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Abstract
In this paper, we shall solve a time-fractional nonlinear Schrödinger equation by using
the quintic non-polynomial spline and the L1 formula. The unconditional stability,
unique solvability and convergence of our numerical scheme are proved by the
Fourier method. It is shown that our method is sixth order accurate in the spatial
dimension and (2 – γ )th order accurate in the temporal dimension, where γ is the
fractional order. The efficiency of the proposed numerical scheme is further illustrated
by numerical experiments, meanwhile the simulation results indicate better
performance over previous work in the literature.
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1 Introduction
In the past few decades, fractional differential equations have gained much importance
due to their usefulness in modeling phenomena in various areas such as physics, engineer-
ing, finance, biology and chemistry [12, 33, 46, 51]. To cite some recent developments: in
2019 Jajarmi and Baleanu [26] studied a general form of fractional optimal control prob-
lems involving fractional derivative with singular or non-singular kernel; Jothimani et al.
[30] discussed an exact controllability of nondensely defined nonlinear fractional inte-
grodifferential equations with the Hille–Yosida operator; Valliammal et al. [61] studied
the existence of mild solutions of fractional-order neutral differential system with state-
dependent delay in Banach space. In 2020 Jajarmi et al. [28] investigated a fractional ver-
sion of SIRS model for the HRSV disease; Baleanu et al. [2] proposed a new fractional
model for the human liver involving the Caputo–Fabrizio fractional derivative; Baleanu
et al. [3] studied the fractional features of a harmonic oscillator with position-dependent
mass; Sajjadi et al. [54] discussed the chaos control and synchronization of a hyperchaotic
model in both the frameworks of classical and of fractional calculus; Jajarmi and Baleanu
[27] proposed a new iterative method to generate the approximate solution of nonlinear
fractional boundary value problems in the form of uniformly convergent series; Shiri et al.
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[56] employed discretized collocation methods for a class of tempered fractional differen-
tial equations with terminal value problems; Tuan et al. [60] tackled the problem of finding
the solution of a multi-dimensional time-fractional reaction-diffusion equation with non-
linear source from the final value data; Li et al. [44] proposed a new approximation for the
generalized Caputo fractional derivative based on WSGL formula and solved a general-
ized fractional sub-diffusion problem; Gao et al. [19] studied the epidemic predictability
for the novel coronavirus (2019-nCoV) pandemic by analyzing a time-fractional model
and finding its solution by a q-homotopy analysis transform method; Gao et al. [20] inves-
tigated the infection system of the novel coronavirus (2019-nCoV) with a nonlocal opera-
tor defined in the Caputo sense; Gao et al. [21] tackled the fractional Phi-four equation by
using a q-homotopy analysis transform method numerically; Sabir et al. [53] presented a
novel meta-heuristic computing solver for solving the singular three-point second-order
boundary value problems using artificial neural networks.

The subject of the present work, the Schrödinger equation, was first proposed by the
Austrian physicist Erwin Schrödinger in 1926 [55]. It is a fundamental equation in quan-
tum physics that describes the evolution of the position-space wave function of a particle.
In fact, the nonlinear Schrödinger equations describe a wide class of physical phenomena
such as models of protein dynamics, self-focusing in laser pulses and nonlinear fiber optics
[1, 11, 17, 58]. The Schrödinger equation has also been generalized to fractional differential
equations. In 2000, Laskin [34] generalized the non-fractional Schrödinger equation to a
space-fractional Schrödinger equation by using the Feynman path integrals over the Lévy
trajectories and replacing the quantum Riesz derivative with the Laplace operator. Later,
in 2004 Naber [50] proposed a different generalization by changing the first order time-
derivative to a Caputo fractional derivative—this time-fractional Schrödinger equation
has been used to describe fractional quantum mechanical behavior. In 2010, Muslih et al.
[49] obtained a fractional Schrödinger equation by using a fractional variational principle
and a fractional Klein–Gordon equation. In 2017, Gómez-Aguilar and Baleanu [23] pre-
sented an alternative model of fractional Schrödinger equation involving Caputo–Fabrizio
fractional operator.

Many researchers pay attention to the numerical treatment of fractional Schrödinger
equations. For the space-fractional Schrödinger equation: a linear implicit conservative
difference scheme of order O(τ 2 + h2) has been proposed in [62] for the case of a coupled
nonlinear Schrödinger equation, where τ is the temporal step size and h is the spatial step
size; Zhao et al. [65] have used a compact operator to approximate the Riesz derivative,
and the proposed linearized difference scheme for a two-dimensional nonlinear space-
fractional Schrödinger equation can achieve O(τ 2 + h̄4), where h̄ = max{h1, h2}, h1 and
h2 are the spatial step sizes in the x and y dimensions, respectively; Wang and Huang
[64] have presented a conservative linearized difference scheme, which can achieve the
order of O(τ 2 + h2); a collocation method has been applied to a multi-dimensional space-
time variable-order fractional Schrödinger equation in [5]; a fourth-order implicit time-
discretization scheme based on the exponential time differencing approach together with
a fourth-order compact scheme in space have been proposed in [31], the method is of
order O(τ 4 + h4); Li et al. [37] have used a fast linearized conservative finite element
method to solve the coupled type equation; Wang and Xiao [63] have proposed an effi-
cient conservative scheme for the fractional Klein–Gordon–Schrödinger equation with
central difference and Crank–Nicolson scheme, their method can achieve O(τ 2 + h2). It
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is also noted that Hashemi and Akgül [24] have utilized Nucci’s reduction method and
the simplest equation method to extract analytical solutions specially of soliton kinds of
nonlinear Schrödinger equations in both time and space fractional terms.

For the time-fractional Schrödinger equation: Khan et al. [32] have applied the homo-
topy analysis method; Mohebbi et al. [47] have used the Kansa approach to approximate
the spatial derivative and L1 discretization to approximate the Caputo time-fractional
derivative; a Krylov projection method has been developed in [22]; a Jacobi spectral collo-
cation method has been applied to a multi-dimensional time-fractional Schrödinger equa-
tion in [4]; a quadratic B-spline Galerkin method combined with L1 discretization scheme
has been proposed in [16]; a linearized L1-Galerkin finite element method has been used
in [35] for a multi-dimensional nonlinear time-fractional Schrödinger equation; a cubic
non-polynomial spline method combined with L1 discretization has been proposed in
[36] and the stability has been shown by the Fourier method, the convergence order is not
proved but is observed from numerical experiments to be O(τ 2–γ + h4).

Motivated by the above research, in this paper we consider the following time-fractional
nonlinear Schrödinger equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i C
0 Dγ

t u(x, t) +
∂2u(x, t)

∂x2 + λ
∣
∣u(x, t)

∣
∣2u(x, t) = f (x, t), (x, t) ∈ [0, L] × [0, T],

u(x, 0) = A0(x), x ∈ [0, L],

u(0, t) = A1(t), u(L, t) = A2(t), t ∈ [0, T],

(1.1)

where λ is a real constant, f (x, t), A0(x), A1(t), A2(t) are continuous functions with A0(0) =
A1(0) and A0(L) = A2(0), and C

0 Dγ
t u(x, t) is the Caputo fractional derivative of order γ ∈

(0, 1) defined by [12, 51]

C
0 Dγ

t u(x, t) =
1

�(1 – γ )

∫ t

0
(t – s)–γ ∂u(x, s)

∂s
ds. (1.2)

We shall employ a quintic non-polynomial spline together with L1 discretization to solve
(1.1). The stability, unique solvability and convergence of our numerical scheme are
then proved by the Fourier method—we note that this method of proof is rare for nu-
merical methods of time/space-fractional Schrödinger equation, especially in establish-
ing the convergence order; on the other hand, the energy method has been commonly
used to show the convergence of numerical methods for space-fractional Schrödinger
equation [31, 62–65]. By the Fourier method, it is shown that our method is of order
O(τ 2–γ + h6)—this improves the spatial convergence achieved by other methods for time-
fractional Schrödinger equation. Further, on the choices of our tools, we have observed
in several different problems that a non-polynomial spline usually exhibits a better ap-
proximation than a polynomial spline because of its parameter [13, 15, 25, 38–43, 52, 57];
while L1 discretization is a stable and widely used approximation for the Caputo fractional
derivative [15, 18, 29, 38, 48].

The organization of this paper is as follows. We derive the numerical scheme in Sect. 2.
The stability, unique solvability and convergence are established by the Fourier method in
Sects. 3, 4 and 5 respectively. In Sect. 6, we present three examples to verify the efficiency
of our numerical scheme and to compare with other methods in the literature. Finally, a
conclusion is drawn in Sect. 7.
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2 Derivation of the numerical scheme
In this section, we shall develop a numerical scheme for problem (1.1) by using quintic
non-polynomial spline and L1 discretization. The details of quintic non-polynomial spline
will be presented first.

Let

P̄ : 0 = x0 < x1 < · · · < xM = L and P̄′ : 0 = t0 < t1 < · · · < tN = T (2.1)

be uniform meshes of the spatial interval [0, L] with step size h = L
M and the temporal

interval [0, T] with step size τ = T
N , respectively. For any given function y(x, t), we denote

y(xj, tn) by yn
j , and y(xj, t) by yj for fixed t.

Let u(x, t) denote the exact solution of (1.1) and Un
j denote the numerical approximation

of un
j . We shall set Un

j to be the value of the quintic non-polynomial spline at (xj, tn). We
define the quintic non-polynomial spline as follows.

Definition 2.1 ([57]) Let t = tn, 1 ≤ n ≤ N be fixed. For a given mesh P̄, we say Pn(x) is
the quintic non-polynomial spline with parameter k (> 0) if Pn(x) ∈ C(4)[0, L], Pn(x) has the
form span{1, x, x2, x3, sin(kx), cos(kx)} and its restriction Pj,n(x) on [xj, xj+1], 0 ≤ j ≤ M – 1
satisfies

⎧
⎪⎪⎨

⎪⎪⎩

Pj,n(xj) = Un
j , Pj,n(xj+1) = Un

j+1,

P(2)
j,n (xj) = W n

j , P(2)
j,n (xj+1) = W n

j+1,

P(4)
j,n (xj) = Fn

j , P(4)
j,n (xj+1) = Fn

j+1.

(2.2)

From the above definition, we can express Pj,n(x) on [xj, xj+1], 0 ≤ j ≤ M – 1 as

Pj,n(x) = an
j + bn

j (x – xj) + cn
j (x – xj)2 + dn

j (x – xj)3 + en
j sin k(x – xj) + f n

j cos k(x – xj). (2.3)

Denote ω = kh. Using (2.2), a direct computation gives

an
j = Un

j –
Fn

j

k4 ,

bn
j =

Un
j+1 – Un

j

h
+

Fn
j – Fn

j+1

ωk3 –
h
6
(
2W n

j + W n
j+1

)
–

h
6k2

(
2Fn

j + Fn
j+1

)
,

cn
j =

1
2

(

W n
j +

Fn
j

k2

)

,

dn
j =

W n
j+1 – W n

j

6h
+

Fn
j+1 – Fn

j

6ωk
,

en
j =

Fn
j+1 – Fn

j cosω

k4 sinω
,

f n
j =

Fn
j

k4 .

(2.4)

Using the continuity of the first and third derivatives of the spline at x = xj+1, i.e.,
P(1)

j,n (xj+1) = P(1)
j+1,n(xj+1) and P(3)

j,n (xj+1) = P(3)
j+1,n(xj+1), we obtain the following relations for
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1 ≤ j ≤ M – 1:

(a) W n
j–1 + 4W n

j + W n
j+1

=
6
h2

(
Un

j–1 – 2Un
j + Un

j+1
)

– 6h2(α1Fn
j–1 + 2β1Fn

j + α1Fn
j+1

)
,

(b) W n
j–1 – 2W n

j + W n
j+1 = h2(αFn

j–1 + 2βFn
j + αFn

j+1
)
,

(2.5)

where

α =
1
ω2

(
ω

sinω
– 1

)

, β =
1
ω2

(

1 –
ω cosω

sinω

)

,

α1 =
1

6ω2 +
1
ω4 –

1
ω3 sinω

, β1 =
1

3ω2 – 1 +
cosω

ω3 sinω
.

(2.6)

Note that the consistency relation for (2.5)(b) will lead to 2(α + β) = 1. Manipulating
(2.5)(a) and (2.5)(b), we can easily get

pW n
j+2 + qW n

j+1 + sW n
j + qW n

j–1 + pW n
j–2

=
1
h2

[
αUn

j+2 + 2(β – α)Un
j+1 + 2(α – 2β)Un

j + 2(β – α)Un
j–1 + αUn

j–2
]
,

2 ≤ j ≤ M – 2,

(2.7)

where

p = α1 +
α

6
, q = 2

[
2α + β

6
– (α1 – β1)

]

, s = 2
[

α + 4β

6
+ (α1 – 2β1)

]

. (2.8)

Using the quintic non-polynomial spline to approximate the exact solution u(x, t) of (1.1),
the spline relation (2.7) leads to

p
∂2un

j+2

∂x2 + q
∂2un

j+1

∂x2 + s
∂2un

j

∂x2 + q
∂2un

j–1

∂x2 + p
∂2un

j–2

∂x2

=
1
h2

[
αun

j+2 + 2(β – α)un
j+1 + 2(α – 2β)un

j + 2(β – α)un
j–1 + αun

j–2
]

+ ϒn
j ,

2 ≤ j ≤ M – 2,

(2.9)

where ϒn
j is the local truncation error in the spatial dimension. The next lemma gives a

result on this error.

Lemma 2.1 For any fixed t = tn, 1 ≤ n ≤ N , let u(x, tn) ∈ C(8)[0, L]. If

p =
1

12
α –

1
240

, q =
2
3
α +

1
10

, s = –
3
2
α +

97
120

, (2.10)

then the local truncation error ϒn
j associated with the spline relation (2.9) satisfies

ϒn
j = O

(
h6), 2 ≤ j ≤ M – 2. (2.11)
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Proof We carry out the Taylor expansion at x = xj in (2.9), this gives

ϒn
j = Z1

∂2un
j

∂x2 + Z2h2 ∂4un
j

∂x4 + Z3h4 ∂6un
j

∂x6 + O
(
h6),

where

Z1 = 2(α + β) – 2p – 2q – s, Z2 =
1
6

(7α + β) – 4p – q,

Z3 =
1

180
(31α + β) –

4
3

p –
1

12
q.

To achieve the highest order of O(h6), we set Z1 = Z2 = Z3 = 0, which together with the
consistency relation 2(α + β) = 1, gives (2.10) and (2.11). �

A similar result to Lemma 2.1 has also been obtained in [38].

Remark 2.1 In order to compute the numerical solution Un
j , 1 ≤ j ≤ M – 1, we need an-

other two equations besides (2.7) or (2.9). We consider the following equations which in-
corporate the boundary conditions in (1.1):

(a) b0
∂2un

0
∂x2 + b1

∂2un
1

∂x2 + b2
∂2un

2
∂x2 + b3

∂2un
3

∂x2 + b4
∂2un

4
∂x2

=
1
h2

(
a0un

0 + a1un
1 + a2un

2 + a3un
3 + a4un

4
)

+ ϒn
1 ,

(b) bM–4
∂2un

M–4
∂x2 + bM–3

∂2un
M–3

∂x2 + bM–2
∂2un

M–2
∂x2 + bM–1

∂2un
M–1

∂x2 + bM
∂2un

M
∂x2

=
1
h2

(
aM–4un

M–4 + aM–3un
M–3 + aM–2un

M–2 + aM–1un
M–1 + aMun

M
)

+ ϒn
M–1,

(2.12)

where ϒn
1 and ϒn

M–1 are local truncation errors in the spatial dimension, and the constant
ai and bi have to be computed such that

ϒn
j = O

(
h6), j = 1, M – 1. (2.13)

By carrying out Taylor expansion at x = x2 and x = xM–2 in (2.12)(a) and (2.12)(b), respec-
tively, we get the following which satisfies (2.13):

(a0, a1, a2, a3, a4) = (aM, aM–1, aM–2, aM–3, aM–4) =
(

1
10

,
3
5

, –
7
5

,
3
5

,
1

10

)

, (2.14)

(b0, b1, b2, b3, b4) = (bM, bM–1, bM–2, bM–3, bM–4) =
(

1
240

,
1
6

,
79

120
,

1
6

,
1

240

)

. (2.15)

Remark 2.2 If we let the spline parameter α = 1
10 in (2.9), then (2.9)|j=2 and (2.9)|j=M–2 are

simply the same as (2.12)(a) and (2.12)(b), respectively. Therefore, we should have α �= 1
10 .

To simplify the notations of the spline relations (2.9) and (2.12), we introduce the fol-
lowing definition.
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Definition 2.2 For y = (y1, . . . , yM–1), we define the operators ∧ and ∧1 by

∧yj =

⎧
⎪⎪⎨

⎪⎪⎩

b0y0 + b1y1 + b2y2 + b3y3 + b4y4, j = 1,

pyj–2 + qyj–1 + syj + qyj+1 + pyj+2, 2 ≤ j ≤ M – 2,

bM–4yM–4 + bM–3yM–3 + bM–2yM–2 + bM–1yM–1 + bMyM, j = M – 1,

and

∧1yj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
h2 (a0y0 + a1y1 + a2y2 + a3y3 + a4y4), j = 1,

1
h2

[
αyj–2 + 2(β – α)yj–1 + 2(α – 2β)yj + 2(β – α)yj+1 + αyj+2

]
, 2 ≤ j ≤ M – 2,

1
h2 (aM–4yM–4 + aM–3yM–3 + aM–2yM–2 + aM–1yM–1 + aMyM), j = M – 1.

Remark 2.3 In view of Definition 2.2, (2.11) and (2.13), the spline relations (2.9) and (2.12)
can be presented as

∧∂2un
j

∂x2 = ∧1un
j + O

(
h6), 1 ≤ j ≤ M – 1. (2.16)

The next lemma gives the L1 discretization for the Caputo fractional derivative.

Lemma 2.2 ([18, 59]) Let 0 < γ < 1 and x = xj be fixed. If u(xj, t) ∈ C(2)[0, tn], then we have

C
0 Dγ

t u(xj, tn) = μ

n–1∑

k=0

Rγ

n,k
(
uk+1

j – uk
j
)

+ O
(
τ 2–γ

)
, (2.17)

where τ is the temporal step size,

μ =
1

τ γ �(2 – γ )
, Rγ

n,k = (n – k)1–γ – (n – k – 1)1–γ , 0 ≤ k ≤ n – 1. (2.18)

Lemma 2.3 ([9, 18]) For Rγ

n,k defined in (2.18), we have

(a) 1 = Rγ
n,n–1 > Rγ

n,n–2 > · · · > Rγ

n,k > · · · > Rγ
n,1 > Rγ

n,0 > 0,

(b) Rγ

n,k >
1 – γ

(n – k)γ
, 0 ≤ k ≤ n – 1.

(2.19)

We are now ready to derive the numerical scheme for (1.1). To begin, we discretize (1.1)
at (xj, tn) to get

i C
0 Dγ

t u(xj, tn) +
∂2u(xj, tn)

∂x2 + λ
∣
∣u(xj, tn)

∣
∣2u(xj, tn) = f (xj, tn). (2.20)

Using the L1 discretization (2.17) in (2.20), we obtain

∂2u(xj, tn)
∂x2 = –iμ

n–1∑

k=0

Rγ

n,k
(
uk+1

j – uk
j
)

– λ
∣
∣un

j
∣
∣2un

j + f n
j + O

(
τ 2–γ

)
. (2.21)
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Next, applying the operator ∧ to (2.21) yields

∧∂2u(xj, tn)
∂x2 = –iμ

n–1∑

k=0

Rγ

n,k
(∧uk+1

j – ∧uk
j
)

– λ ∧ (∣
∣un

j
∣
∣2un

j
)

+ ∧f n
j + O

(
τ 2–γ

)
.

Noting (2.16), it follows that

∧1un
j = –iμ

n–1∑

k=0

Rγ

n,k
(∧uk+1

j – ∧uk
j
)

– λ ∧ (∣
∣un

j
∣
∣2un

j
)

+ ∧f n
j + O

(
h6 + τ 2–γ

)
.

Upon rearranging the above relation, we have

∧1 un
j + iμ ∧ un

j + λ ∧ (∣
∣un

j
∣
∣2un

j
)

= iμ ∧ un–1
j – iμ

n–2∑

k=0

Rγ

n,k
(∧uk+1

j – ∧uk
j
)

+ ∧f n
j + O

(
h6 + τ 2–γ

)
.

(2.22)

After omitting the error and replacing the exact solution u with the numerical solution U ,
we get the numerical scheme

∧1 Un
j + iμ ∧ Un

j + λ ∧ (∣
∣Un

j
∣
∣2Un

j
)

= iμ ∧ Un–1
j – iμ

n–2∑

k=0

Rγ

n,k
(∧Uk+1

j – ∧Uk
j
)

+ ∧f n
j , 1 ≤ j ≤ M – 1, 1 ≤ n ≤ N ,

(2.23)

with
⎧
⎨

⎩

U0
j = A0(xj), 0 ≤ j ≤ M,

Un
0 = A1(tn), Un

M = A2(tn), 1 ≤ n ≤ N .
(2.24)

Remark 2.4 It is obvious that our scheme (2.23) is a nonlinear scheme. To linearize (2.23),
following [45] we shall use the iterative algorithm

∧1 Un(r+1)
j + iμ ∧ Un(r+1)

j + λ ∧ (∣
∣Un(r)

j
∣
∣2Un(r+1)

j
)

= iμ ∧ Un–1
j – iμ

n–2∑

k=0

Rγ

n,k
(∧Uk+1

j – ∧Uk
j
)

+ ∧f n
j , 1 ≤ j ≤ M – 1, 1 ≤ n ≤ N ,

(2.25)

where Un(r)
j is the rth iterate of Un

j , and

Un(0)
j =

⎧
⎨

⎩

Un–1
j , n = 1,

2Un–1
j – Un–2

j , 2 ≤ n ≤ N .
(2.26)

Note that the scheme (2.25) is linear in Un(r+1). Hence, instead of (2.23)–(2.24), in practice
we shall employ the linearized iterative scheme (2.25) with

⎧
⎨

⎩

U0(r+1)
j = A0(xj), 0 ≤ j ≤ M,

Un(r+1)
0 = A1(tn), Un(r+1)

M = A2(tn), 1 ≤ n ≤ N .
(2.27)



Ding and Wong Advances in Difference Equations        (2020) 2020:577 Page 9 of 27

For practical purposes, we would certainly need a stopping criterion to get Un(r+1)
j to a

desired accuracy. An example of such a stopping criterion is

|Un(r+1)
j – Un(r)

j |
|Un(r)

j | ≤ a small constant. (2.28)

In fact, we shall use the above stopping criterion with the small constant as 1 × 10–6 for
our numerical simulations in Sect. 6.

3 Stability analysis of the numerical scheme
In this section, we shall analyze the stability of the scheme (2.23)–(2.24) via the Fourier
method [8, 10]. Noting from Remark 2.4 that in practice we employ the linearized scheme
(2.25)–(2.27) instead, effectively this means that in (2.23) we linearize the nonlinear term
|U|2U by replacing |U|2 with a local constant κ . Note that a similar linearization technique
has also been used in [14, 15]. With the linearization, we can rewrite (2.23)–(2.24) as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∧1Un
j + iμ ∧ Un

j + λκ ∧ Un
j

= iμ ∧ Un–1
j – iμ

∑n–2
k=0 Rγ

n,k(∧Uk+1
j – ∧Uk

j ) + ∧f n
j , 1 ≤ j ≤ M – 1,

U0
j = A0(xj), 0 ≤ j ≤ M,

Un
0 = A1(tn), Un

M = A2(tn), 1 ≤ n ≤ N .

(3.1)

Consider the perturbed system of (3.1) with perturbation in the initial values

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∧1Ûn
j + iμ ∧ Ûn

j + λκ ∧ Ûn
j

= iμ ∧ Ûn–1
j – iμ

∑n–2
k=0 Rγ

n,k(∧Ûk+1
j – ∧Ûk

j ) + ∧f n
j , 1 ≤ j ≤ M – 1,

Û0
j = Â0(xj), 0 ≤ j ≤ M,

Ûn
0 = A1(tn), Ûn

M = A2(tn), 1 ≤ n ≤ N .

(3.2)

Let Un
j be the solution of (3.1) and let Ûn

j be the solution of the perturbed system (3.2).
Let ρn

j = Un
j – Ûn

j , 0 ≤ j ≤ M, 0 ≤ n ≤ N . It follows from (3.1) and (3.2) that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∧1ρ
n
j + iμ ∧ ρn

j + λκ ∧ ρn
j

= iμ ∧ ρn–1
j – iμ

∑n–2
k=0 Rγ

n,k(∧ρk+1
j – ∧ρk

j ), 1 ≤ j ≤ M – 1,

ρ0
j = A0(xj) – Â0(xj), 0 ≤ j ≤ M,

ρn
0 = 0, ρn

M = 0, 1 ≤ n ≤ N .

(3.3)

Denote ρn = [ρn
0 ,ρn

1 , . . . ,ρn
M], 0 ≤ n ≤ N . Since ρn

0 = ρn
M = 0, we define the L2 norm of ρn

by

∥
∥ρn∥∥

2 =

(M–1∑

j=1

h
∣
∣ρn

j
∣
∣2

) 1
2

. (3.4)
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To apply the Fourier method, we expand ρn to a piecewise constant function ρn(x),
where

ρn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ρn
j , x ∈

(

xj –
h
2

, xj +
h
2

]

, 1 ≤ j ≤ M – 1,

0, x ∈
[

0,
h
2

]

∪
(

L –
h
2

, L
]

.
(3.5)

Then ρn(x) can be expanded as a Fourier series,

ρn(x) =
∞∑

m=–∞
dn(m)ei2πmx/L, 0 ≤ n ≤ N , (3.6)

where

dn(m) =
1
L

∫ L

0
ρn(x)e–i2πmx/L dx. (3.7)

To carry out the Fourier stability analysis, it is sufficient to consider an individual harmonic
of the form [6]

ρn
j (m) = dn(m)ei2πmjh/L.

Lemma 3.1 Suppose the solution of (3.3) has the following form:

ρn
j (m) = dn(m)eiθ jh, (3.8)

where θ = 2πm/L and m is the wave number. Then the following inequality holds:

∣
∣dn(m)

∣
∣ ≤ ∣

∣d0(m)
∣
∣, 1 ≤ n ≤ N . (3.9)

Proof For notational simplicity, let dn ≡ dn(m) for a fixed wave number m. We shall use
mathematical induction to complete the proof. First, we consider n = 1. Upon substituting
(3.8) into (3.3), we obtain

∧1d1eiθ jh + iμ ∧ d1eiθ jh + λκ ∧ d1eiθ jh = iμ ∧ d0eiθ jh. (3.10)

After a series of computations, (3.10) leads to

d1 = �d0, (3.11)

where

� =
iηj

φj + iηj
, (3.12)

ηj =

⎧
⎨

⎩

2b0μ cos(2θh) + 2b1μ cos(θh) + b2μ, j = 1, M – 1,

2pμ cos(2θh) + 2qμ cos(θh) + sμ, 2 ≤ j ≤ M – 2,
(3.13)



Ding and Wong Advances in Difference Equations        (2020) 2020:577 Page 11 of 27

and

φj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
2a0

h2 + 2b0λκ

]

cos(2θh) +
[

2a1

h2 + 2b1λκ

]

cos(θh)

+
a2

h2 + b2λκ , j = 1, M – 1,
[

2α

h2 + 2pλκ

]

cos(2θh) +
[

4(β – α)
h2 + 2qλκ

]

cos(θh)

+
2α – 4β

h2 + sλκ , 2 ≤ j ≤ M – 2.

(3.14)

It is obvious that |�| ≤ 1, therefore from (3.11) we have

|d1| ≤ |d0|. (3.15)

Next, assume that |d�| ≤ |d0|, 1 ≤ � ≤ n – 1. We shall show that |dn| ≤ |d0|. For any n ≥ 2,
we substitute (3.8) into (3.3) to get

∧1 dneiθ jh + iμ ∧ dneiθ jh + λκ ∧ dneiθ jh

= iμ ∧ dn–1eiθ jh – iμ
n–2∑

k=0

Rγ

n,k
(∧dk+1eiθ jh – ∧dkeiθ jh).

(3.16)

After a series of computations, (3.16) yields

dn = �dn–1 – �

n–2∑

k=0

Rγ

n,k(dk+1 – dk),

or equivalently

dn = �

[
(
1 – Rγ

n,n–2
)
dn–1 +

n–2∑

k=1

(
Rγ

n,k – Rγ

n,k–1
)
dk + Rγ

n,0d0

]

. (3.17)

Using Lemma 2.3, |d�| ≤ |d0| for 1 ≤ � ≤ n – 1, and |�| ≤ 1, it follows from (3.17) that

|dn| = |�|
∣
∣
∣
∣
∣

(
1 – Rγ

n,n–2
)
dn–1 +

n–2∑

k=1

(
Rγ

n,k – Rγ

n,k–1
)
dk + Rγ

n,0d0

∣
∣
∣
∣
∣

≤ |�|
[
∣
∣
(
1 – Rγ

n,n–2
)∣
∣|dn–1| +

n–2∑

k=1

∣
∣
(
Rγ

n,k – Rγ

n,k–1
)∣
∣|dk| +

∣
∣Rγ

n,0
∣
∣|d0|

]

≤ |�|
[
(
1 – Rγ

n,n–2
)|d0| +

n–2∑

k=1

(
Rγ

n,k – Rγ

n,k–1
)|d0| + Rγ

n,0|d0|
]

= |�||d0|
[
(
1 – Rγ

n,n–2
)

+
n–2∑

k=1

(
Rγ

n,k – Rγ

n,k–1
)

+ Rγ
n,0

]

= |�||d0| ≤ |d0|.

(3.18)

Hence, we have completed the proof of (3.9). �
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Theorem 3.1 (Stability) The numerical scheme (2.25)–(2.27) or equivalently (3.1) is un-
conditionally stable with respect to the initial data.

Proof From the definition of the L2 norm (3.4) and (3.5), we find

∥
∥ρn∥∥

2 =

(M–1∑

j=1

h
∣
∣ρn

j
∣
∣2

) 1
2

=

[∫ h/2

0

∣
∣ρn(x)

∣
∣2 dx +

M–1∑

j=1

∫ xj+h/2

xj–h/2

∣
∣ρn(x)

∣
∣2 dx +

∫ L

L–h/2

∣
∣ρn(x)

∣
∣2 dx

] 1
2

=
[∫ L

0

∣
∣ρn(x)

∣
∣2 dx

] 1
2

.

(3.19)

Noting the Parseval equality [8, 10]

∫ L

0

∣
∣ρn(x)

∣
∣2 dx =

∞∑

m=–∞

∣
∣dn(m)

∣
∣2, (3.20)

it follows from (3.19) that

∥
∥ρn∥∥2

2 =
∞∑

m=–∞

∣
∣dn(m)

∣
∣2. (3.21)

Applying Lemma 3.1 in (3.21), we obtain

∥
∥ρn∥∥2

2 =
∞∑

m=–∞

∣
∣dn(m)

∣
∣2 ≤

∞∑

m=–∞

∣
∣d0(m)

∣
∣2 =

∥
∥ρ0∥∥2

2, 1 ≤ n ≤ N , (3.22)

which shows that the numerical scheme (3.1) is robust to perturbation of initial data. �

4 Solvability of the numerical scheme
In this section, we shall investigate the solvability of the numerical scheme (2.25)–(2.27)
or equivalently (3.1). It is clear that the corresponding homogeneous system of (3.1) is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∧1Un
j + iμ ∧ Un

j + λκ ∧ Un
j

= iμ ∧ Un–1
j – iμ

∑n–2
k=0 Rγ

n,k(∧Uk+1
j – ∧Uk

j ), 1 ≤ j ≤ M – 1,

U0
j = 0, 0 ≤ j ≤ M,

Un
0 = 0, Un

M = 0, 1 ≤ n ≤ N .

(4.1)

Similar to the proof of Theorem 3.1, we can verify that the solution of (4.1) satisfies

∥
∥Un∥∥

2 ≤ ∥
∥U0∥∥

2, 1 ≤ n ≤ N .

Since U0 = 0, it follows that Un = 0 for 1 ≤ n ≤ N . Hence, (4.1) has only the trivial solution
and we obtain the following theorem.
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Theorem 4.1 (Solvability) The numerical scheme (2.25)–(2.27) or equivalently (3.1) is
uniquely solvable.

5 Convergence of the numerical scheme
In this section, we shall establish the convergence of the numerical scheme (2.25)–(2.27)
or equivalently (3.1). Recall that u(x, t) is the exact solution of (1.1) and Un

j is the numerical
approximation of un

j obtained from (3.1). Let the error En
j at (xj, tn) be En

j = un
j – Un

j , 0 ≤
j ≤ M, 0 ≤ n ≤ N .

Clearly, from (3.1) we obtain the error equation

∧1 En
j + iμ ∧ En

j + λκ ∧ En
j = iμ ∧ En–1

j – iμ
n–2∑

k=0

Rγ

n,k
(∧Ek+1

j – ∧Ek
j
)

+ Tn
j ,

1 ≤ j ≤ M – 1, 1 ≤ n ≤ N ,

(5.1)

where Tn
j is the local truncation error,

En
j = 0, 0 ≤ j ≤ M and En

0 = En
M = 0, 1 ≤ n ≤ N .

Denote En = [En
0 , En

1 , . . . , En
M], 0 ≤ n ≤ N . Since En

0 = En
M = 0, we define the L2 norm of En

by

∥
∥En∥∥

2 =

(M–1∑

j=1

h
∣
∣En

j
∣
∣2

) 1
2

.

Likewise, denote Tn = [Tn
1 , Tn

2 , . . . , Tn
M–1], 1 ≤ n ≤ N and the L2 norm of Tn is given by

∥
∥Tn∥∥

2 =

(M–1∑

j=1

h
∣
∣Tn

j
∣
∣2

) 1
2

.

In view of (2.16), (2.17) and (2.22), we see that Tn
j = O(h6 + τ 2–γ ) and there is a constant

C1 such that

∣
∣Tn

j
∣
∣ ≤ C1

(
h6 + τ 2–γ

)
, 1 ≤ j ≤ M – 1, 1 ≤ n ≤ N .

It follows that

∥
∥Tn∥∥

2 =

(M–1∑

j=1

h
∣
∣Tn

j
∣
∣2

) 1
2

≤ C1
√

L
(
h6 + τ 2–γ

)
. (5.2)

Next, similar to (3.5)–(3.7), we define the piecewise constant functions En(x) and Tn(x)
by

En(x) =

⎧
⎪⎪⎨

⎪⎪⎩

En
j , x ∈

(

xj –
h
2

, xj +
h
2

]

, 1 ≤ j ≤ M – 1,

0, x ∈
[

0,
h
2

]

∪
(

L –
h
2

, L
]

,
(5.3)
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and

Tn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

Tn
j , x ∈

(

xj –
h
2

, xj +
h
2

]

, 1 ≤ j ≤ M – 1,

0, x ∈
[

0,
h
2

]

∪
(

L –
h
2

, L
]

.
(5.4)

Then En(x) and Tn(x) have the Fourier series expansions

En(x) =
∞∑

m=–∞
εn(m)ei2πmx/L, Tn(x) =

∞∑

m=–∞
δn(m)ei2πmx/L, (5.5)

where

εn(m) =
1
L

∫ L

0
En(x)e–i2πmx/L dx, δn(m) =

1
L

∫ L

0
Tn(x)e–i2πmx/L dx. (5.6)

Similar to (3.19)–(3.21), by applying the Parseval identities we find

∥
∥En∥∥2

2 =
∞∑

m=–∞

∣
∣εn(m)

∣
∣2,

∥
∥Tn∥∥2

2 =
∞∑

m=–∞

∣
∣δn(m)

∣
∣2. (5.7)

Further, noting (5.2), we see that
∑∞

m=–∞ |δn(m)|2 converges and there is a positive con-
stant C2 ≥ 1 [7] such that

∣
∣δn(m)

∣
∣ ≤ C2

∣
∣δ1(m)

∣
∣, 1 ≤ n ≤ N . (5.8)

As in Sect. 3, we shall consider individual harmonics En
j (m) and Tn

j (m) of the forms

En
j (m) = εn(m)eiθ jh, Tn

j (m) = δn(m)eiθ jh, (5.9)

where θ = 2πm/L. Denote εn ≡ εn(m) and δn ≡ δn(m) for a fixed wave number m. Upon
substituting (5.9) into (5.1), we get

∧1 εneiθ jh + iμ ∧ εneiθ jh + λκ ∧ εneiθ jh

= iμ ∧ εn–1eiθ jh – iμ
n–2∑

k=0

Rγ

n,k
(∧εk+1eiθ jh – ∧εkeiθ jh) + δneiθ jh,

1 ≤ j ≤ M – 1, 1 ≤ n ≤ N .

(5.10)

Now, we shall present two lemmas which are essential in the proof of the convergence
result.

Lemma 5.1 Let α ∈ (0, 1
10 ) ∪ ( 1

10 , 37
180 ). Then we have

|s| – 2|p| – 2|q| > 0, (5.11)

where p, q and s are defined in (2.10).
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Proof Recall from Remark 2.2 that α �= 1
10 . For α ∈ (0, 1

20 ), we have p < 0, q > 0 and s > 0,
therefore

|s| – 2|p| – 2|q| = –
3
2
α +

97
120

– 2
(

1
240

–
1

12
α

)

– 2
(

2
3
α +

1
10

)

= –
8
3
α +

3
5

> 0.

For α ∈ [ 1
20 , 1

10 ) ∪ ( 1
10 , 37

180 ), we have p ≥ 0, q > 0 and s > 0, therefore

|s| – 2|p| – 2|q| = –
3
2
α +

97
120

– 2
(

1
12

α –
1

240

)

– 2
(

2
3
α +

1
10

)

= –3α +
37
60

> 0.

The proof is completed. �

Lemma 5.2 Let α ∈ (0, 1
10 ) ∪ ( 1

10 , 37
180 ). Let εn, 1 ≤ n ≤ N be the solution of (5.10). Then we

have

|εn| ≤ C2C3|δ1|, 1 ≤ n ≤ N , (5.12)

where C3 = Tγ �(1 – γ )/C and C = min{ 19
60 , |s| – 2|p| – 2|q|}.

Proof Since E0 = 0, it is clear from (5.7) that

ε0(m) = ε0 = 0. (5.13)

We shall first show that (5.12) is true for n = 1. Indeed, when n = 1, from (5.10) we get

ε1 =
1

φj + iηj
δ1, (5.14)

where ηj and φj are defined in (3.13) and (3.14), respectively.
Next, it is clear from Lemma 5.1 that C > 0. Moreover, we note that |b2| – 2|b0| – 2|b1| =

19
60 , where b0, b1 and b2 are given in (2.15). Together with (3.13), we obtain

C = min

{
19
60

, |s| – 2|p| – 2|q|
}

= min
{|b2| – 2|b0| – 2|b1|, |s| – 2|p| – 2|q|}

≤ min
{∣
∣b2 + 2b0 cos (2θh) + 2b1 cos (θh)

∣
∣,

∣
∣s + 2p cos (2θh) + 2q cos (θh)

∣
∣
}

≤ 1
μ

|ηj|, 1 ≤ j ≤ M – 1.

(5.15)

Using (5.15), the fact |�| = | iηj
φj+iηj

| ≤ 1, the definition of μ (Lemma 2.2), Lemma 2.3 and
C2 ≥ 1 (refer to (5.8)), we further find from (5.14)

|ε1| =
1

|φj + iηj| |δ1|

=
C3C

Tγ �(1 – γ )
1

|φj + iηj| |δ1|

≤ C3

Tγ �(1 – γ )
|iηj|
μ

1
|φj + iηj| |δ1| (5.16)
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=
τ γ �(2 – γ )C3

Tγ �(1 – γ )
|�||δ1|

=
1 – γ

Nγ
C3|�||δ1| < Rγ

N ,0C3|�||δ1| ≤ C2C3|δ1|.

Hence, we have proved (5.12) for n = 1.
Now, assume that, for n ≥ 2,

|ε�| ≤ C2C3|δ1|, 1 ≤ � ≤ n – 1. (5.17)

From (5.10), after a series of computations we get

εn = �εn–1 – �

n–2∑

k=0

Rγ

n,k(εk+1 – εk) +
1

φj + iηj
δn,

or equivalently

εn = �

[
(
1 – Rγ

n,n–2
)
εn–1 +

n–2∑

k=1

(
Rγ

n,k – Rγ

n,k–1
)
εk + Rγ

n,0ε0

]

+
1

φj + iηj
δn. (5.18)

Using (5.13), by a similar argument to (5.16), (5.8), Lemma 2.3, (5.17) and |�| ≤ 1, it follows
from (5.18) that

|εn| ≤ |�|
∣
∣
∣
∣
∣

(
1 – Rγ

n,n–2
)
εn–1 +

n–2∑

k=1

(
Rγ

n,k – Rγ

n,k–1
)
εk + Rγ

n,0ε0

∣
∣
∣
∣
∣

+
1

|φj + iηj| |δn|

≤ |�|
[
∣
∣
(
1 – Rγ

n,n–2
)
εn–1

∣
∣ +

∣
∣
∣
∣
∣

n–2∑

k=1

(
Rγ

n,k – Rγ

n,k–1
)
εk

∣
∣
∣
∣
∣

]

+ Rγ
n,0C3|�||δn|

≤ |�|
[
∣
∣
(
1 – Rγ

n,n–2
)∣
∣|εn–1| +

n–2∑

k=1

∣
∣
(
Rγ

n,k – Rγ

n,k–1
)∣
∣|εk| + Rγ

n,0C2C3|δ1|
]

≤ C2C3|�||δ1|
[
(
1 – Rγ

n,n–2
)

+
n–2∑

k=1

(
Rγ

n,k – Rγ

n,k–1
)

+ Rγ
n,0

]

≤ C2C3|δ1|.

Hence, we have proved (5.12). �

Theorem 5.1 (Convergence) Let α ∈ (0, 1
10 )∪ ( 1

10 , 37
180 ). Suppose u(x, t) is the exact solution

of (1.1) and u(x, t) ∈ C(8,2)([0, L] × [0, T]). Then we have, for 1 ≤ n ≤ N ,

∥
∥En∥∥

2 = O
(
h6 + τ 2–γ

)
. (5.19)

Hence, the numerical scheme (2.25)–(2.27) or equivalently (3.1) is convergent with order
O(h6 + τ 2–γ ).
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Proof Using (5.7), Lemma 5.2 and (5.2), we find, for 1 ≤ n ≤ N ,

∥
∥En∥∥

2 =

( ∞∑

m=–∞

∣
∣εn(m)

∣
∣2

) 1
2

≤ C2C3

( ∞∑

m=–∞

∣
∣δ1(m)

∣
∣2

) 1
2

= C2C3
∥
∥T1∥∥

2

≤ C1C2C3
√

L
(
h6 + τ 2–γ

)
.

The proof is completed. �

Remark 5.1 As shown in Theorem 5.1, the numerical scheme (2.25)–(2.27) achieves sixth
order convergence in the spatial dimension. This improves the work of [36] where the spa-
tial convergence order is observed to be four through numerical experiment. Furthermore,
in [36] the authors have only proved the stability of their scheme, while we have proven
the stability, unique solvability and convergence of our method by the Fourier method.
We remark that the Fourier method is rarely used in the analysis of numerical methods
of time/space-fractional Schrödinger equation, especially in establishing the convergence
order, so we have successfully illustrated the analytical technique of the Fourier method in
this work. It is noted that the energy method has been commonly used to show the conver-
gence of numerical methods for the space-fractional Schrödinger equation [31, 62–65].

6 Numerical examples
In this section, we shall present three numerical examples to verify the efficiency of the
scheme (2.25)–(2.27) and to compare with other methods in the literature.

Note that our theoretical convergence result is in L2 norm, nonetheless it would also be
interesting to see the convergence in maximum norm. In fact, for a fixed pair of (h, τ ), we
shall compute the following accuracy indicators: maximum L2 norm error E2(h, τ ), maxi-
mum modulus error E∞(h, τ ), maximum real part absolute error ERe∞ (h, τ ) and maximum
imaginary part absolute error EIm∞ (h, τ ), defined by

E2(h, τ ) = max
0≤n≤N

∥
∥En∥∥

2 = max
0≤n≤N

(M–1∑

j=1

h
∣
∣un

j – Un
j
∣
∣2

) 1
2

, (6.1)

E∞(h, τ ) = max
0≤n≤N

max
0≤j≤M

∣
∣un

j – Un
j
∣
∣, (6.2)

ERe
∞ (h, τ ) = max

0≤n≤N
max

0≤j≤M

∣
∣Re

(
un

j – Un
j
)∣
∣,

EIm
∞ (h, τ ) = max

0≤n≤N
max

0≤j≤M

∣
∣Im

(
un

j – Un
j
)∣
∣.

(6.3)

The convergence orders in temporal and spatial dimensions can be computed by

Temporal2 = log2

[
E2(h, 2τ )
E2(h, τ )

]

, Temporal∞ = log2

[
E∞(h, 2τ )
E∞(h, τ )

]

, (6.4)
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Space2 = log2

[
E2(2h, τ )
E2(h, τ )

]

, Space∞ = log2

[
E∞(2h, τ )
E∞(h, τ )

]

. (6.5)

Example 6.1 ([16, 36, 47]) Consider the time-fractional Schrödinger equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i C
0 Dγ

t u(x, t) +
∂2u(x, t)

∂x2 +
∣
∣u(x, t)

∣
∣2u(x, t) = f (x, t), (x, t) ∈ [0, 1] × [0, 1],

u(x, 0) = 0, x ∈ [0, 1],

u(0, t) = it2, u(1, t) = it2, t ∈ [0, 1],

(6.6)

where 0 < γ < 1 and

f (x, t) = –
2t2–γ

�(3 – γ )
cos(2πx) +

(
–4π2t2 + t6) sin(2πx)

+ i
[

2t2–γ

�(3 – γ )
sin(2πx) +

(
–4π2t2 + t6) cos(2πx)

]

.
(6.7)

The exact solution is u(x, t) = t2[sin(2πx) + i cos(2πx)].
Let α = 1/20 be fixed. We shall apply the scheme (2.25)–(2.27) to compute the errors

and convergence orders, and comparisons are made with other methods in the literature.
There follows a brief description of the numerical simulation in Tables 1–4 and Figs. 1–3:

(i) In Table 1, we fix h = 1/1000 and let τ vary. Applying (2.25)–(2.27), we compute
E2(h, τ ), E∞(h, τ ) and the respective temporal convergence orders. The numerical
results indicate that our method is of order (2 – γ ) in the temporal dimension, thus
verifying the theoretical temporal convergence order in Theorem 5.1.

(ii) In Table 2, we fix τ = 1/5000 and let h vary. We present E2(h, τ ), E∞(h, τ ) and the
spatial convergence orders of our scheme (2.25)–(2.27) and those of the cubic
non-polynomial spline (CNS) method [36]. From Table 2, we see that our method
can achieve at least O(h6), while the CNS method is O(h4). Moreover, our method
obtains smaller errors in all the cases. The observation also confirms the theoretical
spatial convergence order in Theorem 5.1.

(iii) Let τ = 1/512 be fixed. In Table 3, we compare ERe∞ (h, τ ) and EIm∞ (h, τ ) of our
scheme (2.25)–(2.27) with those of the meshless collocation (MC) method [47] and
the CNS method [36]. The numerical results indicate that our method gives the
smallest errors in all the cases.

(iv) In Table 4, we fix (h, τ ) = (1/40, 1/200) and compare ERe∞ (h, τ ) and EIm∞ (h, τ ) of our
scheme (2.25)–(2.27) with those of the quadratic B-spline Galerkin (QBG) method

Table 1 (Example 6.1) E2(h,τ ), E∞(h,τ ) and temporal convergence orders

γ τ E2(h,τ ) Temporal2 E∞(h,τ ) Temporal∞
0.2 1/20 3.4967e–05 5.0107e–05

1/40 1.0627e–05 1.7183 1.5231e–05 1.7180
1/80 3.2052e–06 1.7292 4.5947e–06 1.7290

0.4 1/20 1.2356e–04 1.7701e–04
1/40 4.1683e–05 1.5677 5.9711e–05 1.5678
1/80 1.3977e–05 1.5764 2.0021e–05 1.5765

0.6 1/20 3.4186e–04 4.8943e–04
1/40 1.3047e–04 1.3897 1.8678e–04 1.3898
1/80 4.9681e–05 1.3930 7.1121e–05 1.3930
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Table 2 (Example 6.1) E2(h,τ ), E∞(h,τ ) and spatial convergence orders

γ h E2(h,τ ) Space2 E∞(h,τ ) Space∞ E∞(h,τ ) Space∞
Our method Our method CNS [36]

0.2 1/5 1.0859e–02 1.5316e–02 2.6917e–02
1/10 5.7595e–05 7.5587 7.7591e–05 7.6249 1.6360e–03 4.0403
1/20 7.4037e–07 6.2816 1.0556e–06 6.1998 1.0096e–04 4.0183

0.4 1/5 1.0799e–02 1.5303e–02 2.6888e–02
1/10 5.7073e–05 7.5639 7.6880e–05 7.6370 1.6188e–03 4.0540
1/20 7.3276e–07 6.2833 1.0440e–06 6.2024 1.0048e–04 4.0099

0.6 1/5 1.0697e–02 1.5252e–02 2.6750e–02
1/10 5.6275e–05 7.5705 7.5741e–05 7.6537 1.5965e–03 4.0666
1/20 7.2262e–07 6.2831 1.0382e–06 6.1889 9.9534e–05 4.0036

Table 3 (Example 6.1) Comparing ERe∞ (h,τ ) and EIm∞ (h,τ ) with other methods

γ h ERe∞(h,τ ) ERe∞(h,τ ) ERe∞(h,τ ) EIm∞ (h,τ ) EIm∞ (h,τ ) EIm∞ (h,τ )

Our method MC [47] CNS [36] Our method MC [47] CNS [36]

0.1 1/9 1.2703e–04 7.0404e–02 1.2683e–03 1.2556e–04 7.6325e–02 2.4250e–03
1/14 3.0566e–06 2.1873e–02 2.2077e–04 1.0443e–05 2.6090e–02 4.1972e–04
1/19 4.1062e–07 1.0022e–02 6.5147e–05 1.4591e–06 1.2230e–02 1.2268e–04
1/24 9.4755e–08 5.1958e–03 2.5400e–05 3.2571e–07 6.4207e–03 4.8343e–05
1/29 6.5541e–08 2.8536e–03 1.1938e–05 1.0337e–07 3.5662e–03 2.2621e–05

0.3 1/9 1.2838e–04 7.0520e–02 1.3135e–03 1.2426e–04 3.5128e–02 2.3999e–03
1/14 3.1059e–06 2.1979e–02 2.2990e–04 1.0361e–05 1.4733e–02 4.1516e–04
1/19 4.0294e–07 1.0068e–02 6.7510e–05 1.5206e–06 7.1997e–03 1.2140e–04
1/24 4.1570e–07 5.2146e–03 2.6167e–05 4.6692e–07 3.8478e–03 4.7855e–05
1/29 4.3146e–07 2.8610e–03 1.2195e–05 2.9081e–07 2.1771e–03 2.2402e–05

Table 4 (Example 6.1) Comparing ERe∞(h,τ ) and EIm∞ (h,τ ) with other methods

γ ERe∞ (h,τ ) ERe∞(h,τ ) ERe∞(h,τ ) EIm∞ (h,τ ) EIm∞ (h,τ ) EIm∞ (h,τ )

Our method QBG [16] CNS [36] Our method QBG [16] CNS [36]

0.10 3.1730e–07 4.6850e–04 3.1153e–06 1.5460e–07 7.7635e–04 6.2728e–06
0.30 2.1533e–06 4.9949e–04 3.3537e–06 1.1104e–06 3.2833e–04 6.5370e–06
0.70 3.9262e–05 6.6590e–04 3.9311e–05 3.2046e–05 1.0614e–03 3.2046e–05
0.90 1.9926e–04 8.4460e–04 1.9971e–04 1.4957e–04 1.3150e–03 1.4957e–04

Figure 1 (Example 6.1) Real part of numerical solution and exact solution
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Figure 2 (Example 6.1) Imaginary part of numerical solution and exact solution

Figure 3 (Example 6.1) Absolute modulus error

[16] and the CNS method [36]. Once again, the numerical results show that our
scheme outperforms these methods.

(v) To visualize the efficiency of our scheme (2.25)–(2.27), we plot the real part
(imaginary part) of the numerical solution and exact solution in Fig. 1 (Fig. 2) for
γ = 0.1 and (h, τ ) = (1/16, 1/200). From the figures, we observe that our method
gives a good approximation of the exact solution.

(vi) In Fig. 3, we plot the absolute modulus error |un
j – Un

j | obtained from the scheme
(2.25)–(2.27) for γ = 0.1 and (h, τ ) = (1/16, 1/200). We observe from Fig. 3 that the
error is very small.
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Example 6.2 Consider the time-fractional Schrödinger equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i C
0 Dγ

t u(x, t) +
∂2u(x, t)

∂x2 +
∣
∣u(x, t)

∣
∣2u(x, t) = f (x, t), (x, t) ∈ [0, 1] × [0, 1],

u(x, 0) = 0, x ∈ [0, 1],

u(0, t) = itγ +1, u(1, t) = itγ +1, t ∈ [0, 1],

(6.8)

where 0 < γ < 1 and

f (x, t) = t�(γ + 2)
[
i sin(2πx) – cos(2πx)

]

+
(
t3γ +3 – 4π2tγ +1)[sin(2πx) + i cos(2πx)

]
.

(6.9)

The exact solution is u(x, t) = tγ +1[sin(2πx) + i cos(2πx)].
Let α = 1/20 in the implementation of the scheme (2.25)–(2.27). In Table 5, we fix τ =

1/5000 and present the spatial convergence orders of our scheme and those of the CNS
method [36]. In Table 6, we fix τ = 1/512 and compare the maximum real/imaginary part
absolute errors of our numerical scheme with those of the CNS method [36]. Furthermore,
in Fig. 4 we plot the absolute modulus error |un

j –Un
j | obtained from our scheme for γ = 0.3

and (h, τ ) = (1/20, 1/200).
From the numerical simulation and plot, once again we demonstrate that the theoretical

spatial convergence order of our scheme is at least six (Theorem 5.1) and our scheme
performs better than the CNS method.

Table 5 (Example 6.2) E2(h,τ ), E∞(h,τ ) and spatial convergence orders

γ h E2(h,τ ) Space2 E∞(h,τ ) Space∞ E∞(h,τ ) Space∞
Our method Our method CNS [36]

0.3 1/5 1.0859e–02 1.5317e–02 2.6918e–02
1/10 5.7585e–05 7.5590 7.7577e–05 7.6253 1.6327e–03 4.0432
1/20 7.3933e–07 6.2833 1.0550e–06 6.2003 1.0095e–04 4.0155

0.5 1/5 1.0808e–02 1.5308e–02 2.6893e–02
1/10 5.7103e–05 7.5643 7.6944e–05 7.6363 1.6200e–03 4.0532
1/20 7.3204e–07 6.2855 1.0429e–06 6.2051 1.0053e–04 4.0103

0.7 1/5 1.0698e–02 1.5253e–02 2.6736e–02
1/10 5.6084e–05 7.5755 7.5675e–05 7.6551 1.5956e–03 4.0666
1/20 7.6999e–07 6.1866 1.2828e–06 5.8824 9.9461e–05 4.0038

Table 6 (Example 6.2) ERe∞(h,τ ) and EIm∞ (h,τ )

γ h ERe∞(h,τ ) ERe∞(h,τ ) EIm∞ (h,τ ) EIm∞ (h,τ )

Our method CNS [36] Our method CNS [36]

0.1 1/9 1.2677e–04 1.2598e–03 1.2575e–04 2.4285e–03
1/14 3.0465e–06 2.1903e–04 1.0459e–05 4.2040e–04
1/19 6.4303e–07 6.4687e–05 1.4559e–06 1.2287e–04
1/24 6.4494e–07 2.5240e–05 4.0624e–07 4.8414e–05
1/29 6.4482e–07 1.1872e–05 4.0832e–07 2.2651e–05

0.3 1/9 1.2773e–04 1.2910e–03 1.2491e–04 2.4131e–03
1/14 4.6524e–06 2.2543e–04 1.0386e–05 4.1757e–04
1/19 4.6830e–06 6.6416e–05 5.1023e–06 1.2207e–04
1/24 4.6805e–06 2.5865e–05 5.1264e–06 4.8095e–05
1/29 4.6723e–06 1.2160e–05 5.1146e–06 2.2506e–05
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Figure 4 (Example 6.2) Absolute modulus error

In the next example, we shall investigate the effect of α on the actual maximum L2 norm
error E2(h, τ ).

Example 6.3 Consider the time-fractional Schrödinger equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i C
0 Dγ

t u(x, t) +
∂2u(x, t)

∂x2 +
∣
∣u(x, t)

∣
∣2u(x, t) = f (x, t), (x, t) ∈ [0, 1] × [0, 1],

u(x, 0) = 0, x ∈ [0, 1],

u(0, t) = i
(
tγ +2 – t2), u(1, t) = i

(
tγ +2 – t2), t ∈ [0, 1],

(6.10)

where 0 < γ < 1 and

f (x, t) =
[

�(γ + 3)
�(3)

t2 –
�(3)

�(3 – γ )
t2–γ

]
[
i sin(2πx) – cos(2πx)

]

+
[
–4π2(tγ +2 – t2) +

(
tγ +2 – t2)3][

sin(2πx) + i cos(2πx)
]
.

(6.11)

The exact solution is u(x, t) = (tγ +2 – t2)[sin(2πx) + i cos(2πx)].
First, we let α = 1/20 and τ = 1/5000 and present the spatial convergence orders of our

scheme (2.25)–(2.27) and those of the CNS method [36] (Table 7). To visualize the effi-
ciency of our method, in Figs. 5–7 we plot the real/imaginary parts of the numerical and
exact solutions and the absolute modulus error for γ = 0.5 and (h, τ ) = (1/16, 1/200). We
observe that the theoretical spatial convergence of our method is indeed at least O(h6)
(Theorem 5.1) and our method gives a good approximation of the exact solution.

Next, we shall investigate the influence of α on the error E2(h, τ ). Consider the case when
γ = 0.5 and (h, τ ) = (1/10, 1/5000). We apply our scheme (2.25)–(2.27) with different values
of α ∈ (0, 1

10 )∪ ( 1
10 , 37

180 ) and plot the error E2(h, τ ) against α in Fig. 8. It is observed that the
exponent of the error remains the same (10–6) for all α ∈ (0, 1

10 ) ∪ ( 1
10 , 37

180 ). Noting Table 7,
we see that regardless of the chosen value of α, our method (error ∼ 10–6) is better than
the CNS method (error ∼ 10–4) in this case.
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Table 7 (Example 6.3) E2(h,τ ), E∞(h,τ ) and spatial convergence orders

γ h E2(h,τ ) Space2 E∞(h,τ ) Space∞ E∞(h,τ ) Space∞
Our method Our method CNS [36]

0.1 1/5 1.6057e–04 2.4239e–04 3.8406e–04
1/10 8.4508e–07 7.5699 1.0992e–06 7.7847 2.3556e–05 4.0272
1/20 1.0644e–08 6.3110 1.5054e–08 6.1902 1.4549e–06 4.0171

0.3 1/5 4.6080e–04 6.9537e–04 1.1029e–03
1/10 2.4213e–06 7.5705 3.1527e–06 7.7850 6.7549e–05 4.0292
1/20 3.0459e–08 6.3128 4.3067e–08 6.1939 4.1711e–06 4.0174

0.5 1/5 7.4202e–04 1.1157e–03 1.7736e–03
1/10 3.8806e–06 7.5790 5.0736e–06 7.7807 1.0865e–04 4.0289
1/20 5.3287e–08 6.1864 7.6384e–08 6.0536 6.6960e–06 4.0202

Figure 5 (Example 6.3) Real part of numerical solution and exact solution

Figure 6 (Example 6.3) Imaginary part of numerical solution and exact solution
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Figure 7 (Example 6.3) Absolute modulus error

Figure 8 (Example 6.3) Influence of α on the error E2(h,τ )

7 Conclusion
In this paper, we derive a numerical scheme to solve the time-fractional nonlinear
Schrödinger equation (1.1) of fractional order γ ∈ (0, 1). Our tools include the quintic
non-polynomial spline and L1 discretization. The unconditional stability, unique solv-
ability and convergence are proved by the Fourier method. It is shown that our method
can achieve sixth order convergence in space and (2 – γ )th order convergence in time.
Three numerical examples are presented to verify the theoretical results and to compare
with other methods in the literature.
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