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Abstract
The Caratheodory approximation for a type of Caputo fractional stochastic differential
equations is considered. As is well known, under the Lipschitz and linear growth
conditions, the existence and uniqueness of solutions for some type of differential
equations can be established. However, this approach does not give an explicit
expression for solutions; it is not applicable in practice sometimes. Therefore, it is
important to seek the approximate solution. As an extending work for stochastic
differential equations, in this paper, we consider Caratheodory’s approximate solution
for a type of Caputo fractional stochastic differential equations.
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1 Introduction
Recently, stochastic fractional differential equations and stochastic fractional partial dif-
ferential equations have attracted more and more attention. It turns out that differential
equations involving derivatives of non-integer orders have memory properties, which are
called non-local properties. Because of the non-local property of the Caputo fractional
derivatives in time, Caputo fractional differential equations are important to model and
describe problems in many disciplines, such as engineering, physics, and chemistry. For
more details, see [1–7].

Compared with the work on deterministic fractional differential equations, the study
of stochastic fractional differential equations is still in its infancy. However, the majority
of work is concerned about the existence and uniqueness of solutions; see [8–12]. Until
quite recently, there were some authors who considered some types of Caputo fractional
stochastic differential equations and Caputo fractional stochastic partial differential equa-
tions by different approaching. For example, in Ref. [13], the authors considered the ex-
istence of stable manifolds for a type of stochastic differential equations. The authors of
paper [14] considered the averaging principle of a type of stochastic fractional differential
under some conditions consistent with the stochastic differential equations. In [15], the
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existence of global forward attracting set for stochastic lattice systems with a Caputo frac-
tional time derivative in the weak mean-square topology is established. In [16], the asymp-
totic distance between two distinct solutions is considered under a temporally weighted
norm. Its worth mentioning that the Euler–Maruyama type approximate results for Ca-
puto fractional stochastic differential equations have been established by [17]. For more
related work, see [12, 18–22].

The Caratheodory approximation scheme was first considered by Caraheodory for or-
dinary differential equations, then Bell, Mohammad and Mao extended it to the stochastic
differential equations case; see [23]. To the best of our knowledge, there is no work paying
attention to the Caratheodory approximation for the Caputo fractional stochastic differ-
ential equation. In this paper, we will consider the Caratheodory approximation for the
following type of Caputo fractional stochastic differential equation:

⎧
⎨

⎩

Dα
t Xt = f (t, Xt) dt + g(t, Xt) dBt , t ≥ 0,

X0 = x0 ∈ L2(�, H),
(1.1)

where α ∈ ( 1
2 , 1). For more details see Sect. 2. The aim of this paper is to extend the

Caratheodory approximate results for Eq. (1.1).
This article is organized as follows. In Sect. 2 we will give some assumptions and basic

results that we need. The existence and uniqueness of solution will be discussed in Sect. 3.
In the last section, we will consider the Caratheodory approximation for the Caputo frac-
tional stochastic differential equations.

Throughout this paper, the letter C will denote positive constants whose value may
change in different occasions. We will write the dependence of a constant on parameters
explicitly if it is essential.

2 Preliminaries
We impose the following assumptions to guarantee the existence and uniqueness of solu-
tion, H denote a Hilbert space, its norm is denoted by | · |.

H1: Lipschitz condition: Let t ≥ 0 and constant k > 0, such that, for all x, y ∈ H ,

∣
∣f (t, x) – f (t, y)

∣
∣2 +

∣
∣g(t, x) – g(t, y)

∣
∣2 ≤ k|x – y|2.

H2: Growth condition: Let t ≥ 0 and constant k > 0, such that, for all x ∈ H ,

∣
∣f (t, x)

∣
∣2 +

∣
∣g(t, x)

∣
∣2 ≤ k

(
1 + |x|2).

The following generalization of Gronwall’s lemma for singular kernels is needed for us
to establish our results; see [15, 24].

Lemma 2.1 Suppose b ≥ 0, β > 0 and a(t) is a nonnegative function locally integrable
on 0 ≤ t < T (some T ≤ +∞), and suppose u(t) is nonnegative and locally integrable on
0 ≤ t < T with

u(t) ≤ a(t) + b
∫ t

0
(t – s)β–1u(s) ds.
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Then

u(t) ≤ a(t) +
∫ t

0

[ ∞∑

n=1

(b�(β))n

�(nβ)
(t – s)nβ–1a(s)

]

ds, 0 ≤ t < T ,

where �(·) is the Gamma function.

3 Well-posedness
In this section, we consider the existence and uniqueness of solution for the following
equation under conditions H1 and H2:

⎧
⎨

⎩

Dα
t Xt = f (t, Xt) dt + g(t, Xt) dBt , t ≥ 0, 1

2 < α < 1,

X0 = x0 ∈ L2(�, H),
(3.1)

where Bt is a scalar Brownian motion, f and g are H-value functions.

Definition 3.1 An H-value Ft-adapted stochastic process Xt , t ∈ [0, T], is called a solu-
tion of the initial value problem (3.1), if Xt ∈ C([0, T]; L2(�, H)) and satisfies the following
integral equation:

Xt = x0 +
1

�(α)

∫ t

0
(t – s)α–1f (s, Xs) ds

+
1

�(α)

∫ t

0
(t – s)α–1g(s, Xs) dBs. (3.2)

The existence and uniqueness of solutions for Eq. (3.1) have been considered by our
previous work [25]. Similar problem also considered by [16] under different framework.
To make this paper self-contained, we just give the main part of the proof for the following
theorem.

Theorem 3.1 ([25]) Under conditions H1 and H2, for every x0 ∈ L2(�, H), Eq. (3.1) has a
unique mild solution Xt ∈ C([0, T]; L2(�, H)).

Proof We prove the theorem by the contraction mapping principle. Using conditions H1
and H2, Lemma 2.1, we can derive that Xt ∈ C([0, T]; L2(�, H)).

Let

S =
{

Xt|Xt ∈ C
(
[0, T]; L2(�, H)

)}

equipped with the norm

∣
∣f (t)

∣
∣
ς

= sup
0≤t≤T

E
∣
∣f (t)

∣
∣2

be the Banach space of all Ft-adapted processes.
For any t ∈ [0, T] and Xt ∈ S, define a mapping as follows:

(�X)(t) = x0 +
1

�(α)

∫ t

0
(t – s)α–1f (s, Xs) ds +

1
�(α)

∫ t

0
(t – s)α–1g(s, Xs) dBs.
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It is easy to verify that

�(·) : C
(
[0, T], L2(�; H)

) → C
(
[0, T], L2(�; H)

)
.

Let Xt , Yt ∈ S, then

E
∣
∣(�X)(t) – (�Y )(t)

∣
∣2 ≤ 2E

∣
∣
∣
∣

1
�(α)

∫ t

0
(t – s)α–1[f (s, Xs) – f (s, Ys)

]
ds

∣
∣
∣
∣

2

+ 2E
∣
∣
∣
∣

1
�(α)

∫ t

0
(t – s)α–1[g(s, Xs) – g(s, Ys)

]
dBs

∣
∣
∣
∣

2

.

Denote β = 2α – 1 > 0, by the Cauchy–Schwartz inequality, Itô’s isometry formula and
condition H1, we have

E
∣
∣(�X)(t) – (�Y )(t)

∣
∣2 ≤ 2k(T + 1)

�(α)2

∫ t

0
(t – s)β–1E|Xs – Ys|2 ds.

Using mathematical induction methods, we can deduce the following fact:

E
∣
∣
(
�nX

)
(t) –

(
�nY

)
(t)

∣
∣2 ≤ 1

β

(
2k(T + 1)

�(α)2

)n
�(β)n

�(nβ)
tnβ |Xt – Yt|ς . (3.3)

For n = 1, by simple calculation we get

E
∣
∣(�X)(t) – (�Y )(t)

∣
∣2 ≤ 2k(T + 1)

�(α)2 |Xt – Yt|ς tβ

β
,

which satisfies Eq. (3.3) with n = 1.
Now, assuming that Eq. (3.3) is satisfied for n = j, we claim that it is also correct for

n = j + 1. We have

E
∣
∣
(
�j+1X

)
(t) –

(
�j+1Y

)
(t)

∣
∣2

≤ 2k(T + 1)
�(α)2

∫ t

0
(t – s)β–1E

∣
∣
(
�jX

)
(s) –

(
�jY

)
(s)

∣
∣2 ds

≤ 2k(T + 1)
�(α)2

∫ t

0
(t – s)β–1 1

β

(
2k(T + 1)

�(α)2

)j
�(β)j

�(jβ)
sjβ |Xs – Ys|ς ds

≤
(

2k(T + 1)
�(α)2

)j+1 1
β

�(β)j

�(jβ)
|Xt – Yt|ς

∫ t

0
(t – s)β–1sjβ ds. (3.4)

To get the estimate for n = j + 1, we only need to consider the following integral:

∫ t

0
(t – s)β–1sjβ ds.

Take s = tz, then

∫ t

0
(t – s)β–1sjβ ds =

∫ 1

0
(1 – z)β–1tβ–1tjβzjβ t dz

= t(j+1)β
∫ 1

0
(1 – z)β–1zjβ dz
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= t(j+1)βB(jβ + 1,β)

= t(j+1)β �(β)�(jβ + 1)
�((j + 1)β + 1)

,

where B(·, ·) is the Beta function. Combining this result with Eq. (3.4) we have

E
∣
∣
(
�j+1X

)
(t) –

(
�j+1Y

)
(t)

∣
∣2

≤
(

2k(T + 1)
�(α)2

)j+1 1
β

�(β)j

�(jβ)
|Xt – Yt|ς t(j+1)β �(β)�(jβ + 1)

�((j + 1)β + 1)

=
(

2k(T + 1)
�(α)2

)j+1 1
β

�(β)j+1 �(jβ + 1)
�((j + 1)β + 1)�(jβ)

t(j+1)β |Xt – Yt|ς

=
(

2k(T + 1)
�(α)2

)j+1 1
β

�(β)j+1 jβ�(jβ)
(j + 1)β�((j + 1)β)�(jβ)

t(j+1)β |Xt – Yt|ς

≤
(

2k(T + 1)
�(α)2

)j+1 1
β

�(β)j+1 t(k+1)β

�((j + 1)β)
|Xt – Yt|ς . (3.5)

Then we arrive at the following estimate for all n:

∣
∣
(
�nX

)
(t) –

(
�nY

)
(t)

∣
∣
ς

≤
(

2k(T + 1)
�(α)2

)n 1
β

�(β)n Tnβ

�(nβ)
|Xt – Yt|ς . (3.6)

If we can prove

(
2k(T + 1)

�(α)2

)n 1
β

�(β)n Tnβ

�(nβ)
< 1, (3.7)

for sufficient large n, then the theorem holds.
Consider the following series of positive terms:

∞∑

n=1

(
2k(T + 1)

�(α)2

)n 1
β

�(β)n Tnβ

�(nβ)
.

We will show that

(
2k(T + 1)

�(α)2

)n 1
β

�(β)n Tnβ

�(nβ)
→ 0,

as n → +∞, which guarantees that Eq. (3.7) holds. Thanks to the d’Alembert discriminant
method, we only need to justify

lim
n→∞

( 2k(T+1)
�(α)2 )�(β)Tβ�(nβ)

�((n + 1)β))
< 1.

Use the relationship of Gamma function and the Stirling formula, represented as follows:

�(x) ∼ √
2πe–xxx– 1

2 , x → ∞.
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Then

lim
n→∞

( 2k(T+1)
�(α)2 )�(β)Tβ�(nβ)

�((n + 1)β))

= lim
n→∞

(
2k(T + 1)

�(α)2

)

�(β)Tβeβ

√
n + 1

n

(
n

n + 1

)nβ 1
(nβ + β)β

= 0,

which shows that �(·) is a contraction mapping on C([0, T], L2(�; H)) for all T < ∞. This
completes the proof. �

4 Caratheodory’s approximate solutions
In this section, we consider the Caratheodory approximation for stochastic fractional dif-
ferential equations. Similar to the stochastic differential equations approach, we try to give
the definition of Caratheodory’s approximate solutions for stochastic fractional differen-
tial equations as follows.

For every integer n ≥ 1, define xn(t) = x0 for –1 ≤ t ≤ 0 and

xn(t) = x0 +
1

�(α)

∫ t

0
(t – s)α–1f

(

s, xn

(

s –
1
n

))

ds

+
1

�(α)

∫ t

0
(t – s)α–1g

(

s, xn

(

s –
1
n

))

dBs

for 0 < t ≤ T .
Note that, for 0 ≤ t ≤ 1

n , xn(t) can be computed by

xn(t) = x0 +
1

�(α)

∫ t

0
(t – s)α–1f (s, x0) ds +

1
�(α)

∫ t

0
(t – s)α–1g(s, x0) dBs,

then, for 1
n < t ≤ 2

n ,

xn(t) = xn

(
1
n

)

+
1

�(α)

∫ t

1
n

(t – s)α–1f
(

s, xn

(

s –
1
n

))

ds

+
1

�(α)

∫ t

1
n

(t – s)α–1g
(

s, xn

(

s –
1
n

))

dBs

and so on. By this approach, we can compute xn(t) step by step on the intervals [0, 1
n ],

( 1
n , 2

n ], . . . .

Lemma 4.1 Under the condition H2, for all n ≤ 1, we have

sup
0≤t≤T

E
∣
∣xn(t)

∣
∣2 ≤ � =: r1

(
1 + E2α–1,1

(
r2�(2α – 1)T2α–1)) < ∞,

where r1 = 3E|x0|2 + 3 (kT (2α–1))(T+1)
�(α)2(2α–1)

, r2 = 3 k(T+1)
�(α)2 and E2α–1,1(·) is a two-parameter function

of the Mittag-Leffler type (see [15]).

Proof From the simple arithmetic inequality

|a + b + c|2 ≤ 3
(|a|2 + |b|2 + |c|2),
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we have

E
∣
∣xn(t)

∣
∣2 ≤ 3E|x0|2 + 3E

∣
∣
∣
∣

1
�(α)

∫ t

0
(t – s)α–1f

(

s, xn

(

s –
1
n

))

ds
∣
∣
∣
∣

2

+ 3E
∣
∣
∣
∣

1
�(α)

∫ t

0
(t – s)α–1g

(

s, xn

(

s –
1
n

))

dBs

∣
∣
∣
∣

2

:= 3I1 + 3I2 + 3I3.

By the Cauchy–Schwarz inequality and condition H2, we can estimate the term I2 as fol-
lows:

I2 ≤ Tk
�(α)2

∫ t

0
(t – s)2(α–1)

(

1 + E
∣
∣
∣
∣xn

(

s –
1
n

)∣
∣
∣
∣

2)

ds

≤ Tk
�(α)2

[
t2α–1

2α – 1
+

∫ t

0
(t – s)2(α–1)E

∣
∣
∣
∣xn

(

s –
1
n

)∣
∣
∣
∣

2

ds
]

≤ kT2α

�(α)2(2α – 1)
+

Tk
�(α)2

∫ t

0
(t – s)2(α–1) sup

0≤r≤s
E
∣
∣xn(r)

∣
∣2 ds.

Similarly, with Itô’s isometry formula and condition H2, we have an estimate for the
stochastic integral term:

I3 ≤ k
�(α)2

∫ t

0
(t – s)2(α–1)

(

1 + E
∣
∣
∣
∣xn

(

s –
1
n

)∣
∣
∣
∣

2)

ds

≤ kT2α–1

�(α)2(2α – 1)
+

k
�(α)2

∫ t

0
(t – s)2(α–1) sup

0≤r≤s
E
∣
∣xn(r)

∣
∣2 ds.

Combining the estimate for I1, I2, I3, we arrive at

E
∣
∣xn(t)

∣
∣2 ≤ r1 + r2

∫ t

0
(t – s)(2α–1)–1 sup

0≤r≤s
E
∣
∣xn(r)

∣
∣2 ds, (4.1)

where we denote

r1 = 3E|x0|2 + 3
(kT2α–1)(T + 1)
�(α)2(2α – 1)

and

r2 = 3
k(T + 1)
�(α)2 .

Note that, for t1 ≤ t2, we have

∫ t1

0
(t1 – s)(2α–1)–1 sup

0≤r≤s
E
∣
∣xn(r)

∣
∣2 ds ≤

∫ t2

0
(t2 – s)(2α–1)–1 sup

0≤r≤s
E
∣
∣xn(r)

∣
∣2 ds.

Then

sup
0≤r≤t

E
∣
∣xn(r)

∣
∣2 ≤ r1 + r2

∫ t

0
(t – s)(2α–1)–1 sup

0≤r≤s
E
∣
∣xn(r)

∣
∣2 ds.
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Applying Lemma 2.1, we can directly obtain

sup
0≤r≤t

E
∣
∣xn(r)

∣
∣2 ≤ r1

(

1 +
∫ t

0

∞∑

n=1

(r2�(2α – 1))n

�(2nα – n)
(t – s)n(2α–1)–1 ds

)

≤ r1

(

1 +
∞∑

n=1

(r2�(2α – 1)T2α–1)n

�(2nα – n + 1)

)

= r1
(
1 + E2α–1,1

(
r2�(2α – 1)T2α–1)) < ∞,

for all t ∈ [0, T], where E2α–1,1(·) is a two-parameter function of the Mittag-Leffler type
(see [15]). �

Lemma 4.2 Under the condition H2, for all n ≥ 1 and 0 ≤ t0 < t ≤ T with t – t0 ≤ 1, then

E
∣
∣xn(t) – xn(t0)

∣
∣2 ≤ C(t – t0)2α–1.

Proof Taking 0 ≤ t0 < t ≤ T , we note that

E
∣
∣xn(t) – xn(t0)

∣
∣2

≤ 2E
1

�(α)2

∣
∣
∣
∣

∫ t

0
(t – s)α–1f

(

s, xn

(

s –
1
n

))

ds –
∫ t0

0
(t0 – s)α–1f

(

s, xn

(

s –
1
n

))

ds
∣
∣
∣
∣

2

+ 2E
1

�(α)2

∣
∣
∣
∣

∫ t

0
(t – s)α–1g

(

s, xn

(

s –
1
n

))

dBs

–
∫ t0

0
(t0 – s)α–1g

(

s, xn

(

s –
1
n

))

dBs

∣
∣
∣
∣

2

=: 2(J1 + J2).

For J1, we have

J1 ≤ 2E
1

�(α)2

∣
∣
∣
∣

∫ t

t0

(t – s)α–1f
(

s, xn

(

s –
1
n

))

ds
∣
∣
∣
∣

2

+ 2E
1

�(α)2

∣
∣
∣
∣

∫ t0

0

[
(t – s)α–1 – (t0 – s)α–1]f

(

s, xn

(

s –
1
n

))

ds
∣
∣
∣
∣

2

=: 2J11 + 2J12.

Using the Cauchy–Schwartz inequality, t – t0 ≤ 1, we give an estimate for J11 as follows:

J11 ≤ 1
�(α)2

∫ t

t0

(t – s)2α–2 ds
∫ t

t0

E
∣
∣
∣
∣f

(

s, xn

(

s –
1
n

))∣
∣
∣
∣

2

ds

≤ k
�(α)2(2α – 1)

(t – t0)2α–1
∫ t

t0

[

1 + E
∣
∣
∣
∣xn

(

s –
1
n

)∣
∣
∣
∣

2]

ds

≤ (� + 1)k
�(α)2(2α – 1)

(t – t0)2α–1,
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where

� = r1
(
1 + E2α–1,1

(
r2�(2α – 1)T2α–1))

has been defined in Lemma 4.1.
For J12, we have the following result:

J12 = E
1

�(α)2

∣
∣
∣
∣

∫ t0

0

[
(t – s)α–1 – (t0 – s)α–1]f

(

s, xn

(

s –
1
n

))

ds
∣
∣
∣
∣

2

≤ k
�(α)2

∫ t0

0

[
(t – s)α–1 – (t0 – s)α–1]2 ds

∫ t0

0

[

1 + E
∣
∣
∣
∣xn

(

s –
1
n

)∣
∣
∣
∣

2]

ds

≤ CTk
�(α)2

∫ t0

0

[
(t0 – s)2α–2 – (t – s)2α–2]ds

=
CTk
�(α)2

[
(t – t0)2α–1

2α – 1
+

t2α–1
0

2α – 1
–

t2α–1

2α – 1

]

≤ CTk
�(α)2

(t – t0)2α–1

2α – 1
.

For J2, taking the Itô isometry formula and condition H2 into account, using similar
estimate methods to J1, it can be shown that

J2 ≤ Ck
�(α)2

(t – t0)2α–1

2α – 1
.

Combining all the deduced estimates, we have

E
∣
∣xn(t) – xn(t0)

∣
∣2 ≤ C(t – t0)2α–1.

This completes the proof. �

Theorem 4.1 Under the conditions H1 and H2, let x(t) be the unique solution of equations
(3.1). Then for n ≥ 1

sup
0≤t≤T

E
∣
∣x(t) – xn(t)

∣
∣2 ≤ C

n2α–1 (4.2)

Proof Note that

x(t) – xn(t) =
1

�(α)

[∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds –

∫ t

0
(t – s)α–1f

(

s, xn

(

s –
1
n

))

ds
]

+
1

�(α)

[∫ t

0
(t – s)α–1g

(
s, x(s)

)
dBs –

∫ t

0
(t – s)α–1g

(

s, xn

(

s –
1
n

))

dBs

]

.

Hence, employing a simple arithmetic inequality, we have

E
∣
∣x(t) – xn(t)

∣
∣2

≤ 2E
1

�(α)2

∣
∣
∣
∣

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds –

∫ t

0
(t – s)α–1f

(

s, xn

(

s –
1
n

))

ds
∣
∣
∣
∣

2
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+ 2E
1

�(α)2

∣
∣
∣
∣

∫ t

0
(t – s)α–1g

(
s, x(s)

)
dBs –

∫ t

0
(t – s)α–1g

(

s, xn

(

s –
1
n

))

dBs

∣
∣
∣
∣

2

=: 2(I1 + I2).

For I1, we have

I1 ≤ 2E
1

�(α)2

∣
∣
∣
∣

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds –

∫ t

0
(t – s)α–1f

(
s, xn(s)

)
ds

∣
∣
∣
∣

2

+ 2E
1

�(α)2

∫ t

0
(t – s)α–1f

(
s, xn(s)

)
ds –

∫ t

0
(t – s)α–1f

(

s, xn

(

s –
1
n

))

ds|2

=: 2(I11 + I12).

Using the Cauchy–Schwartz inequality and the condition H1, we have the following esti-
mate for I11:

I11 ≤ kT
�(α)2

∫ t

0
(t – s)2α–2E

∣
∣x(s) – xn(s)

∣
∣2 ds.

Similarly, for I12, we have

I12 ≤ kT2α–1

(2α – 1)�(α)2

∫ t

0
E
∣
∣
∣
∣xn(s) – xn

(

s –
1
n

)∣
∣
∣
∣

2

ds.

Also, we can divide I2 into two parts as follows:

I2 ≤ 2E
1

�(α)2

∣
∣
∣
∣

∫ t

0
(t – s)α–1g

(
s, x(s)

)
ds –

∫ t

0
(t – s)α–1g

(
s, xn(s)

)
dBs

∣
∣
∣
∣

2

+ 2E
1

�(α)2

∫ t

0
(t – s)α–1g

(
s, xn(s)

)
ds –

∫ t

0
(t – s)α–1g

(

s, xn

(

s –
1
n

))

dBs|2

=: 2(I21 + I21).

By the Itô isometry formula, we get

I21 ≤ k
�(α)2

∫ t

0
(t – s)2α–2E

∣
∣x(s) – xn(s)

∣
∣2 ds

and

I22 ≤ k
�(α)2

∫ t

0
(t – s)2α–2E

∣
∣
∣
∣xn(s) – xn

(

s –
1
n

)∣
∣
∣
∣

2

ds.

Combining with the estimate for I1 and I2, it is derived that

E
∣
∣x(t) – xn(t)

∣
∣2 ≤ k(T + 1)

�(α)2

∫ t

0
(t – s)2α–2E

∣
∣x(s) – xn(s)

∣
∣2 ds

+
kT2α–1

(2α – 1)�(α)2

∫ t

0
E
∣
∣
∣
∣xn(s) – xn

(

s –
1
n

)∣
∣
∣
∣

2

ds

+
k

�(α)2

∫ t

0
(t – s)2α–2E

∣
∣
∣
∣xn(s) – xn

(

s –
1
n

)∣
∣
∣
∣

2

ds, (4.3)
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by Lemma 4.2, if s ≥ 1
n , then

E
∣
∣
∣
∣xn(s) – xn

(

s –
1
n

)∣
∣
∣
∣

2

≤ C
n2α–1 ,

otherwise if 0 ≤ s < 1
n ,

E
∣
∣
∣
∣xn(s) – xn

(

s –
1
n

)∣
∣
∣
∣

2

= E
∣
∣xn(s) – xn(0)

∣
∣2 ≤ Cs2α–1 ≤ C

n2α–1 .

Following Eq. (4.3), we have

E
∣
∣x(t) – xn(t)

∣
∣2 ≤ k(T + 1)

�(α)2

∫ t

0
(t – s)2α–2E

∣
∣x(s) – xn(s)

∣
∣2 ds

+
kT2α–1

(2α – 1)�(α)2

∫ t

0
E
∣
∣
∣
∣xn(s) – xn

(

s –
1
n

)∣
∣
∣
∣

2

ds

+
T

�(α)2

∫ t

0
(t – s)2α–2E

∣
∣
∣
∣xn(s) – xn

(

s –
1
n

)∣
∣
∣
∣

2

ds

≤ k(T + 1)
�(α)2

∫ t

0
(t – s)2α–2E

∣
∣x(s) – xn(s)

∣
∣2 ds

+
kT2α–1(1 + T)
(2α – 1)�(α)2

1
n2α–1

=: q1

∫ t

0
(t – s)2α–2E

∣
∣x(s) – xn(s)

∣
∣2 ds + q2.

Applying Lemma 2.1, we obtain

E
∣
∣x(t) – xn(t)

∣
∣2 ≤ q2

(
1 + E2α–1,1

(
q1�(2α – 1)T2α–1)) =:

C
n2α–1 .

This completes the proof. �

Remark 4.1 When α = 1, i.e. Eq. (1.1) becomes a stochastic differential equation, the con-
vergent rate of the scheme in Theorem 4.1 coincides with the well-known convergent rate
of the classical Caratheodory results; see [23].
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