μ=0

p∑
j=0

h–1∑
ν=0

p–j+1∑
l=1

(mh)j–1(p
j
)
S1(p – j + 1, l)

(p – j + 1)lk–1

(
(μh)mp–j + (mν)hp–j)Bj

(
ν

h
+

μ

m

)
.
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In the case k = 1, we obtain the following reciprocity relation for the generalized
Dedekind sum defined by Apostol.

Corollary 11 For m, h, p ∈N, we have

hmpSp(h, m) + mhpSp(m, h)

=
m–1∑
μ=0

h–1∑
ν=0

(mh)p–1(μh + mν)Bp

(
ν

h
+

μ

m

)

= (mh)p
m–1∑
μ=0

h–1∑
ν=0

(mh)–1(μh + mν)Bp

(
ν

h
+

μ

m

)
.

4 Conclusion
The Dedekind sums are defined by

S(h, m) =
m∑

μ=1

((
μ

m

))((
hμ

m

))
(see [1, 4, 6–8, 11–13]).

In 1952, Apostol considered the generalized Dedekind sums and introduced interesting
and important identities and theorems related to his generalized Dedekind sums. These
Dedekind sums are a field studied by various researchers. Recently, the modified Hardy
polyexponential function of index k is introduced by

Eik(x) =
∞∑

n=1

xn

nk(n – 1)!
, (k ∈ Z) (see [5, 9]).

In [5] the type 2 poly-Bernoulli polynomials of index k are defined in terms of the polyex-
ponential function of index k by

Eik(log(1 + t))
et – 1

ext =
∞∑

n=0

B(k)
n (x)

tn

n!
(k ∈ Z).

In this paper, we thought of the poly-Dedekind sums from the perspective of the Apostol
generalized Dedekind sums. That is, we considered the poly-Dedekind sums derived from
the type 2 poly-Bernoulli functions and polynomials.
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