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Abstract
We prove the existence of tripled fixed points (TFPs) of a new generalized nonlinear
contraction mapping in complete cone b-metric spaces (CCbMSs). Also, we present
some exciting consequences as corollaries and three nontrivial examples. Finally, we
find a solution for a tripled-system of integral equations (TSIE) and discussed a unique
stationary distribution for the Markov process (SDMP).
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1 Introduction and elementary discussion
Not knowing mathematics in a mathematically-driven world is like walking around a mu-
seum without looking at its walls. Learning and appreciating mathematics can help you
appreciate certain things you would not otherwise focus on in your surrounding world.
Mathematics is everywhere in nature. A typical example is the celebrated Fibonacci se-
quence of numbers, which is present in reproduction of species in nature. Mathematics
is also useful to formulate epidemic models via differential or difference systems of equa-
tions that describe the couplings of the dynamics among subpopulations like susceptible,
exposed, infectious, or recovered with immunity.

One of important branches of mathematics is functional analysis. The development of
this field progressed in parallel to the development of modern theoretical physics. The
formal framework of functional analysis adjusts closely the laws of both quantum me-
chanics and quantum field theory. At the same time, these physics theoretical frameworks
have very relevant influence and links substantiating the body of problems and solution
methodology of functional analysis.

A drop was taken from this branch and was called fixed point theory. Fixed-point tech-
nologies offer a focal concept with many diverse utilizations. It has been and still is an
important theoretical tool in many fields and various disciplines such as topology, game
theory, optimal control, artificial intelligence, logic programming, dynamical systems (and
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chaos), functional analysis, differential equations, and economics. For example, the fixed-
point technique is applied to finding the solution of the equilibrium troubles in economics
and game theory. In nonlinear integral equations, it used to find analytical and numerical
solutions to Fredholm integral equations [1–5], and so on.

The idea of a coupled fixed point was initiated in [6]. Under this idea, some main re-
sults in partially ordered metric spaces were obtained by the same authors. For relevant
properties in coupled fixed point consequences and related topics in abstract spaces, the
reader can shed light from [7–21].

Pivotal results related to a TFP (established in 2011 by Berinde and Borcut [22]) were
presented in partially ordered metric spaces. For more topics of this notion, we refer to
[23–30].

As a generalization of ordinary metric space (OMC), a b-metric space (bMS) was pre-
sented by Bakhtin [31]. Under certain contraction conditions, he showed some important
sequences in b-metric spaces. After his paper, a lot of authors discussed fixed point theory
or various principles for operators (single- or multivalued) in the mentioned space as an
extension of Banach’s principle in OMC; see [32–34].

Another extension of OMC, a cone metric space (CMS), was introduced by Huang and
Zhang [35]. They discussed some fixed point theorems, which expanded certain results of
this type to CMS.

Great papers incorporate bMS with CMS clarified by Hussain and Shah [36] under the
name a cone b-metric space (CbMS), where some topological properties in such spaces
and recent results about KKM mappings in a CbMS were established.

As an extension of this work, this paper was written to give some new TFPs under gener-
alized nonlinear contraction mapping in CCbMS, We also give some important examples
and corollaries to corroborate our theoretical results. Finally, we discuss contributions of
TFPs to finding a solution of TSIE and a unique SDMP.

Now we present important notions of CbMS used in our paper.

Definition 1.1 ([35]) Let B be a real Banach space, and let Q be a subset B. By ϑ we
denote the zero element of B. The subset Q is called a cone if the following stipulations
are fulfilled:

(i) Q �= ∅ is closed, and Q �= {ϑ};
(ii) ω,� ∈R, ω,� ≥ 0, and p, q ∈ Q ⇒ ωp + �q ∈ Q;

(iii) Q ∩ (–Q) = {ϑ}.

For a given cone Q ⊂ B, we define a partial ordering � with respect to Q by p � q iff
q – p ∈ Q. We write p ≺ q to indicate that p � q but p �= q, whereas p 	 q stands for
p – q ∈ Q◦, where Q◦ is the interior of Q.

Let ‖ · ‖ be a norm on B. The cone Q is called normal if there is a number � > 0 such
that for all p, q ∈ B, ϑ ≤ p ≤ q ⇒ ‖p‖ ≤ �‖q‖. The least positive number satisfying this
inequality is called the normal constant of Q.

Definition 1.2 ([35]) Let χ �= ∅, and let ξ : χ × χ → B be a mapping such that for all
p, q, r ∈ χ ,

(c1) ϑ ≤ ξ (p, q), and ξ (p, q) = ϑ ⇔ p = q;
(c2) ξ (p, q) = ξ (q, p);
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(c3) ξ (p, q) ≤ ξ (p, r) + ξ (r, q).
The pair (χ , ξ ) is called a CMS.

Definition 1.3 ([36]) Let χ �= ∅, and let s ≥ 1. A mapping ξ : χ × χ → B is called a CbM
for all p, q, r ∈ χ iff the following conditions are fulfilled:

(cb1) ϑ ≤ ξ (p, q), and ξ (p, q) = ϑ ⇔ p = q;
(cb2) ξ (p, q) = ξ (q, p);
(cb3) ξ (p, q) ≤ s(ξ (p, r) + ξ (r, q)).
The pair (χ , ξ ) is called a CbMS.

From these two definitions we have that any CMS is a CbMS. So the class CbMSs is larger
than the class of CMSs. Here we can confirm that CbMS generalizes bMS and CMS.

We strongly refer to paper [37], which gives some important examples that show that a
CbMS (χ , ξ ) is not necessarily a CMS.

Definition 1.4 ([36]) Let (χ , ξ ) be a CbMS, and let {pn} be a sequence in χ . Then for all
p ∈ χ ,

(1) {pn} converges to p if for every ε in B with ϑ 	 ε, there is N such that for all n > N,
ξ (pn, p) 	 ε, and we write limn→∞ pn = p or pn → p as n → ∞;

(2) {pn} is a Cauchy sequence if for every ε in B with ϑ 	 ε, there is N such that
ξ (pn, pm) 	 ε for all n, m > N;

(3) the pair (χ , ξ ) is a CCbMS if every Cauchy sequence is convergent.

The following lemma is very important, especially when dealing with CMS.

Lemma 1.5 ([38]) If � ∈ int(Y ) andϑ � pn
n→∞→ ϑ , where Y is a cone, and {pn} is a sequence

in B, then for an arbitrary fixed N and all n ∈ N , pn 	 �.

Lemma 1.6 ([38]) If p � q and q 	 r for all p, q, r ∈ B, then p 	 r.

Lemma 1.7 ([39]) Let Q be a cone. If ν ∈ Q and ν ≤ τν for some τ ∈ [0, 1), then ν = ϑ .

Definition 1.8 ([40]) A triple (℘,�,ð) ∈ χ3 is a TFP of a self-mapping � : χ3 → χ if ℘ =
�(℘,�,ð), � = �(�,℘,�), and ð = �(ð,�,℘).

Definition 1.9 ([41]) Let (χ , ξ ) be a CMS, Q be a solid cone and � : χ → χ . Then
(1) � is said to be continuous if limn→∞ pn = p implies that limn→∞ fxn = fx for all {xn}

in X ;
(2) � is said to be sequentially convergent if for every sequence {xn} such that {�xn} is

convergent, {xn} is also convergent.
(3) � is said to be subsequentially convergent if for every sequence {xn} such that {�xn}

is convergent, {xn} has a convergent subsequence.

2 Main results
We begin this section with a new definition and an example that supports it.

Definition 2.1 Let (χ , ξ ) be a CbMS with the coefficient s ≥ 1, let Q ∪ (–Q) = B (i.e., Q
is a total ordering cone), and let � : χ → χ . We will say that a mapping � : χ3 → χ is a
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�θ -contraction if there is θ ∈ [0, 1) such that

ξ
(��(p, q, r),��(p∗, q∗, r∗))� θ max

{
ξ
(�p,�p∗), ξ

(�q,�q∗), ξ
(�r,�r∗)} (1)

for all p, q, r, p∗, q∗, r∗ ∈ χ .

Example 2.2 Let B = R
2 and Q = {(p, q) ∈ B : p, q ≥ 0} ⊂ B. Define the distance ξ : χ2 → B

by ξ (a, b) = (|a – b|i,γ |a – b|i), where γ ≥ 0 and i > 1 are constants. Define the mappings
� : χ → χ and � : χ3 → χ by

�(p) =
1
2

p and �(p, q, r) =

⎧
⎨

⎩

p–q–r
4 if p > q + r,

0 otherwise.

It is clear that the pair (B, ξ ) is a CbMS. If p ≤ q + r for all p, q, r ∈ χ , then � is an �θ -
contraction.

On the other hand, take p > q + r, q > q∗, r > r∗, and θ = 1
4i < 1. Then for all p, q, r ∈ χ , we

get

ξ
(��(p, q, r),��(p∗, q∗, r∗))

=
(∣∣��(p, q, r) – ��(p∗, q∗, r∗)∣∣i,γ

∣∣��(p, q, r) – ��(p∗, q∗, r∗)∣∣i)

�
(∣∣
∣∣
p – q – r

8
–

p∗ – q∗ – r∗

8

∣∣
∣∣

i

,γ
∣∣
∣∣
p – q – r

8
–

p∗ – q∗ – r∗

8

∣∣
∣∣

i)

=
1
8i

(∣∣(p – p∗) –
(
q – q∗) –

(
r – r∗)∣∣i,γ

∣
∣(p – p∗) –

(
q – q∗) –

(
r – r∗)∣∣i)

� 1
8i

(∣∣(p – p∗)∣∣i,γ
∣∣(p – p∗)∣∣i)

=
3
4i

(∣∣∣
∣
(p – p∗)

2

∣
∣∣
∣

i

,γ
∣
∣∣
∣
(p – p∗)

2

∣
∣∣
∣

i)

=
1
4i ξ
(�p,�p∗)

� θ max
{
ξ
(�p,�p∗), ξ

(�q,�q∗), ξ
(�r,�r∗)}.

Hence the mapping � is an �θ -contraction, and (0, 0, 0) is a TFP of �.

The following theorem is the first main result of this paper.

Theorem 2.3 Let the mapping � be an �θ -contraction (1) defined on CCbMS (χ , ξ ) with
the coefficient s ≥ 1 such that B is a solid cone with Q ∪ (–Q) = B and � : χ → χ is a
continuous and one-to-one. Then for all p, q, r, p∗, q∗, r∗ ∈ χ ,

(a) there exist υp◦ ,υq◦ ,υr◦ ∈ χ and iterative sequences �n(p◦, q◦, r◦) = pn,
�n(q◦, p◦, q◦) = qn, and �n(r◦, q◦, p◦) = rn such that

lim
n→∞��n(p◦, q◦, r◦) = υp◦ , lim

n→∞��n(q◦, p◦, q◦) = υq◦ , and

lim
n→∞��n(r◦, q◦, p◦) = υr◦ ;
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(b) �n(p◦, q◦, r◦), �n(q◦, p◦, q◦), and �n(r◦, q◦, p◦) have a convergent subsequence
whenever � is subsequentially convergent;

(c) there are unique σp◦ ,σq◦ ,σr◦ ∈ χ such that �(σp◦ ,σq◦ ,σr◦ ) = σp◦ ,
�(σq◦ ,σp◦ ,σq◦ ) = σq◦ , and �(σr◦ ,σq◦ ,σp◦ ) = σr◦ ;

(d) for all p◦, q◦, r◦ ∈ χ , the sequences �n(p◦, q◦, r◦), �n(q◦, p◦, q◦), and �n(r◦, q◦, p◦)
converge to σp◦ ,σq◦ ,σr◦ ∈ χ , respectively, provided that � is subsequentially
convergent.

Proof For arbitrary p◦, q◦, r◦ ∈ χ , we define three sequences as follows:

⎧
⎪⎪⎨

⎪⎪⎩

pn+1 = �(pn, qn, rn) = �n+1(p◦, q◦, r◦),

qn+1 = �(qn, pn, qn) = �n+1(q◦, p◦, q◦),

rn+1 = �(rn, qn, pn) = �n+1(r◦, q◦, p◦),

for all n ≥ 0.

Applying condition (1), we get

ξ (�pn,�pn+1)

= ξ
(��(pn–1, qn–1, rn–1),��(pn, qn, rn)

)

� θ max
{
ξ (�pn–1,�pn), ξ (�qn–1,�qn), ξ (�rn–1,�rn)

}
, (2)

ξ (�qn,�qn+1)

= ξ
(��(qn–1, pn–1, qn–1),��(qn, pn, qn)

)

� θ max
{
ξ (�qn–1,�qn), ξ (�pn–1,�pn)

}

� θ max
{
ξ (�qn–1,�qn), ξ (�pn–1,�pn), ξ (�rn–1,�rn)

}
, (3)

and

ξ (�rn,�rn+1)

= ξ
(��(rn–1, qn–1, pn–1),��(rn, qn, pn)

)

� θ max
{
ξ (�rn–1,�rn), ξ (�qn–1,�qn), ξ (�pn–1,�pn)

}
. (4)

Set ηn = max{ξ (�pn,�pn+1), ξ (�qn,�qn+1), ξ (�rn,�rn+1)}. By (2)–(4) we have

ηn � θ max
{
ξ (�pn–1,�pn), ξ (�qn–1,�qn), ξ (�rn–1,�rn)

}
= θηn–1w,

where θ ∈ [0, 1). Continuing this technique, we can write

ϑ ≤ ηn � θηn–1 � · · · � θnη◦.

If we appoint η◦ = ϑ , then the triple (p◦, q◦, r◦) is a tripled fixed point of �. Assuming that
η◦ > ϑ , for all m ≥ 1 and i ≥ 1, we get

ξ (�pm+i,�pm)

� s
[
ξ (�pm+i,�pm+i–1) + ξ (�pm+i–1,�pm)

]
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= sξ (�pm+i,�pm+i–1) + sξ (�pm+i–1,�pm)

� sξ (�pm+i,�pm+i–1) + s2[ξ (�pm+i–1,�pm+i–2) + ξ (�pm+i–2,�pm)
]

= sξ (�pm+i,�pm+i–1) + s2ξ (�pm+i–1,�pm+i–2) + s2ξ (�pm+i–2,�pm)

� sξ (�pm+i,�pm+i–1) + s2ξ (�pm+i–1,�pm+i–2) + s3ξ (�pm+i–2,�pm+i–3) + · · ·
+ si–1ξ (�pm+2,�pm+1) + si–1ξ (�pm+1,�pm). (5)

In a similar way, we get

ξ (�qm+i,�qm) � sξ (�qm+i,�qm+i–1) + s2ξ (�qm+i–1,�qm+i–2)

+ s3ξ (�qm+i–2,�qm+i–3) + · · · + si–1ξ (�qm+2,�qm+1)

+ si–1ξ (�qm+1,�qm) (6)

and

ξ (�rm+i,�rm) � sξ (�rm+i,�rm+i–1) + s2ξ (�rm+i–1,�rm+i–2)

+ s3ξ (�rm+i–2,�rm+i–3) + · · ·
+ si–1ξ (�rm+2,�rm+1) + si–1ξ (�rm+1,�rm). (7)

It follows from (5)–(7) that

max
{
ξ (�pm+i,�pm), ξ (�qm+i,�qm), ξ (�rm+i,�rm)

}

� s max
{
ξ (�pm+i,�pm+i–1), ξ (�qm+i,�qm+i–1), ξ (�rm+i,�rm+i–1)

}

+ s2 max
{
ξ (�pm+i–1,�pm+i–2), ξ (�qm+i–1,�qm+i–2), ξ (�rm+i–1,�rm+i–2)

}
+ · · ·

+ si–1 max
{
ξ (�pm+2,�pm+1), ξ (�qm+2,�qm+1), ξ (�rm+2,�rm+1)

}

+ si–1 max
{
ξ (�pm+1,�pm), ξ (�qm+1,�qm), ξ (�rm+1,�rm)

}

= sηm+i–1 + s2ηm+i–2 + s3ηm+i–3 + ...si–1ηm+1 + si–1ηm

�
(
sθm+i–1 + s2θm+i–2 + s3θm+i–3..si–1θm+1)η◦ + si–1θmη◦

=
sθm+i[(sθ–1)i–1 – 1]

s – θ
η◦ + si–1θmη◦

� siθm+i

s – θ
η◦ + si–1θmη◦.

Suppose that ϑ 	 � is given. Observe that siθm+1

s–θ η◦ + si–1θmη◦ → ϑ as m → ∞. By
Lemma 1.5 there is m◦ ∈ N such that

siθm+1

s – θ
η◦ + si–1θmη◦ 	 �

for each m > m◦. Hence

max
{
ξ (�pm+i,�pm), ξ (�qm+i,�qm), ξ (�rm+i,�rm)

}
� siθm◦+1

s – θ
η◦ + si–1θm◦η◦ 	 �
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for all m > m◦ and i. Hence Lemma 1.6 implies that {�pn}, {�qn}, and {�rn} are Cauchy
sequences in χ . Since (χ , ξ ) is complete, there exist υp◦ ,υq◦ ,υr◦ ∈ χ such that

lim
n→∞��n(p◦, q◦, r◦) = υp◦ , lim

n→∞��n(q◦, p◦, q◦) = υq◦ , and

lim
n→∞��n(r◦, q◦, p◦) = υr◦ .

(8)

Since �n(p◦, q◦, r◦), �n(q◦, p◦, q◦), and �n(r◦, q◦, p◦) have convergent subsequences when
� is subsequentially convergent, there are σp◦ ,σq◦ ,σr◦ ∈ χ and sequences {pnw}, {qnw}, and
{rnw} such that

�nw (p◦, q◦, r◦) → σp◦ , �nw (q◦, p◦, q◦) → σq◦ , and

�nw → σr◦ as w → ∞.
(9)

Since � is continuous, we have

lim
w→∞��nw (p◦, q◦, r◦) = �σp◦ , lim

w→∞��nw (q◦, p◦, q◦) = �σq◦ , and

lim
w→∞��nw (r◦, q◦, p◦) = �σr◦ .

(10)

Equations (8) and (10) yield

�σp◦ = υp◦ , �σq◦ = υq◦ , and �σr◦ = υr◦ . (11)

From another trend, using (10) and (11), we can write

ξ
(��(σp◦ ,σq◦ ,σr◦ ),�(σp◦ )

)
� s

⎛

⎝
ξ
(��(σp◦ ,σq◦ ,σr◦ ),��(pnw , qnw , rnw )

)

+ ξ
(��(pnw , qnw , rnw ),�(σp◦ )

)

⎞

⎠ . (12)

Letting w → ∞ in (12) and using (10), we have

ξ
(��(σp◦ ,σq◦ ,σr◦ ),�σp◦

)
� s
[
ξ
(��(σp◦ ,σq◦ ,σr◦ ),�(σp◦ )

)
+ ξ
(�(σp◦ ),�(σp◦ )

)]

= sξ
(��(σp◦ ,σq◦ ,σr◦ ),�(σp◦ )

)
,

which implies that (1 – s)ξ (��(σp◦ ,σq◦ ,σr◦ ),�σp◦ ) � ϑ . Since 1 – s �= ϑ , we have ξ (��(σp◦ ,
σq◦ ,σr◦ ),�σp◦ ) = ϑ , that is, ��(σp◦ ,σq◦ ,σr◦ ) = �σp◦ . Similarly, we obtain ��(σq◦ ,σp◦ ,σq◦ ) =
�σq◦ and ��(σr◦ ,σq◦ ,σp◦ ) = �σr◦ . Since � is one-to-one, we have �(σp◦ ,σq◦ ,σr◦ ) = σp◦ ,
�(σq◦ ,σp◦ ,σq◦ ) = σq◦ , and �(σr◦ ,σq◦ ,σp◦ ) = σr◦ . Therefore there is a tripled fixed point
(σp◦ ,σq◦ ,σr◦ ) of �.

Let us assume that there is another TFP of � of the form (ðp◦ ,ðq◦ ,ðr◦ ). Then

ξ (�σp◦ ,�ðp◦ )

= ξ
(��(σp◦ ,σq◦ ,σr◦ ),��(ðp◦ ,ðq◦ ,ðr◦ )

)

� θ max
{
ξ (�σp◦ ,�ðp◦ ), ξ (�σq◦ ,�ðq◦ ), ξ (�σr◦ ,�ðr◦ )

}
, (13)
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ξ (�σq◦ ,�ðq◦ ) = ξ
(��(σq◦ ,σp◦ ,σq◦ ),��(ðq◦ ,ðp◦ ,ðq◦ )

)

� θ max
{
ξ (�σq◦ ,�ðq◦ ), ξ (�σp◦ ,�ðp◦ )

}
, (14)

and

ξ (�σr◦ ,�ðr◦ )

= ξ
(��(σr◦ ,σq◦ ,σp◦ ),��(ðr◦ ,ðq◦ ,ðp◦ )

)

� θ max
{
ξ (�σr◦ ,�ðr◦ ), ξ (�σq◦ ,�ðq◦ ), ξ (�σp◦ ,�ðp◦ )

}
. (15)

It follows by (13)–(15) that

max
{
ξ (�σp◦ ,�ðp◦ ), ξ (�σq◦ ,�ðq◦ ), ξ (�σr◦ ,�ðr◦ )

}

� θ max
{
ξ (�σp◦ ,�ðp◦ ), ξ (�σq◦ ,�ðq◦ ), ξ (�σr◦ ,�ðr◦ )

}
.

By Lemma 1.7 we get

ξ (�σp◦ ,�ðp◦ ) = ξ (�σq◦ ,�ðq◦ ) = ξ (�σr◦ ,�ðr◦ ) = ϑ .

Hence �σp◦ = �ðp◦ , �σq◦ = �ðq◦ , and �σr◦ = �ðr◦ . Since � is one-to-one, we can write
(ðp◦ ,ðq◦ ,ðr◦ ) = (σp◦ ,σq◦ ,σr◦ ). Finally, if � is subsequentially convergent, then substituting
nw with n into (9), we can get

�n(p◦, q◦, r◦) → σp◦ , �n(q◦, p◦, q◦) → σq◦ , and �n → σr◦ as n → ∞.

This ends the proof. �

Example 2.4 Let χ = [0, 1], B = R
2, and i > 1. Specify Q = {(p, q) ∈ B : p, q ≥ 0}. Realize the

function ξ : χ2 → B as

ξ (℘, ∂) =
(|℘ – ∂|i, |℘ – ∂|i) for ℘, ∂ ∈ [0, 1].

Assuming that � : χ → χ and � : χ3 → χ are defined as

�(p) =
1
6

p and �(p, q, r) =
p
8

–
q + r
16

for p, q, r ∈ χ .

It is obvious that (B, ξ ) is a CCbMS and � is continuous and one-to-one. To fulfill (11), we
take θ = 1

8i , i > 1. Then for all p, q, r ∈ χ , we have

ξ
(��(p, q, r),��(p∗, q∗, r∗))

=
(∣∣��(p, q, r) – ��(p∗, q∗, r∗)∣∣i,

∣∣��(p, q, r) – ��(p∗, q∗, r∗)∣∣i)

=
1
6i

⎛

⎜
⎜⎜
⎝

∣∣
∣∣

(
p
8

–
q + r
16

)
–
(

p∗

8
–

q∗ + r∗

16

)∣∣
∣∣

i

,

∣∣
∣∣

(
p
8

–
q + r
16

)
–
(

p∗

8
–

q∗ + r∗

16

)∣∣
∣∣

i

⎞

⎟
⎟⎟
⎠
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� 1
(48)i

(∣∣p – p∗∣∣i,
∣∣p – p∗∣∣i)

=
1
8i

(∣∣∣∣
p – p∗

6

∣
∣∣∣

i

,
∣
∣∣∣
p – p∗

6

∣
∣∣∣

i)

=
1
8i ξ
(�p,�p∗)

� θ max
{
ξ
(�p,�p∗), ξ

(�q,�q∗), ξ
(�r,�r∗)}.

Therefore � is an �θ -contraction. Now we verify the remaining conditions as follows:
(a) let ( 1

6 , 1
6 , 1

6 ) ∈ χ , and consider the iterative sequences �n(p◦, q◦, r◦) = { 1
n }n∈N = pn,

�n(q◦, p◦, q◦) = { n2

n+7 }n∈N = qn, and �n(r◦, q◦, p◦) = { 1
en }n∈N = rn. Then

lim
n→∞��n(p◦, q◦, r◦) = �

(
lim

n→∞�n(p◦, q◦, r◦)
)

= �
(

lim
n→∞

1
n

)
= �(0) =

1
6

,

lim
n→∞��n(q◦, p◦, q◦) = �

(
lim

n→∞
n2

n + 7

)
= �(0) =

1
6

,

lim
n→∞��n(r◦, q◦, p◦) = �

(
lim

n→∞
1
en

)
= �(0) =

1
6

;

(b) intuitively achieved;
(c) there is a unique point (0, 0, 0) ∈ χ , as required;
(d) if � is subsequentially convergent, then the sequences �n(p◦, q◦, r◦), �n(q◦, p◦, q◦),

and �n(r◦, q◦, p◦) converge to (0, 0, 0) ∈ χ .
Hence all the conditions of Theorem 2.3 are fulfilled, and (0, 0, 0) is a unique TFP of the

mapping �.

Theorem 2.5 Suppose that (χ , ξ ) is a CCbMS with coefficient s ≥ 1, B is a solid cone with
Q∪ (–Q) = B, � : χ → χ is a continuous one-to-one mapping, and � : χ3 → χ is a mapping
such that

ξ
(��(p, q, r),��(p∗, q∗, r∗))� θ max

{
ξ
(��(p, q, r),�p

)
, ξ
(��(p∗, q∗, r∗),�p∗)}

for all p, q, r, p∗, q∗, r∗ ∈ χ , where θ ∈ [0, 1). Then the conclusion of Theorem 2.3 is achieved.

Proof The proof immediately follows from Theorem 2.3. �

Theorem 2.6 Suppose that (χ , ξ ) is a CCbMS with coefficient s ≥ 1, B is a solid cone with
Q∪ (–Q) = B, � : χ → χ is a continuous one-to-one mapping, and � : χ3 → χ is a mapping
such that

ξ
(��(p, q, r),��(p∗, q∗, r∗))� θ max

{
ξ
(��(p, q, r),�p∗), ξ

(��(p∗, q∗, r∗),�p
)}

for all p, q, r, p∗, q∗, r∗ ∈ χ , where θ ∈ [0, 1). Then the conclusion of Theorem 2.3 is achieved.

Proof The proof immediately follows from Theorem 2.3. �

The following corollary contains some contractive terms inspired by Theorem 2.3.



Hammad and De La Sen Advances in Difference Equations        (2020) 2020:567 Page 10 of 19

Corollary 2.7 Suppose that (χ , ξ ) is a CCbMS with coefficient s ≥ 1, B is a solid cone with
Q∪ (–Q) = B, � : χ → χ is a continuous one-to-one mapping, and � : χ3 → χ is a mapping
such that one of the following conditions holds:

(♠1)

ξ
(��(p, q, r),��(p∗, q∗, r∗))� θξ

(�p,�p∗),

(♠2)

ξ
(��(p, q, r),��(p∗, q∗, r∗))

� θ max

⎧
⎪⎨

⎪⎩

ξ
(�p,�p∗), ξ

(�q,�q∗), ξ
(�r,�r∗),

ξ (�p,�p∗) + ξ (�q,�q∗) + ξ (�r,�r∗)
3

⎫
⎪⎬

⎪⎭
,

(♠3)

ξ
(��(p, q, r),��(p∗, q∗, r∗))

� θ max

⎧
⎪⎨

⎪⎩

ξ
(��(p, q, r),�p

)
, ξ
(��(p∗, q∗, r∗),�p

)
,

ξ (��(p, q, r),�p∗) + ξ (��(p∗, q∗, r∗),�p)
2

⎫
⎪⎬

⎪⎭
,

(♠4)

ξ
(��(p, q, r),��(p∗, q∗, r∗))

� θ max

⎧
⎪⎨

⎪⎩

ξ
(��(p, q, r),�p∗), ξ

(��(p∗, q∗, r∗),�p
)
,

ξ (��(p, q, r),�p∗) + ξ (��(p∗, q∗, r∗),�p)
2

⎫
⎪⎬

⎪⎭

for all p, q, r, p∗, q∗, r∗ ∈ χ , where θ ∈ [0, 1). Then the conclusion of Theorem 2.3 is achieved.

Now we can discuss another generalization of our results.

Lemma 2.8 Let (χ , ξ ) be a CCbMS with coefficient s ≥ 1. Then we have the following two
properties:

(♥1) (χ × χ × χ , ξ1) is a CCbMS equipped with

ξ1
(
(p, q, r),

(
p∗, q∗, r∗)) = max

{
ξ
(
p, p∗), ξ

(
q, q∗), ξ

(
r, r∗)};

(♥2) If the mapping �� : χ3 → χ3 defined by the relation ��(p, q, r) = (�(p, q, r),
�(q, p, q),�(r, q, p)) has a fixed point in χ3, then the mapping � : χ3 → χ has a
tripled fixed point, and the opposite is generally true.

Proof (♥1) Hypotheses (cb1) and (cb1) of Definition 1.3 are fulfilled. Just check the triangle
inequality. Since (χ , ξ ) is a CbMS, we have

ξ1
(
(p, q, r),

(
p∗, q∗, r∗))

= max
{
ξ
(
p, p∗), ξ

(
q, q∗), ξ

(
r, r∗)}
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� max
{

s
(
ξ (p,℘) + ξ

(
℘, p∗)), s

(
ξ (q, ∂) + ξ

(
∂ , q∗)), s

(
ξ (r,�) + ξ

(
�, r∗))}

� s
(
max

{
ξ (p,℘), ξ (q, ∂), ξ (r,�)

}
+ max

{
ξ
(
℘, p∗), ξ

(
∂ , q∗), ξ

(
�, r∗)})

= s
(
ξ1
(
(p, q, r), (℘, ∂ ,�)

)
+ ξ1

(
(℘, ∂ ,�),

(
p∗, q∗, r∗)))

for all (p, q, r), (p∗, q∗, r∗), (℘, ∂ ,�) ∈ χ3. Again, the completeness of (χ , ξ ) leads to the com-
pleteness of (χ3, ξ1). Therefore (χ3, ξ1) is a CCbMS.

(♥2) Let there is a tripled fixed point (p, q, r) of �, that is, �(p, q, r) = p, �(q, p, q) = q, and
�(r, q, p) = r. Hence

��(p, q, r) =
(�(p, q, r),�(q, p, q),�(r, q, p)

)
= (p, q, r),

that is, a triple (p, q, r) is a fixed point of ��. Vice versa, Let (p, q, r) ∈ χ3 be a fixed point of
the mapping ��. Then ��(p, q, r) = (p, q, r), which yields, �(p, q, r) = p, �(q, p, q) = q, and
�(r, q, p) = r. �

Theorem 2.9 Assume that (χ , ξ ) is a CCbMS with coefficient s ≥ 1, B is a total ordering
solid cone, � : χ → χ is a continuous one-to-one mapping, and � : χ3 → χ is a mapping
such that the following hypothesis are satisfied:

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ
(��(p, q, r),��(p∗, q∗, r∗)),

ξ
(��(q, p, q),��(q∗, p∗, q∗)),

ξ
(��(r, q, p),��(r∗, q∗, p∗))

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

� θ max
{
ξ
(�p,�p∗), ξ

(�q,�q∗), ξ
(�r,�r∗)} (16)

for all p, q, r, p∗, q∗, r∗ ∈ χ , where θ ∈ [0, 1). Then the conclusion of Theorem 2.3 is achieved.

Proof We begin by defining the mapping ϒ¡ : χ3 → χ3 as ϒ¡(p, q, r) = (�p,�q,�r). Note
that ϒ¡ is one-to-one and continuous. Allocate ℵ = (p, q, r) and ג = (p∗, q∗, r∗) ∈ χ3 and
apply the hypotheses of Lemma 2.8. Then condition (16) reduces to

ξ1(ϒ¡��ℵ,ϒ¡ג��) � θξ1(ϒ¡ℵ,ϒ¡ג).

So, the proof is finished by condition (♠1) of Corollary 2.7. �

Example 2.10 Let χ = [0, 1], and let B = C1
R

[0, 1] be a family of real-valued functions on
χ with continuous derivatives on χ . Define the distance ξ (p, q) = |p – q|ieκ , where i ≥ 1 is
a constant, and eκ ∈ B on Q = {ψ ∈ B : ψ ≥ 0}. Hence (χ , ξ ) is a CCbMS with coefficient
s = 2i. Define two mappings � : χ → χ and � : χ3 → χ by

�(p) =
1
3

p and �(p, q, r) =
p + q – r

7
, ∀p, q, r ∈ χ .

It is easy to write

ξ
(��(p, q, r),��(p∗, q∗, r∗))

=
∣∣��(p, q, r) – ��(p∗, q∗, r∗)∣∣ieκ
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=
∣
∣∣
∣
p + q – r

21
–

p∗ + q∗ – r∗

21

∣
∣∣
∣

i

eκ

=
eκ

(21)i

(∣∣(p – p∗) +
(
q – q∗) –

(
r – r∗)∣∣i)

� eκ

(21)i

{∣∣p – p∗∣∣i +
∣∣q – q∗∣∣i +

∣∣(r – r∗)∣∣i}

� 3
7i max

{∣∣∣
∣
p – p∗

3

∣
∣∣
∣

i

eκ ,
∣
∣∣
∣
q – q∗

3

∣
∣∣
∣

i

eκ ,
∣
∣∣
∣
r – r∗

3

∣
∣∣
∣

i

eκ
}

= θ max
{
ξ
(�p,�p∗), ξ

(�q,�q∗), ξ
(�r,�r∗)}, (17)

ξ
(��(q, p, q),��(q∗, p∗, q∗))

=
∣∣
∣∣
q + p – q

21
–

q∗ + p∗ – q∗

21

∣∣
∣∣

i

eκ

=
eκ

(21)i

(∣∣(p – p∗)∣∣i)

� 1
(7)i

{∣∣
∣∣
p – p∗

3

∣∣
∣∣

i

eκ
}

� 3
7i ξ
(�p,�p∗)

� θ max
{
ξ
(�p,�p∗), ξ

(�q,�q∗), ξ
(�r,�r∗)}. (18)

Similarly, we have

ξ
(��(r, q, p),��(r∗, q∗, p∗))� θ max

{
ξ
(�p,�p∗), ξ

(�q,�q∗), ξ
(�r,�r∗)}. (19)

Therefore relations (17)–(19) demonstrate verification of stipulation (16) for all p, q, r,
p∗, q∗, r∗ ∈ χ and θ = 3

7i . As in Example 2.4, we find that the remaining conditions of The-
orem 2.3 are fulfilled. Thus a triple (0, 0, 0) is a unique tripled fixed point of �.

3 Solve a tripled system of integral equations
In this part, we use the theoretical results obtained in the previous section to clarify the
existence and uniqueness of the solution for the following system:

p(ג) = ℵ(ג) +
∫ ℘

0
(�,ג)£

[
�1
(
�, p(�)

)
+ �2

(
�, q(�)

)
+ �3

(
�, r(�)

)]
d�,

q(ג) = ℵ(ג) +
∫ ℘

0
(�,ג)£

[
�1
(
�, q(�)

)
+ �2

(
�, p(�)

)
+ �3

(
�, q(�)

)]
d�,

r(ג) = ℵ(ג) +
∫ ℘

0
(�,ג)£

[
�1
(
�, r(�)

)
+ �2

(
�, q(�)

)
+ �3

(
�, p(�)

)]
d�, (20)

for all ג ∈ [0,℘]. Postulate the following assumptions:
�1 ℵ : [0,℘] →R and £ : [0,℘] ×R→R are continuous;
�2 �l : [0,℘] ×R →R (l = 1, 2, 3) are continuous;
�3 there is a constant � > 0 such that for all p, q ∈ R,

0 � �1(�, p) – �1(�, q) � �(p – q),
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0 � �2(�, p) – �2(�, q) � �(p – q),

0 � �3(�, p) – �3(�, q) � �(p – q);

�4

�2 max
[℘,0]∋ג

(∫ ℘

0
(�,ג)£ d�

)2

� 1
21

.

Let χ = C([0,℘],R) be the set of all continuous real-valued functions on [0,℘] taking
values in R, and let Q = {π ∈ B : π ≥ 0}. Set ξ : χ × χ → B as ξ (o, O) = eג max[℘,0]∋ג |o(ג) –
O(ג)|2. It is obvious that (χ , ξ ) is a CCbMS.

Our main theorem is the following:

Theorem 3.1 Under hypotheses (�1)–(�4), problem (20) has a solution in χ3, where χ =
C([0,℘],R).

Proof Define the operators � : χ3 → χ and � : χ → χ by

�(ζ1, ζ2, ζ3)(ג) = ℵ(ג) +
∫ ℘

0
(�,ג)£

[
p1
(
�, ζ1(�)

)
+ p2

(
�, ζ2(�)

)
+ p3

(
�, ζ3(�)

)]
d�,

and �(ζ ) = ζ for all ג ∈ [0,℘] and ζ1, ζ2, ζ3 ∈ χ . The triple (ζ1, ζ2, ζ3) is a solution of system
(20) if and only if (ζ1, ζ2, ζ3) is a tripled fixed point of �. The existence of this triple follows
from Theorem 2.3, since � is the identity mapping. Therefore it is necessary to fulfill the
remaining conditions of Theorem 2.3. For all ζ1, ζ2, ζ3 ∈ χ and ג ∈ [0,℘], setting θ = 3

7 , we
get

ξ
(�(ζ1, ζ2, ζ3),�(ζ ∗

1 , ζ ∗
2 , ζ ∗

3
))

= eג max
[℘,0]∋ג

∣∣�(ζ1, ζ2, ζ3)(ג) – �(ζ ∗
1 , ζ ∗

2 , ζ ∗
3
)
(ג)
∣∣2

= eג max
[℘,0]∋ג

∣
∣∣
∣

∫ ℘

0
(�,ג)£

[
p1
(
�, ζ1(�)

)
+ p2

(
�, ζ2(�)

)
+ p3

(
�, ζ3(�)

)]
d�

–
∫ ℘

0
(�,ג)£

[
p1
(
�, ζ ∗

1 (�)
)

+ p2
(
�, ζ ∗

2 (�)
)

+ p3
(
�, ζ ∗

3 (�)
)]

d�
∣
∣∣
∣

2

= eג max
[℘,0]∋ג

∣∣
∣∣∣
∣∣
∣∣

∫ ℘

0
(�,ג)£

⎡

⎢⎢
⎢
⎣

(
p1
(
�, ζ1(�)

)
– p1

(
�, ζ ∗

1 (�)
))

+
(
p2
(
�, ζ2(�)

)
– p2

(
�, ζ ∗

2 (�)
))

+
(
p3
(
�, ζ3(�)

)
– p1

(
�, ζ ∗

3 (�)
))

⎤

⎥⎥
⎥
⎦

d�

∣∣
∣∣∣
∣∣
∣∣

2

� eג max
[℘,0]∋ג

∣
∣∣∣

∫ ℘

0
(�,ג)£

⎡

⎣
� (ζ1(�) – ζ ∗

1 (�)
)

+ �(ζ2(�) – ζ ∗
2 (�)

)

+ �(ζ3(�) – ζ ∗
3 (�)

)

⎤

⎦ d�
∣
∣∣∣

2

� eג
(
� max

[℘,0]∋ג

∫ ℘

0
(�,ג)£ d�

)2∣∣[(ζ1(ג) – ζ ∗
1 (ג)

)
+
(
ζ2(ג) – ζ ∗

2 (ג)
)

+
(
ζ3(ג) – ζ ∗

3 (ג)
)]∣∣2

� eג

21

∣∣∣3 max
[℘,0]∋ג

{(
ζ1(ג) – ζ ∗

1 (ג)
)
,
(
ζ2(ג) – ζ ∗

2 (ג)
)
,
(
ζ3(ג) – ζ ∗

3 (ג)
)}∣∣∣

2
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=
3eג

7
max
[℘,0]∋ג

{∣∣ζ1(ג) – ζ ∗
1 (ג)

∣
∣2,
∣
∣ζ2(ג) – ζ ∗

2 (ג)
∣
∣2,
∣
∣ζ3(ג) – ζ ∗

3 (ג)
∣
∣2}

� 3
7

max
{

eג max
[℘,0]∋ג

∣∣ζ1(ג) – ζ ∗
1 (ג)

∣∣2, eג max
[℘,0]∋ג

∣∣ζ2(ג) – ζ ∗
2 (ג)

∣∣2, max
[℘,0]∋ג

∣∣ζ3(ג) – ζ ∗
3 (ג)

∣∣2
}

� θ max
{
ξ
(
ζ1, ζ ∗

1
)
, ξ
(
ζ2, ζ ∗

2
)
, ξ
(
ζ3, ζ ∗

3
)}

.

This means that condition (1) of Theorem 2.3 is fulfilled. Thus � has a tripled fixed point
(ζ1, ζ2, ζ3) ∈ C([0,℘],R) × C([0,℘],R) × C([0,℘],R), which, at the same time, is a solution
to problem (20). �

4 A stationary distribution of the Markov process
Suppose that Rn

+ = {(δ1, δ2, . . . , δn) = δ : δ� ≥ 0,�≥ 1} and �3
n–1 = {σ = (p, q, r) ∈ R

n
+ ×R

n
+ ×

R
n
+ :
∑n

�=1 σ� =
∑n

�=1(p� + q� + r�) = 1} refer to the 3(n – 1)-dimensional unit simplex and
σ ∈�3

n–1 is considered as a possibility over 3n possible statuses. Here the Markov process
is a stochastic process such that 3n statuses are realized in each period ג = 1, 2, . . . with
probability contingent on the current achieved status. Assume that a�κ refer to the prob-
ability contingent that status � is achieved in the subsequent period beginning in status κ .
Hence in periods ג and ג + 1 the prior probability vector σ ג and the posterior probability
σ 1+ג are given by σ 1+ג

� =
∑

� a�κσ ג

κ for each �≥ 1. To write this in matrix form, we consider
σ ג as a column vector, and then σ 1+ג = �σ .ג Note that a�κ ≥ 0 and

∑n
�=1 a�κ = 1, which

is required for conditional probability. The vector σ ג is called a stationary distribution of
the Markov process at any period if σ ג = σ .1+ג This mean that the problem of finding a
stationary distribution is equivalent to the fixed point problem �σ ג = σ .ג

Suppose that δ� = minκ a�κ and define δ =
∑n

�=1 δ�.
Before presenting our main theorem of this section, we need the following inequality.

Minkowski’s Inequality (Theorem 6, [42], p. 25) For pi, qi ≥ 0 and α > 1, we have

[ n∑

i=1

(pi + qi)α
] 1

α

≤
[ n∑

i=1

pαi

] 1
α

+

[ n∑

i=1

qαi

] 1
α

.

Theorem 4.1 There exists a unique stationary distribution for the Markov process when-
ever a�κ ≥ 0.

Proof Let ξ : �3
n–1 ×�3

n–1 →R
2 be defined by

ξ (�,�) = ξ
(
(p, q, r),

(
p∗, q∗, r∗))

=

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

{ n∑

�=1

(∣∣p� – p∗
�

∣∣ +
∣∣q� – q∗

�

∣∣ +
∣∣r� – r∗

�

∣∣)α
} 1

α

,

{ n∑

�=1

(∣∣p� – p∗
�

∣∣ +
∣∣q� – q∗

�

∣∣ +
∣∣r� – r∗

�

∣∣)α
} 1

α

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

for all �,� ∈�3
n–1, with α ≥ 1.
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It is obvious that ξ (�,�) ≥ (0, 0) for all �,� ∈ �3
n–1, and if ξ (�,�) = (0, 0), then this

leads to ({∑n
�=1(|p� –p∗

� |+ |q� –q∗
� |+ |r� – r∗

� |)α}
1
α , {∑n

�=1(|p� –p∗
� |+ |q� –q∗

� |+ |r� – r∗
� |)α}

1
α ) =

(0, 0), and thus |p� – p∗
� | + |q� – q∗

� | + |r� – r∗
� | = 0 for all �, which leads to p = p∗, q = q∗, and

r = r∗, that is, � = � . On the other hand, if � = � , then p� = p∗
� , q� = q∗

� , and r� = r∗
� for all

�, and thus |p� – p∗
� | = |q� – q∗

� | = |r� – r∗
� | = 0, which yields ({∑n

�=1(|p� – p∗
� | + |q� – q∗

� | +
|r� – r∗

� |)α}
1
α , {∑n

�=1(|p� – p∗
� | + |q� – q∗

� | + |r� – r∗
� |)α}

1
α ) = 0 ⇒ ξ (�,�) = 0.

We also have

ξ (�,�) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

{ n∑

�=1

(∣∣p� – p∗
�

∣∣ +
∣∣q� – q∗

�

∣∣ +
∣∣r� – r∗

�

∣∣)α
} 1

α

,

{ n∑

�=1

(∣∣p� – p∗
�

∣∣ +
∣∣q� – q∗

�

∣∣ +
∣∣r� – r∗

�

∣∣)α
} 1

α

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

{ n∑

�=1

(∣∣p∗
� – p�

∣∣ +
∣∣q∗

� – q�
∣∣ +
∣∣r∗
� – r�

∣∣)α
} 1

α

,

{ n∑

�=1

(∣∣p∗
� – p�

∣∣ +
∣∣q∗

� – q�
∣∣ +
∣∣r∗
� – r�

∣∣)α
} 1

α

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

= ξ (� ,�).

Now we can write

ξ (�,�)

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

{ n∑

�=1

(|p� – τ�| + |q� – η�| + |r� –ω�|
)α
} 1

α

,

{ n∑

�=1

(|p� – τ�| + |q� – η�| + |r� –ω�|
)α
} 1

α

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

⎧
⎨

⎩

n∑

�=1

⎛

⎝

∣
∣(p� – p∗

�

)
+
(
p∗
� – τ�

)∣∣ +
∣
∣(q� – q∗

�

)
+
(
q∗
� – η�

)∣∣

+
∣
∣(r� – r∗

�

)
+
(
r∗
� –ω�

)∣∣

⎞

⎠

α⎫
⎬

⎭

1
α

,

⎧
⎨

⎩

n∑

�=1

⎛

⎝

∣
∣(p� – p∗

�

)
+
(
p∗
� – τ�

)∣∣ +
∣
∣(q� – q∗

�

)
+
(
q∗
� – η�

)∣∣

+
∣
∣(r� – r∗

�

)
+
(
r∗
� –ω�

)∣∣

⎞

⎠

α⎫
⎬

⎭

1
α

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

�

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

⎧
⎪⎪⎨

⎪⎪⎩

n∑

�=1

(∣∣(p� – p∗
�

)∣∣ +
∣∣(p∗

� – τ�
)∣∣ +

∣∣(q� – q∗
�

)∣∣ +
∣∣(q∗

� – η�
)∣∣

+
∣∣(r� – r∗

�

)∣∣ +
∣∣(r∗

� –ω�

)∣∣)α

⎫
⎪⎪⎬

⎪⎪⎭

1
α

,

⎧
⎪⎪⎨

⎪⎪⎩

n∑

�=1

(∣∣(p� – p∗
�

)∣∣ +
∣∣(p∗

� – τ�
)∣∣ +

∣∣(q� – q∗
�

)∣∣ +
∣∣(q∗

� – η�
)∣∣

+
∣∣(r� – r∗

�

)∣∣ +
∣∣(r∗

� –ω�

)∣∣)α

⎫
⎪⎪⎬

⎪⎪⎭

1
α

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠
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� 2α

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

{ n∑

�=1

(∣∣(p� – p∗
�

)∣∣ +
∣
∣(q� – q∗

�

)∣∣ +
∣
∣(r� – r∗

�

)∣∣)α
} 1

α

+

{ n∑

�=1

(∣∣(p∗
� – τ�

)∣∣ +
∣
∣(q∗

� – η�
)∣∣ +

∣
∣(r∗

� –ω�

)∣∣)α
} 1

α

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

,

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

{ n∑

�=1

(∣∣(p� – p∗
�

)∣∣ +
∣
∣(q� – q∗

�

)∣∣ +
∣
∣(r� – r∗

�

)∣∣)α
} 1

α

+

{ n∑

�=1

(∣∣(p∗
� – τ�

)∣∣ +
∣
∣(q∗

� – η�
)∣∣ +

∣
∣(r∗

� –ω�

)∣∣)α
} 1

α

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

= 2α

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

{ n∑

�=1

(∣∣(p� – p∗
�

)∣∣ +
∣
∣(q� – q∗

�

)∣∣ +
∣
∣(r� – r∗

�

)∣∣)α
} 1

α

,

{ n∑

�=1

(∣∣(p� – p∗
�

)∣∣ +
∣
∣(q� – q∗

�

)∣∣ +
∣
∣(r� – r∗

�

)∣∣)α
} 1

α

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

+

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

{ n∑

�=1

(∣∣(p∗
� – τ�

)∣∣ +
∣∣(q∗

� – η�
)∣∣ +

∣∣(r∗
� –ω�

)∣∣)α
} 1

α

,

{ n∑

�=1

(∣∣(p∗
� – τ�

)∣∣ +
∣∣(q∗

� – η�
)∣∣ +

∣∣(r∗
� –ω�

)∣∣)α
} 1

α

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= s
(
ξ (�,�) + ξ (� ,�)

)

for � = (τ ,η,ω) ∈�3
n–1. Thus (�3

n–1, ξ ) is a CbMS with s = 2α and Q = {(δ1, δ2, . . . , δn) : δ� ≥
0,�≥ 1}.

Let � = �σ for all � ∈�3
n–1. Therefore each ρ� =

∑n
κ=1 a�κσκ ≥ 0. Moreover, since each

∑n
κ=1 a�κ = 1, we get

n∑

�=1

ρ� =
n∑

�=1

n∑

κ=1

a�κσκ =
n∑

κ=1

a�κ
n∑

κ=1

(pκ + qκ + rκ ) =
n∑

κ=1

((pκ + qκ + rκ ) = 1,

which shows that � ∈�3
n–1. Thus we can write � : �3

n–1 →�3
n–1. Now we will prove that

� is a contraction.
Let �� refer to the �th row of �. So for any (p, q, r), (p∗, q∗, r∗) ∈�3

n–1 and all α ≥ 1, we
get (note that

∑n
κ=1(pκ + qκ + rκ ) = 1)

ξ
(
�(p, q, r),�

(
p∗, q∗, r∗))

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

n∑

�=1

(∣∣∣∣
∣

n∑

κ=1

a�κ (pκ + qκ + rκ ) – a�κ
(
p∗
κ + q∗

κ + r∗
κ

)
∣
∣∣∣
∣

α) 1
α

,

n∑

�=1

(∣∣∣
∣∣

n∑

κ=1

a�κ (pκ + qκ + rκ ) – a�κ
(
p∗
κ + q∗

κ + r∗
κ

)
∣
∣∣
∣∣

α) 1
α

⎞

⎟⎟
⎟⎟
⎟⎟
⎠
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=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

n∑

�=1

⎛

⎜⎜
⎝

∣∣∣
∣∣
∣∣
∣

n∑

κ=1

(a�κ – δ�)
[
(pκ + qκ + rκ ) –

(
p∗
κ + q∗

κ + r∗
κ

)]

+ δ�
[
(pκ + qκ + rκ ) –

(
p∗
κ + q∗

κ + r∗
κ

)]

∣∣∣
∣∣
∣∣
∣

α⎞

⎟⎟
⎠

1
α

,

n∑

�=1

⎛

⎜
⎜
⎝

∣
∣∣∣
∣∣
∣∣

n∑

κ=1

(a�κ – δ�)
[
(pκ + qκ + rκ ) –

(
p∗
κ + q∗

κ + r∗
κ

)]

+ δ�
[
(pκ + qκ + rκ ) –

(
p∗
κ + q∗

κ + r∗
κ

)]

∣
∣∣∣
∣∣
∣∣

α⎞

⎟
⎟
⎠

1
α

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

�

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

n∑

�=1

(∣∣∣
∣∣

n∑

κ=1

(a�κ – δ�)
[
(pκ + qκ + rκ ) –

(
p∗
κ + q∗

κ + r∗
κ

)]
∣
∣∣
∣∣

α) 1
α

+

(∣∣∣
∣∣

n∑

κ=1

δ�
[
(pκ + qκ + rκ ) –

(
p∗
κ + q∗

κ + r∗
κ

)]
∣
∣∣
∣∣

α) 1
α

,

n∑

�=1

(∣∣∣
∣∣

n∑

κ=1

(a�κ – δ�)
[
(pκ + qκ + rκ ) –

(
p∗
κ + q∗

κ + r∗
κ

)]
∣
∣∣
∣∣

α) 1
α

+

(∣∣∣
∣∣

n∑

κ=1

δ�
[
(pκ + qκ + rκ ) –

(
p∗
κ + q∗

κ + r∗
κ

)]
∣
∣∣
∣∣

α) 1
α

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

�

⎛

⎜
⎜⎜
⎜⎜⎜
⎝

( n∑

�=1

n∑

κ=1

(|a�κ – δ�|
)α(∣∣pκ – p∗

κ

∣∣ +
∣∣qκ – q∗

κ

∣∣ +
∣∣rκ – r∗

κ

∣∣)α
) 1

α

,

( n∑

�=1

n∑

κ=1

(|a�κ – δ�|
)α(∣∣pκ – p∗

κ

∣∣ +
∣∣qκ – q∗

κ

∣∣ +
∣∣rκ – r∗

κ

∣∣)α
) 1

α

⎞

⎟
⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

( n∑

κ=1

(∣∣pκ – p∗
κ

∣∣ +
∣∣qκ – q∗

κ

∣∣ +
∣∣rκ – r∗

κ

∣∣)α
n∑

�=1

(|a�κ – δ�|
)α
) 1

α

,

( n∑

κ=1

(∣∣pκ – p∗
κ

∣∣ +
∣∣qκ – q∗

κ

∣∣ +
∣∣rκ – r∗

κ

∣∣)α
n∑

�=1

(|a�κ – δ�|
)α
) 1

α

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

= (1 – δ)

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

( n∑

κ=1

(∣∣pκ – p∗
κ

∣∣ +
∣∣qκ – q∗

κ

∣∣ +
∣∣rκ – r∗

κ

∣∣)α
) 1

α

,

( n∑

κ=1

(∣∣pκ – p∗
κ

∣∣ +
∣∣qκ – q∗

κ

∣∣ +
∣∣rκ – r∗

κ

∣∣)α
) 1

α

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

= (1 – δ)ξ
(
(p, q, r),

(
p∗, q∗, r∗)),

which proves that � is a contraction. Hence if the mapping � = Iχ is the identity mapping
in Theorem 2.3, then the Markov process has a unique stationary distribution, and the
sequence {�nσ †} converges to this distribution for any σ † ∈�3

n–1. �
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