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Abstract
In this paper, based on Galerkin–Legendre spectral method for space discretization
and a linearized Crank–Nicolson difference scheme in time, a fully discrete spectral
scheme is developed for solving the strongly coupled nonlinear fractional
Schrödinger equations. We first prove that the proposed scheme satisfies the
conservation laws of mass and energy in the discrete sense. Then a prior bound of the
numerical solutions in L∞-norm is obtained, and the spectral scheme is shown to be
unconditionally convergent in L2-norm, with second-order accuracy in time and
spectral accuracy in space. Finally, some numerical results are provided to validate our
theoretical analysis.

Keywords: Fractional Schrödinger equation; Legendre spectral method;
Conservation law; Unconditional convergence; Spectral accuracy

1 Introduction
The space fractional Schrödinger equation (FSE) is a natural extension of the classic
Schrödinger equation, and it has been successfully used to describe the fractional quantum
phenomena. Laskin [1, 2] originally derived the Riesz space FSE via replacing the Brownian
trajectories with Levy flights in the Feynman path integrals. Some physical applications of
the FSE were presented in [3, 4]. For the well-posedness, global attractor, soliton dynamics
and ground states related to the FSE, we refer to Refs. [5–7] and the references therein.

The current paper is devoted to deriving a linearized conservative Galerkin–Legendre
spectral method for solving the strongly coupled fractional Schrödinger equations (SCF-
SEs) with extended Dirichlet boundary conditions [8–10]

iut – γ (–�)
α
2 u +

(
κ|u|2 + ρ|v|2)u + βu + �v = 0, x ∈ �, 0 < t ≤ T , (1)

ivt – γ (–�)
α
2 v +

(
κ|v|2 + ρ|u|2)v + βv + �u = 0, x ∈ �, 0 < t ≤ T , (2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �, (3)

u(x, t) = 0, v(x, t) = 0, x ∈R\�, 0 ≤ t ≤ T , (4)
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where i2 = –1, 1 < α ≤ 2, � = (a, b) with a � 0 and b � 0, and the parameters γ > 0, κ ,
ρ , β and � are given real constants. u0(x) and v0(x) are given initial functions. The Riesz
fractional derivative is defined as

–(–	)
α
2 u(x, t) := –

1
2 cos(πα/2)

[
aDα

x u(x, t) + xDα
b u(x, t)

]
, (5)

where the left and right Riemann–Liouville fractional derivatives [11] are given as

aDα
x u(x, t) =:

1
�(2 – α)

∂2

∂x2

∫ x

a

u(ξ , t) dξ

(x – ξ )α–1 , (6)

xDα
b u(x, t) :=

1
�(2 – α)

∂2

∂x2

∫ b

x

u(ξ , t) dξ

(ξ – x)α–1 . (7)

In particular, the Schrödinger system (1)–(4) preserves two invariant quantities, i.e., the
mass-conservation law

M(t) :=
∥∥u(·, t)

∥∥2
L2 +

∥∥v(·, t)
∥∥2

L2 = M(0), ∀t > 0, (8)

and the energy-conservation law

E(t) := γ
(∥∥(–�)

α
4 u(·, t)

∥
∥2

L2 +
∥
∥(–�)

α
4 v(·, t)

∥
∥2

L2
)

–
κ

2
(∥∥u(·, t)

∥
∥4

L4 +
∥
∥v(·, t)

∥
∥4

L4
)

– ρ

∫

�

|u|2|v|2 dx – β
(∥∥u(·, t)

∥∥2
L2 +

∥∥v(·, t)
∥∥2

L2
)

– 2� Re
∫

�

uv̄ dx

= E(0), ∀t > 0. (9)

Since it is hard to obtain the analytical solution of the FSE, the idea of developing nu-
merical methods has drawn a growing number of researchers’ attention. Up to now, many
efforts have been made to develop finite difference methods for the FSE, including the
compact difference scheme [12], the mass-preserving schemes [13–15], and the mass-
and energy-preserving schemes [16–20]. Li et al. [21–23] investigated a series of Galerkin
finite element methods for the FSE, and they discussed the conservation, well-posedness
and convergence properties of the discrete systems. In addition, spectral methods have
also been applied in solving the nonlocal FSE, including spectral Galerkin schemes [24–
30] and collocation schemes [31–35]. On the other hand, numerical studies of the FSE
with Caputo fractional derivative in time were considered in [36–39].

The motivations of the current work are as follows. Firstly, since the conservative
method performs better than the general goal method in long-time simulation, the dis-
crete scheme which can preserve the invariant quantities of the original system is desir-
able. Moreover, to avoid time-consuming iterative process at each time step, an interesting
topic is to construct a linearly implicit scheme for the SCFSEs. Furthermore, we intend to
consider the unconditionally convergent spectral method, which takes advantage of spec-
tral accuracy in space. Based on these considerations, the main objective of this paper is
to develop a linearized Galerkin–Legendre spectral scheme for solving the SCFSEs. The
derived scheme can preserve both the mass- and the energy-conservation laws in the dis-
crete sense. Based on the discrete energy-conservation law, we show that the numerical
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solutions are bounded in L∞-norm. Moreover, the discrete scheme is proved to be uncon-
ditionally convergent with second-order accuracy in time and spectral accuracy in space
by the energy method.

The outline of this paper is given as follows. In Sect. 2, some useful definitions and lem-
mas are recalled. In Sect. 3, a linearized Legendre spectral scheme is constructed for the
SCFSEs. In Sect. 4, the conservation, boundedness and convergence properties of the pro-
posed scheme are analyzed theoretically. Some numerical results are presented in Sect. 5,
and some conclusions are drawn in the last section.

2 Preliminaries
In this section, before deriving the fully discrete Legendre spectral scheme for the SCFSEs,
we first introduce some notations, definitions and lemmas which play an important role
in subsequent theoretical analysis.

2.1 Notation
Define the inner product in the space L2(�) as (v, u) :=

∫
�

vū dx and the associated L2-
norm is denoted by ‖·‖. Besides, define the Lp-norm (1 ≤ p < ∞) and L∞-norm as follows:

‖v‖Lp :=
(∫

�

∣
∣v(x)

∣
∣p dx

) 1
p

, ‖v‖L∞ := ess sup
x∈�

∣
∣v(x)

∣
∣. (10)

2.2 Fractional derivative spaces
Definition 1 ([40, 41]) For α > 0, define the semi-norms and norms of the left, right and
symmetric fractional derivative spaces on � as

|v|JαL (�) :=
∥
∥

aDα
x v

∥
∥, ‖v‖JαL (�) :=

(‖v‖2 + |v|2JαL (�)
) 1

2 , (11)

|v|JαR (�) :=
∥
∥

xDα
b v

∥
∥, ‖v‖JαR (�) :=

(‖v‖2 + |v|2JαR (�)
) 1

2 , (12)

|v|JαS (�) :=
∣∣(

aDα
x v,x Dα

b v
)∣∣

1
2 , ‖v‖JαS (�) :=

(‖v‖2 + |v|2JαS (�)
) 1

2 , (13)

and Jα
L,0(�), Jα

R,0(�), Jα
S,0(�) denote the closure of C∞

0 (�) with respect to the above norms,
respectively.

Definition 2 ([40, 41]) For α > 0, define the semi-norm

|v|Hα (�) :=
∥
∥|ξ |α v̂(ξ )

∥
∥

L2(R), (14)

and the norm

‖v‖Hα (�) :=
(‖v‖2 + |v|2Hα (�)

) 1
2 , (15)

and Hα
0 (�) denotes the closure of C∞(�) with respect to ‖·‖Hα (�), where ξ and v̂ represent

the Fourier transform parameter and the Fourier transform of v, respectively.

Next we recall some useful properties of the above semi-norms, norms and spaces.
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Lemma 1 ([40, 41]) For α > 0 and α 
= n – 1
2 , n ∈N, then Jα

L,0(�), Jα
R,0(�), Jα

S,0(�) and Hα
0 (�)

are equal with equivalent norms and semi-norms.

Lemma 2 (Fractional Poincaré–Friedrichs inequality [40, 41]) For v ∈ Jα
L,0(�), 0 < μ < α,

we have

‖v‖ ≤ C|v|JαL (�), |v|JμL (�) ≤ C|v|JαL (�).

Besides, for v ∈ Jα
R,0(�), 0 < μ < α, we have

‖v‖ ≤ C|v|JαR (�), |v|JμR (�) ≤ C|v|JαR (�).

Similar conclusion can be established for v ∈ Hα
0 (�) with α 
= n – 1

2 , n ∈ N.

Lemma 3 ([42]) Let 1 < α ≤ 2, for v, w ∈ Jα
L (�) (or Jα

R (�)), v|∂� = 0, w|∂� = 0, then we have

(
aDα

x v, w
)

=
(

aDα/2
x v, xDα/2

b w
)
,

(
xDα

b v, w
)

=
(

xDα/2
b v, aDα/2

x w
)
.

3 Fully discrete Legendre spectral scheme
In this section, we will construct a Legendre spectral method for numerically solving the
SCFSEs (1)–(4).

3.1 The semi-discrete variational scheme
The Legendre polynomials Lk(s) are determined by the following recurrence relation:

L0(s) = 1, L1(s) = s,

Lk+1(s) =
2k + 1
k + 1

sLk(s) –
k

k + 1
Lk–1(s), s ∈ [–1, 1], k ≥ 1.

(16)

Denote

ψk(x) = Lk(s) – Lk+2(s), with x =
(b – a)s + (a + b)

2
∈ [a, b]. (17)

Then the approximate function space V 0
N is given as

V 0
N = span

{
ψk(x) : k = 0, 1, . . . , N – 2

}
. (18)

The semi-discrete variational scheme for the SCFSEs (1)–(4) is to find uN , vN : [0, T] →
V 0

N such that

i(∂tuN , w) – γ B(uN , w) +
((

κ|uN |2 + ρ|vN |2)uN , w
)

+ β(uN , w)

+ �(vN , w) = 0, ∀w ∈ V 0
N , (19)

i(∂tvN , w) – γ B(vN , w) +
((

κ|vN |2 + ρ|uN |2)vN , w
)

+ β(vN , w)

+ �(uN , w) = 0, ∀w ∈ V 0
N , (20)

u0
N = IN u0(x), v0

N = IN v0(x), (21)
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where IN represents the Legendre–Gauss–Lobatto (LGL) interpolation operator [43]. The
bilinear form B(·, ·) in (19) and (20) is defined as

B(v, w) :=
(
(–	)

α
2 v, w

)
=

1
2 cos(απ/2)

((
aD

α
2
x v, xD

α
2
b w

)
+

(
xD

α
2
b v, aD

α
2
x w

))
, (22)

where Lemma 3 has been used in deriving (22). For convenience of theoretical analysis,
one can define the following semi-norm and norm:

|v| α
2

:=
√

B(v, v), ‖v‖ α
2

:=
(‖v‖2 + |v|2α

2

) 1
2 . (23)

By virtue of Lemma 1, |v| α
2

and ‖v‖ α
2

are equivalent with the semi-norms and norms of

J
α
2

L (�), J
α
2

R (�), J
α
2

S (�) and H α
2 (�).

3.2 The fully discrete Galerkin–Legendre spectral scheme
For a given positive constant T and any positive integer M, let τ = T/M and denote tn = nτ

(0 ≤ n ≤ M). For any function sequence {λn} defined on �, when 0 ≤ n ≤ M – 1, we denote

δtλ
n+ 1

2 =
λn+1 – λn

τ
, δt̂λ

n =
λn+1 – λn–1

2τ
,

λ̂n+ 1
2 =

λn+1 + λn

2
, λ̃n =

λn+1 + λn–1

2
.

Based on Legendre spectral method for space discretization and a linearized Crank–
Nicolson difference scheme in time, we develop a linearized spectral scheme for the
Schrödinger system (1)–(4), which is to find un+1

N , vn+1
N ∈ V 0

N such that

i
(
δt̂un

N , w
)

– γ B
(
ũn

N , w
)

+
((

κ
∣∣un

N
∣∣2 + ρ

∣∣vn
N
∣∣2)ũn

N , w
)

+ β
(
ũn

N , w
)

+ �
(
vn

N , w
)

= 0, ∀w ∈ V 0
N , 1 ≤ n ≤ M – 1, (24)

i
(
δt̂vn

N , w
)

– γ B
(
ṽn

N , w
)

+
((

κ
∣∣vn

N
∣∣2 + ρ

∣∣un
N
∣∣2)ṽn

N , w
)

+ β
(
ṽn

N , w
)

+ �
(
un

N , w
)

= 0, ∀w ∈ V 0
N , 1 ≤ n ≤ M – 1. (25)

To obtain the first step approximate solutions u1
N and v1

N , we employ the following Crank–
Nicolson scheme:

i
(
δtu

1
2
N , w

)
– γ B

(
û

1
2
N , w

)
+

1
2
((

κ
(∣∣u1

N
∣
∣2 +

∣
∣u0

N
∣
∣2) + ρ

(∣∣v1
N
∣
∣2 +

∣
∣v0

N
∣
∣2))û

1
2
N , w

)

+ β
(
û

1
2
N , w

)
+ �

(
v̂

1
2
N , w

)
= 0, ∀w ∈ V 0

N , (26)

i
(
δtv

1
2
N , w

)
– γ B

(
v̂

1
2
N , w

)
+

1
2
((

κ
(∣∣v1

N
∣
∣2 +

∣
∣v0

N
∣
∣2) + ρ

(∣∣u1
N
∣
∣2 +

∣
∣u0

N
∣
∣2))v̂

1
2
N , w

)

+ β
(
v̂

1
2
N , w

)
+ �

(
û

1
2
N , w

)
= 0, ∀w ∈ V 0

N , (27)

with the initial conditions

u0
N = IN u0(x), v0

N = IN v0(x). (28)
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4 Theoretical analysis
This section is devoted to discussing the theoretical analysis of the spectral scheme (24)–
(28), including the discrete mass- and energy-conservation laws, boundedness and the
unconditional convergence.

4.1 Conservative properties of the spectral scheme
Theorem 1 The fully discrete spectral scheme (24)–(28) is conservative in the sense that

Mn = M0, 0 ≤ n ≤ M – 1, (29)

En = E0, 0 ≤ n ≤ M – 1, (30)

where Mn and En are defined, respectively, as

Mn :=
1
2
(∥∥un+1

N
∥∥2 +

∥∥vn+1
N

∥∥2 +
∥∥un

N
∥∥2 +

∥∥vn
N
∥∥2) + τ� Im

∫

�

(
vn

N ūn+1
N + un

N v̄n+1
N

)
dx, (31)

En := γ
(∣∣un+1

N
∣
∣2

α
2

+
∣
∣vn+1

N
∣
∣2

α
2

+
∣
∣un

N
∣
∣2

α
2

+
∣
∣vn

N
∣
∣2

α
2

)
– κ

∫

�

(∣∣un
N
∣
∣2∣∣un+1

N
∣
∣2

+
∣
∣vn

N
∣
∣2∣∣vn+1

N
∣
∣2)dx – ρ

∫

�

(∣∣un
N
∣
∣2∣∣vn+1

N
∣
∣2 +

∣
∣vn

N
∣
∣2∣∣un+1

N
∣
∣2)dx – β

(∥∥un+1
N

∥
∥2

+
∥∥vn+1

N
∥∥2 +

∥∥un
N
∥∥2 +

∥∥vn
N
∥∥2) – 2� Re

∫

�

(
un

N v̄n+1
N + vn

N ūn+1
N

)
dx. (32)

Proof Taking w = ũn
N in (24) gives

i
(
δt̂un

N , ũn
N
)

– γ B
(
ũn

N , ũn
N
)

+
((

κ
∣∣un

N
∣∣2 + ρ

∣∣vn
N
∣∣2)ũn

N , ũn
N
)

+ β
(
ũn

N , ũn
N
)

+ �
(
vn

N , ũn
N
)

= 0. (33)

As a result

Re
(
δt̂un

N , ũn
N
)

=
1

4τ

(∥∥un+1
N

∥∥2 –
∥∥un–1

N
∥∥2), Im

{
B
(
ũn

N , ũn
N
)}

= 0, (34)

and

Im
((

κ
∣∣un

N
∣∣2 + ρ

∣∣vn
N
∣∣2)ũn

N , ũn
N
)

= 0, (35)

then considering the imaginary part of (33) yields

1
4τ

(∥∥un+1
N

∥∥2 –
∥∥un–1

N
∥∥2) +

�

2
Im

∫

�

vn
N
(
ūn+1

N + ūn–1
N

)
dx = 0, 1 ≤ n ≤ M – 1. (36)

It further means that

1
2
(∥∥un+1

N
∥
∥2 +

∥
∥un

N
∥
∥2) + τ� Im

∫

�

vn
N ūn+1

N dx

–
1
2
(∥∥un

N
∥∥2 +

∥∥un–1
N

∥∥2) – τ� Im
∫

�

un–1
N v̄n

N dx = 0. (37)
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Taking w = ṽn
N in (25), we arrive at

i
(
δt̂vn

N , ṽn
N
)

– γ B
(
ṽn

N , ṽn
N
)

+
((

κ
∣∣vn

N
∣∣2 + ρ

∣∣un
N
∣∣2)ṽn

N , ṽn
N
)

+ β
(
ṽn

N , ṽn
N
)

+ �
(
un

N , ṽn
N
)

= 0. (38)

Similarly, we take the imaginary part of (38) to get

1
2
(∥∥vn+1

N
∥
∥2 +

∥
∥vn

N
∥
∥2) + τ� Im

∫

�

un
N v̄n+1

N dx

–
1
2
(∥∥vn

N
∥
∥2 +

∥
∥vn–1

N
∥
∥2) – τ� Im

∫

�

vn–1
N ūn

N dx = 0. (39)

Combining (37) and (39), we can conclude that the discrete mass conservation law (29)
holds.

On the other hand, substituting w = δt̂un
N in (24), we arrive at

i
(
δt̂un

N , δt̂un
N
)

– γ B
(
ũn

N , δt̂un
N
)

+
((

κ
∣
∣un

N
∣
∣2 + ρ

∣
∣vn

N
∣
∣2)ũn

N , δt̂un
N
)

+ β
(
ũn

N , δt̂un
N
)

+ �
(
vn

N , δt̂un
N
)

= 0. (40)

It is easy to get

Re
{

B
(
ũn

N , δt̂un
N
)}

=
1

4τ

(∣∣un+1
N

∣
∣2

α
2

–
∣
∣un–1

N
∣
∣2

α
2

)
, (41)

Re
((

κ
∣
∣un

N
∣
∣2 + ρ

∣
∣vn

N
∣
∣2)ũn

N , δt̂un
N
)

=
1

4τ

∫

�

(
κ
∣∣un

N
∣∣2 + ρ

∣∣vn
N
∣∣2)(∣∣un+1

N
∣∣2 –

∣∣un–1
N

∣∣2)dx, (42)

and

Re
(
vn

N , δt̂un
N
)

=
1

2τ
Re

∫

�

(
vn

N ūn+1
N – un–1

N v̄n
N
)

dx. (43)

Taking the real part of (40), and combining with (41)–(43), we have

γ
(∣∣un+1

N
∣∣2

α
2

–
∣∣un–1

N
∣∣2

α
2

)

=
∫

�

(
κ
∣
∣un

N
∣
∣2 + ρ

∣
∣vn

N
∣
∣2)(∣∣un+1

N
∣
∣2 –

∣
∣un–1

N
∣
∣2)dx + β

(∥∥un+1
N

∥
∥2 –

∥
∥un–1

N
∥
∥2)

+ 2� Re
∫

�

(
vn

N ūn+1
N – un–1

N v̄n
N
)

dx, 1 ≤ n ≤ M – 1. (44)

Denoting w = δt̂vn
N in (25), we obtain

i
(
δt̂vn

N , δt̂vn
N
)

– γ B
(
ṽn

N , δt̂vn
N
)

+
((

κ
∣
∣vn

N
∣
∣2 + ρ

∣
∣un

N
∣
∣2)ṽn

N , δt̂vn
N
)

+ β
(
ṽn

N , δt̂vn
N
)

+ �
(
un

N , δt̂vn
N
)

= 0. (45)
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Analogously, taking the real part of the above equation yields

γ
(∣∣vn+1

N
∣
∣2

α
2

–
∣
∣vn–1

N
∣
∣2

α
2

)

=
∫

�

(
κ
∣∣vn

N
∣∣2 + ρ

∣∣un
N
∣∣2)(∣∣vn+1

N
∣∣2 –

∣∣vn–1
N

∣∣2)dx + β
(∥∥vn+1

N
∥∥2 –

∥∥vn–1
N

∥∥2)

+ 2� Re
∫

�

(
un

N v̄n+1
N – vn–1

N ūn
N
)

dx, 1 ≤ n ≤ M – 1. (46)

It is easy to get from (44) and (46)

γ
(∣∣un+1

N
∣∣2

α
2

+
∣∣vn+1

N
∣∣2

α
2

+
∣∣un

N
∣∣2

α
2

+
∣∣vn

N
∣∣2

α
2

)
– κ

∫

�

(∣∣un
N
∣∣2∣∣un+1

N
∣∣2 +

∣∣vn
N
∣∣2∣∣vn+1

N
∣∣2)dx

– ρ

∫

�

(∣∣un
N
∣
∣2∣∣vn+1

N
∣
∣2 +

∣
∣vn

N
∣
∣2∣∣un+1

N
∣
∣2)dx – β

(∥∥un+1
N

∥
∥2 +

∥
∥vn+1

N
∥
∥2 +

∥
∥un

N
∥
∥2 +

∥
∥vn

N
∥
∥2)

– 2� Re
∫

�

(
un

N v̄n+1
N + vn

N ūn+1
N

)
dx

= γ
(∣∣un

N
∣∣2

α
2

+
∣∣vn

N
∣∣2

α
2

+
∣∣un–1

N
∣∣2

α
2

+
∣∣vn–1

N
∣∣2

α
2

)
– κ

∫

�

(∣∣un
N
∣∣2∣∣un–1

N
∣∣2 +

∣∣vn
N
∣∣2∣∣vn–1

N
∣∣2)dx

– ρ

∫

�

(∣∣un
N
∣
∣2∣∣vn–1

N
∣
∣2 +

∣
∣vn

N
∣
∣2∣∣un–1

N
∣
∣2)dx – β

(∥∥un
N
∥
∥2 +

∥
∥vn

N
∥
∥2 +

∥
∥un–1

N
∥
∥2 +

∥
∥vn–1

N
∥
∥2)

– 2� Re
∫

�

(
un–1

N v̄n
N + vn–1

N ūn
N
)

dx, 1 ≤ n ≤ M – 1. (47)

Noticing the definition of En, it follows from (47) that En = En–1 for 1 ≤ n ≤ M – 1, which
further implies that (30) holds. Therefore, we complete the proof. �

4.2 A prior bound
Lemma 4 ([44]) If 1

2 – 1
p < α ≤ 1 and 2 ≤ p ≤ ∞, then there exists a positive constant Cα

such that

‖v‖Lp ≤ Cα‖v‖Hα . (48)

Lemma 5 ([44]) If 0 ≤ α0 ≤ α ≤ 1, 1
2 – 1

p < α0 ≤ 1 and 2 ≤ p ≤ ∞, there exists a constant
Cα0 > 0 such that

‖v‖Lp ≤ Cα0‖v‖
α0
α

Hα‖v‖1– α0
α . (49)

Based on the discrete mass- and energy-conservation laws, we can establish a prior
bound for the numerical solutions of the scheme (24)–(28) in both L2- and L∞-norms.

Theorem 2 The solutions of the fully discrete spectral scheme (24)–(28) are bounded in
the sense that

∥
∥un

N
∥
∥ ≤ C,

∥
∥vn

N
∥
∥ ≤ C, 0 ≤ n ≤ M, (50)

∥
∥un

N
∥
∥

L∞ ≤ C,
∥
∥vn

N
∥
∥

L∞ ≤ C, 0 ≤ n ≤ M. (51)
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Proof It is easy to deduce that

τ� Im
∫

�

(
vn

N ūn+1
N + un

N v̄n+1
N

)
dx

= –τ� Im
∫

�

(
v̄n

N un+1
N + ūn

N vn+1
N

)
dx

≥ –
τ |�|

2
(∥∥un+1

N
∥∥2 +

∥∥un
N
∥∥2 +

∥∥vn+1
N

∥∥2 +
∥∥vn

N
∥∥2). (52)

Combining with the discrete mass conservation law (29), we have

M0 ≥ 1 – τ |�|
2

(∥∥un+1
N

∥
∥2 +

∥
∥un

N
∥
∥2 +

∥
∥vn+1

N
∥
∥2 +

∥
∥vn

N
∥
∥2), 0 ≤ n ≤ M – 1. (53)

When τ ≤ 1
2|�| , it follows from (53) that (50) holds.

Noticing the energy-conservation law (30), we have

κ

∫

�

(∣∣un
N
∣∣2∣∣un+1

N
∣∣2 +

∣∣vn
N
∣∣2∣∣vn+1

N
∣∣2)dx + ρ

∫

�

(∣∣un
N
∣∣2∣∣vn+1

N
∣∣2 +

∣∣vn
N
∣∣2∣∣un+1

N
∣∣2)dx

+ β
(∥∥un+1

N
∥
∥2 +

∥
∥vn+1

N
∥
∥2 +

∥
∥un

N
∥
∥2 +

∥
∥vn

N
∥
∥2) + 2� Re

∫

�

(
un

N v̄n+1
N + vn

N ūn+1
N

)
dx

≤ |κ| + |ρ|
2

(∥∥un
N
∥∥4

L4(�) +
∥∥un+1

N
∥∥4

L4(�) +
∥∥vn

N
∥∥4

L4(�) +
∥∥vn+1

N
∥∥4

L4(�)

)

+
(|β| + |�|)(∥∥un+1

N
∥∥2 +

∥∥vn+1
N

∥∥2 +
∥∥un

N
∥∥2 +

∥∥vn
N
∥∥2)

≤ (|κ| + |ρ|)Cα0

2
(∥∥un

N
∥∥

8α0
α

H
α
2

∥∥un
N
∥∥4– 8α0

α +
∥∥un+1

N
∥∥

8α0
α

H
α
2

∥∥un+1
N

∥∥4– 8α0
α

+
∥∥vn

N
∥∥

8α0
α

H
α
2

∥∥vn
N
∥∥4– 8α0

α +
∥∥vn+1

N
∥∥

8α0
α

H
α
2

∥∥vn+1
N

∥∥4– 8α0
α

)
+ Ĉ

≤ C
(∥∥un

N
∥∥

8α0
α

H
α
2

+
∥∥un+1

N
∥∥

8α0
α

H
α
2

+
∥∥vn

N
∥∥

8α0
α

H
α
2

+
∥∥vn+1

N
∥∥

8α0
α

H
α
2

)
+ Ĉ, (54)

where the Cauchy–Schwartz inequality, (50) and Lemma 5 have been used in deriving the
above inequalities. Since the semi-norm | · | α

2
is equivalent to the semi-norm | · |

H
α
2

, and
noticing Lemma 2, it follows that there exists a positive constant C1 such that

∣∣un
N
∣∣2

α
2

+
∣∣un+1

N
∣∣2

α
2

+
∣∣vn

N
∣∣2

α
2

+
∣∣vn+1

N
∣∣2

α
2

≥ C1
(∥∥un

N
∥∥2

H
α
2 +

∥∥un+1
N

∥∥2
H

α
2 +

∥∥vn
N
∥∥2

H
α
2 +

∥∥vn+1
N

∥∥2
H

α
2

)
. (55)

In view of (30), (54) and (55), we obtain

E1 ≤ C1γ
(∥∥un

N
∥
∥2

H
α
2 +

∥
∥un+1

N
∥
∥2

H
α
2 +

∥
∥vn

N
∥
∥2

H
α
2 +

∥
∥vn+1

N
∥
∥2

H
α
2

)

– C
(∥∥un

N
∥∥

8α0
α

H
α
2

+
∥∥un+1

N
∥∥

8α0
α

H
α
2

+
∥∥vn

N
∥∥

8α0
α

H
α
2

+
∥∥vn+1

N
∥∥

8α0
α

H
α
2

)
– Ĉ. (56)

Noticing that 1 < α ≤ 2, when taking 1
4 < α0 < α

4 , it follows from (56) that E1 → +∞ if
‖un

N‖2
H

α
2

+ ‖un+1
N ‖2

H
α
2

+ ‖vn
N‖2

H
α
2

+ ‖vn+1
N ‖2

H
α
2

→ +∞. However, we can conclude that E1 is
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bounded by the discrete conservation law (30). It will lead to a contradiction. Therefore,
we can deduce that

∥∥un
N
∥∥2

H
α
2 +

∥∥un+1
N

∥∥2
H

α
2 +

∥∥vn
N
∥∥2

H
α
2 +

∥∥vn+1
N

∥∥2
H

α
2 ≤ C. (57)

According Lemma 4, we can further deduce from (57) that (51) holds, which completes
the proof. �

4.3 Convergence analysis
Now we turn to discuss the convergence analysis of the discrete spectral scheme (24)–
(28). To this end, we first introduce the projection operator �

α
2 ,0
N : H

α
2

0 (�) → V 0
N , which

satisfies

B
(
v – �

α
2 ,0
N v, w

)
= 0, ∀w ∈ V 0

N , v ∈ H
α
2

0 (�). (58)

The error estimate of the projection operator �
α
2 ,0
N is given in the following lemma.

Lemma 6 ([25]) Let v ∈ H
α
2

0 (�)
⋂

Hs(�), we have

∥∥v – �
α
2 ,0
N v

∥∥ ≤ CN–s‖v‖Hs(�), α 
= 3
2

, (59)

∥∥v – �
α
2 ,0
N v

∥∥ ≤ CNσ–s‖v‖Hs(�), α =
3
2

,σ ∈ (0, 1/2). (60)

Lemma 7 ([45]) For any complex functions V , W , v and w, we have

∣
∣|V |2W – |v|2w

∣
∣ ≤ (

max
{|V |, |W |, |v|, |w|})2(2|V – v| + |W – w|).

Lemma 8 (Grönwall inequality [46]) Suppose that {gl|l ≥ 0} is a nonnegative sequence,
β > 0, and the sequence {εl|l ≥ 0} satisfies

εn ≤ β +
n–1∑

l=0

pl +
n–1∑

l=0

glεl, n ≥ 1.

If pl ≥ 0 for any l ≥ 0, ε0 ≤ β , then we have

εn ≤
(

β +
n–1∑

l=0

pl

)

exp

( n–1∑

l=0

gl

)

.

For notation convenience, let u 1
2 := u(x, 1

2 ) and v 1
2 := v(x, 1

2 ), and we also use un and vn

to represent the analytical solutions u(x, tn) and u(x, tn), respectively. In view of (24) and
(25), the exact solutions un and vn satisfy the equations

i
(
δt̂un, w

)
– γ B

(
ũn, w

)
+

((
κ
∣∣un∣∣2 + ρ

∣∣vn∣∣2)ũn, w
)

+ β
(
ũn, w

)

+ �
(
vn, w

)
=

(
Rn

u, w
)
, ∀w ∈ V 0

N , 1 ≤ n ≤ M – 1, (61)
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i
(
δt̂vn, w

)
– γ B

(
ṽn

N , w
)

+
((

κ
∣
∣vn∣∣2 + ρ

∣
∣un∣∣2)ṽn, w

)
+ β

(
ṽn, w

)

+ �
(
un, w

)
=

(
Rn

v , w
)
, ∀w ∈ V 0

N , 1 ≤ n ≤ M – 1, (62)

where the local truncation errors Rn
u and Rn

v are defined as

Rn
u := i

(
δt̂un – un

t
)

– γ (–�)
α
2
(
ũn – un) +

(
κ
∣∣un∣∣2 + ρ

∣∣vn∣∣2)(ũn – un)

+ β
(
ũn – un), (63)

Rn
v := i

(
δt̂vn – vn

t
)

– γ (–�)
α
2
(
ṽn – vn) +

(
κ
∣∣vn∣∣2 + ρ

∣∣un∣∣2)(ṽn – vn)

+ β
(
ṽn – vn). (64)

From (26) and (27), we can also deduce that

i
(
δtu

1
2 , w

)
– γ B

(
û

1
2 , w

)
+

1
2
((

κ
(∣∣u1∣∣2 +

∣∣u0
N
∣∣2) + ρ

(∣∣v1∣∣2 +
∣∣v0∣∣2))û

1
2 , w

)

+ β
(
û

1
2 , w

)
+ �

(
v̂

1
2 , w

)
=

(
R0

u, w
)
, ∀w ∈ V 0

N , (65)

i
(
δtv

1
2 , w

)
– γ B

(
v̂

1
2 , w

)
+

1
2
((

κ
(∣∣v1∣∣2 +

∣
∣v0∣∣2) + ρ

(∣∣u1∣∣2 +
∣
∣u0∣∣2))v̂

1
2 , w

)

+ β
(
v̂

1
2 , w

)
+ �

(
û

1
2 , w

)
=

(
R0

v , w
)
, ∀w ∈ V 0

N , (66)

where the local truncation errors R0
u and R0

v are given as

R0
u := i

(
δtu

1
2 – u

1
2
t
)

– γ (–�)
α
2
(
û

1
2 – u

1
2
)

+
1
2
(
κ
(∣∣u1∣∣2 +

∣
∣u0

N
∣
∣2)

+ ρ
(∣∣v1∣∣2 +

∣
∣v0∣∣2))û

1
2 –

(
κ
∣
∣u

1
2
∣
∣2 + ρ

∣
∣v

1
2
∣
∣2)u

1
2 + β

(
û

1
2 – u

1
2
)

+ �
(
v̂

1
2 – v

1
2
)
, (67)

R0
v := i

(
δtv

1
2 – v

1
2
t
)

– γ (–�)
α
2
(
v̂

1
2 – v

1
2
)

+
1
2
(
κ
(∣∣v1∣∣2 +

∣
∣v0

N
∣
∣2)

+ ρ
(∣∣u1∣∣2 +

∣∣u0∣∣2))v̂
1
2 –

(
κ
∣∣v

1
2
∣∣2 + ρ

∣∣u
1
2
∣∣2)v

1
2 + β

(
v̂

1
2 – v

1
2
)

+ �
(
û

1
2 – u

1
2
)
. (68)

By virtue of a Taylor expansion, we can deduce that

∥∥Rn
u
∥∥ ≤ Cτ 2,

∥∥Rn
v
∥∥ ≤ Cτ 2, 0 ≤ n ≤ M – 1. (69)

Next, we focus on a rigorous convergence analysis for the spectral scheme (24)–(28).

Theorem 3 Assume that the analytical solutions of the Schrödinger system (1)–(4) satisfy
u, v ∈ C3(0, T ; H

α
2

0 (�)
⋂

Hs(�)). Then there exists a positive constant τ0 such that when
τ < τ0, the solutions of the fully discrete spectral scheme (24)–(28) satisfy

max
1≤n≤M

(∥∥un – un
N
∥∥ +

∥∥vn – vn
N
∥∥) ≤ C

(
τ 2 + N–s), α 
= 3

2
, (70)

max
1≤n≤M

(∥∥un – un
N
∥
∥ +

∥
∥vn – vn

N
∥
∥) ≤ C

(
τ 2 + Nσ–s), α =

3
2

, 0 < σ < 1/2, (71)

where C is a positive constant which is independent of τ and N .



Fei et al. Advances in Difference Equations        (2020) 2020:661 Page 12 of 23

Proof We first consider the case of α 
= 3
2 . To derive the convergence result of the spectral

scheme (24)–(28), we split the errors into

en
u := un – un

N =
(
un – �

α
2 ,0
N un) +

(
�

α
2 ,0
N un – un

N
)

:= φn + θn, 0 ≤ n ≤ M, (72)

en
v := vn – vn

N =
(
vn – �

α
2 ,0
N vn) +

(
�

α
2 ,0
N vn – vn

N
)

:= ξn + ηn, 0 ≤ n ≤ M. (73)

Subtracting (24) from (61) and subtracting (25) from (62), we arrive at

i
(
δt̂en

u, w
)

– γ B
(
ẽn

u, w
)

+
(
Gn

u, w
)

+ β
(
ẽn

u, w
)

+ �
(
en

v , w
)

=
(
Rn

u, w
)
, ∀w ∈ V 0

N , (74)

i
(
δt̂en

v , w
)

– γ B
(
ẽn

v , w
)

+
(
Gn

v , w
)

+ β
(
ẽn

v , w
)

+ �
(
en

u, w
)

=
(
Rn

v , w
)
, ∀w ∈ V 0

N , (75)

where

Gn
u := κ

(∣∣un∣∣2ũn –
∣
∣un

N
∣
∣2ũn

N
)

+ ρ
(∣∣vn∣∣2ũn –

∣
∣vn

N
∣
∣2ũn

N
)
, (76)

Gn
v := κ

(∣∣vn∣∣2ṽn –
∣
∣vn

N
∣
∣2ṽn

N
)

+ ρ
(∣∣un∣∣2ṽn –

∣
∣un

N
∣
∣2ṽn

N
)
. (77)

By virtue of (58), (72) and (73), the above equations (74) and (75) can be rewritten in the
following equivalent form:

i
(
δt̂θ

n, w
)

– γ B
(
θ̃n, w

)
+

(
Gn

u, w
)

+ β
(
θ̃n, w

)
+ �

(
ηn, w

)
=

(
R̄n

u, w
)
, ∀w ∈ V 0

N , (78)

i
(
δt̂η

n, w
)

– γ B
(
η̃n, w

)
+

(
Gn

v , w
)

+ β
(
η̃n, w

)
+ �

(
θn, w

)
=

(
R̄n

v , w
)
, ∀w ∈ V 0

N , (79)

where

R̄n
u := Rn

u – iδt̂φ
n – βφ̃n – �ξn, R̄n

v := Rn
v – iδt̂ξ

n – βξ̃n – �φn. (80)

Analogously, it follows from (26), (27), (65) and (66) that

i
(
δtθ

1
2 , w

)
– γ B

(
θ̂

1
2 , w

)
+

(
G

1
2
u , w

)
+ β

(
θ̂

1
2 , w

)
+ �

(
η̂

1
2 , w

)
=

(
R̄0

u, w
)
, ∀w ∈ V 0

N , (81)

i
(
δtη

1
2 , w

)
– γ B

(
η̂

1
2 , w

)
+

(
G

1
2
v , w

)
+ β

(
η̂

1
2 , w

)
+ �

(
θ̂

1
2 , w

)
=

(
R̄0

v , w
)
, ∀w ∈ V 0

N , (82)

where

G
1
2
u :=

κ

2
[(∣∣u1∣∣2û

1
2 –

∣∣u1
N
∣∣2û

1
2
N
)

+
(∣∣u0∣∣2û

1
2 –

∣∣u0
N
∣∣2û

1
2
N
)]

+
ρ

2
[(∣∣v1∣∣2û

1
2 –

∣
∣v1

N
∣
∣2û

1
2
N
)

+
(∣∣v0∣∣2û

1
2 –

∣
∣v0

N
∣
∣2û

1
2
N
)]

, (83)

G
1
2
v :=

κ

2
[(∣∣v1∣∣2v̂

1
2 –

∣
∣v1

N
∣
∣2v̂

1
2
N
)

+
(∣∣v0∣∣2v̂

1
2 –

∣
∣v0

N
∣
∣2v̂

1
2
N
)]

+
ρ

2
[(∣∣u1∣∣2v̂

1
2 –

∣∣u1
N
∣∣2v̂

1
2
N
)

+
(∣∣u0∣∣2v̂

1
2 –

∣∣u0
N
∣∣2v̂

1
2
N
)]

, (84)

R̄0
u := R0

u – iδtφ
1
2 – βφ̂

1
2 – �ξ̂

1
2 , R̄0

v := R0
v – iδtξ

1
2 – βξ̂

1
2 – �φ̂

1
2 . (85)
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Thanks to Lemma 6 and (69), we obtain

∥
∥R̄n

u
∥
∥ +

∥
∥R̄n

v
∥
∥ ≤ C

(
τ 2 + N–s), 0 ≤ n ≤ M – 1. (86)

Now taking w = θ̂
1
2 in (81) and w = η̂

1
2 in (82), and then considering the imaginary part

of the resulting equations, we have

1
2τ

(∥∥θ1∥∥2 –
∥∥θ0∥∥2) + Im

(
G

1
2
u , θ̂

1
2
)

+ � Im
(
η̂

1
2 , θ̂

1
2
)

= Im
(
R̄0

u, θ̂
1
2
)
, (87)

1
2τ

(∥∥η1∥∥2 –
∥∥η0∥∥2) + Im

(
G

1
2
v , η̂

1
2
)

+ � Im
(
θ̂

1
2 , η̂

1
2
)

= Im
(
R̄0

v , η̂
1
2
)
. (88)

It is obvious that Im(η̂ 1
2 , θ̂ 1

2 ) + Im(θ̂ 1
2 , η̂ 1

2 ) = 0, then adding (87) and (88) leads to

∥∥θ1∥∥2 +
∥∥η1∥∥2 =

∥∥θ0∥∥2 +
∥∥η0∥∥2 – 2τ Im

(
G

1
2
u , θ̂

1
2
)

– 2τ Im
(
G

1
2
v , η̂

1
2
)

+ 2τ Im
[(

R̄0
u, θ̂

1
2
)

+
(
R̄0

v , η̂
1
2
)]

. (89)

Noticing the definition of G
1
2
u , and using Lemma 7 as well as Theorem 2, we observe that

∣
∣G

1
2
u
∣
∣ ≤ |κ|

2
(∣∣

∣
∣u1∣∣2û

1
2 –

∣
∣u1

N
∣
∣2û

1
2
N
∣
∣ +

∣
∣
∣
∣u0∣∣2û

1
2 –

∣
∣u0

N
∣
∣2û

1
2
N
∣
∣)

+
|ρ|
2

(∣∣∣∣v1∣∣2û
1
2 –

∣∣v1
N
∣∣2û

1
2
N
∣∣ +

∣∣∣∣v0∣∣2û
1
2 –

∣∣v0
N
∣∣2û

1
2
N
∣∣)

≤ C4
(∣∣φ1∣∣ +

∣
∣θ1∣∣ +

∣
∣φ0∣∣ +

∣
∣θ0∣∣ +

∣
∣ξ 1∣∣ +

∣
∣η1∣∣ +

∣
∣ξ 0∣∣ +

∣
∣η0∣∣), (90)

where C4 denotes a positive constant. Following a similar analysis, we also conclude that

∣∣G
1
2
v
∣∣ ≤ C4

(∣∣φ1∣∣ +
∣∣θ1∣∣ +

∣∣φ0∣∣ +
∣∣θ0∣∣ +

∣∣ξ 1∣∣ +
∣∣η1∣∣ +

∣∣ξ 0∣∣ +
∣∣η0∣∣). (91)

Therefore, we further deduce that

∣
∣Im

(
G

1
2
u , θ̂

1
2
)∣∣

≤
∫

�

∣∣G
1
2
u
∣∣ · ∣∣θ̂ 1

2
∣∣dx

≤ C4

∫

�

(∣∣φ1∣∣ +
∣∣θ1∣∣ +

∣∣φ0∣∣ +
∣∣θ0∣∣ +

∣∣ξ 1∣∣ +
∣∣η1∣∣ +

∣∣ξ 0∣∣ +
∣∣η0∣∣)∣∣θ̂

1
2
∣∣dx

≤ C4

2
(∥∥φ1∥∥2 +

∥
∥φ0∥∥2 +

∥
∥ξ 1∥∥2 +

∥
∥ξ 0∥∥2 +

∥
∥η1∥∥2 +

∥
∥η0∥∥2 + 5

∥
∥θ1∥∥2 + 5

∥
∥θ0∥∥2). (92)

Analogously, we find that

∣
∣Im

(
G

1
2
v , η̂

1
2
)∣∣ ≤ C4

2
(∥∥φ1∥∥2 +

∥
∥φ0∥∥2 +

∥
∥ξ 1∥∥2 +

∥
∥ξ 0∥∥2 +

∥
∥θ1∥∥2

+
∥
∥θ0∥∥2 + 5

∥
∥η1∥∥2 + 5

∥
∥η0∥∥2). (93)
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Obviously, we can also deduce that

Im
[(

R̄0
u, θ̂

1
2
)

+
(
R̄0

v , η̂
1
2
)]

≤ 1
2
(∥∥R̄0

u
∥
∥ · ∥∥θ1 + θ0∥∥ +

∥
∥R̄0

v
∥
∥ · ∥∥η1 + η0∥∥)

≤ 1
2

[∥
∥R̄0

u
∥
∥2 +

∥
∥R̄0

v
∥
∥2 +

1
2
(∥∥θ1∥∥2 +

∥
∥θ0∥∥2 +

∥
∥η1∥∥2 +

∥
∥η0∥∥2)

]
. (94)

Substituting (92)–(94) into (89), we have

∥
∥θ1∥∥2 +

∥
∥η1∥∥2

=
∥
∥θ0∥∥2 +

∥
∥η0∥∥2 + τ

(
6C4 +

1
2

)(∥∥θ1∥∥2 +
∥
∥θ0∥∥2 +

∥
∥η1∥∥2 +

∥
∥η0∥∥2)

+ 2C4τ
(∥∥φ1∥∥2 +

∥∥φ0∥∥2 +
∥∥ξ 1∥∥2 +

∥∥ξ 0∥∥2) + τ
(∥∥R̄0

u
∥∥2 +

∥∥R̄0
v
∥∥2). (95)

This, combined with Lemma 6 and (86), gives

(
1 – τ

(
6C4 +

1
2

))(∥∥θ1∥∥2 +
∥
∥η1∥∥2)

≤
(

1 + τ

(
6C4 +

1
2

))(∥∥θ0∥∥2 +
∥
∥η0∥∥2) + Cτ

(
τ 2 + N–s). (96)

Moreover, one easily gets

∥∥θ0∥∥ =
∥∥�

α
2 ,0
N u0 – IN u0∥∥ ≤ ∥∥�

α
2 ,0
N u0 – u0∥∥ +

∥∥u0 – IN u0∥∥ ≤ CN–s, (97)
∥∥η0∥∥ =

∥∥�
α
2 ,0
N v0 – IN v0∥∥ ≤ ∥∥�

α
2 ,0
N v0 – v0∥∥ +

∥∥v0 – IN v0∥∥ ≤ CN–s. (98)

Therefore, when the time step τ in (96) is chosen sufficiently small such that τ ≤ 1
(12C4+1) ,

it follows from (96)–(98) that

∥
∥θ1∥∥2 +

∥
∥η1∥∥2 ≤ C

(
τ 2 + N–s). (99)

This together with Lemma 6 and the triangle inequality implies that (70) holds for n = 1.
By mathematical induction, we assume that (70) is valid for 1 ≤ n ≤ m. Now we turn to

a proof that the stated conclusion still holds for n = m + 1. To this end, taking w = θ̃n in
(78) and w = η̃n in (79), respectively, and considering the imaginary part of the resulting
equations, we have

1
4τ

(∥∥θn+1∥∥2 –
∥∥θn–1∥∥2) + Im

(
Gn

u, θ̃n) + � Im
(
ηn, θ̃n) = Im

(
R̄n

u, θ̃n), (100)

1
4τ

(∥∥ηn+1∥∥2 –
∥
∥ηn–1∥∥2) + Im

(
Gn

v , η̃n) + � Im
(
θn, η̃n) = Im

(
R̄n

v , η̃n). (101)
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Combining (100) and (101) gives

∥
∥θn+1∥∥2 +

∥
∥ηn+1∥∥2

=
∥
∥θn–1∥∥2 +

∥
∥ηn–1∥∥2 – 4τ Im

(
Gn

u, θ̃n) – 4τ Im
(
Gn

v , η̃n)

– 4τ� Im
(
ηn, θ̃n) – 4τ Im�

(
θn, η̃n) + 4τ Im

(
R̄n

u, θ̃n) + 4τ Im
(
R̄n

v , η̃n). (102)

In view of the definition of Gn
u, Lemma 7 and Theorem 2,

∣∣Gn
u
∣∣ ≤ |κ|(∣∣∣∣un∣∣2ũn –

∣∣un
N
∣∣2ũn

N
∣∣) + |ρ|(∣∣∣∣vn∣∣2ũn –

∣∣vn
N
∣∣2ũn

N
∣∣)

≤ C4
(∣∣φn+1∣∣ +

∣
∣θn+1∣∣ +

∣
∣φn∣∣ +

∣
∣θn∣∣ +

∣
∣ξn∣∣ +

∣
∣ηn∣∣ +

∣
∣φn–1∣∣ +

∣
∣θn–1∣∣) (103)

and

∣
∣Gn

v
∣
∣ ≤ C4

(∣∣ξn+1∣∣ +
∣
∣ηn+1∣∣ +

∣
∣φn∣∣ +

∣
∣θn∣∣ +

∣
∣ξn∣∣ +

∣
∣ηn∣∣ +

∣
∣ξn–1∣∣ +

∣
∣ηn–1∣∣). (104)

Hence, we furthermore obtain

∣∣Im
(
Gn

u, θ̃n)∣∣

≤
∫

�

∣
∣Gn

u
∣
∣ · ∣∣θ̃n∣∣dx

≤ C4

∫

�

(∣∣φn+1∣∣ +
∣∣θn+1∣∣ +

∣∣φn∣∣ +
∣∣θn∣∣ +

∣∣ξn∣∣ +
∣∣ηn∣∣ +

∣∣φn–1∣∣ +
∣∣θn–1∣∣)∣∣θ̃n∣∣dx

≤ C4

2
(∥∥φn+1∥∥2 + 5

∥
∥θn+1∥∥2 +

∥
∥φn∥∥2 +

∥
∥θn∥∥2 +

∥
∥ξn∥∥2 +

∥
∥ηn∥∥2

+
∥
∥φn–1∥∥2 + 5

∥
∥θn–1∥∥2) (105)

and

∣
∣Im

(
Gn

v , η̃n)∣∣ ≤ C4

2
(∥∥ξn+1∥∥2 + 5

∥
∥ηn+1∥∥2 +

∥
∥φn∥∥2 +

∥
∥θn∥∥2 +

∥
∥ξn∥∥2

+
∥
∥ηn∥∥2 +

∥
∥ξn–1∥∥2 + 5

∥
∥ηn–1∥∥2). (106)

Also, we can conclude that

Im
(
ηn, θ̃n) + Im�

(
θn, η̃n)

≤ 1
2

[∥∥ηn∥∥2 +
∥∥θn∥∥2 +

1
2
(∥∥θn+1∥∥2 +

∥∥θn–1∥∥2 +
∥∥ηn+1∥∥2 +

∥∥ηn–1∥∥2)
]

(107)

and

Im
(
R̄n

u, θ̃n) + Im
(
R̄n

v , η̃n)

≤ 1
2

[∥∥R̄n
u
∥∥2 +

∥∥R̄n
v
∥∥2 +

1
2
(∥∥θn+1∥∥2 +

∥∥θn–1∥∥2 +
∥∥ηn+1∥∥2 +

∥∥ηn–1∥∥2)
]

. (108)
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Substituting (105)–(108) into (102), we obtain

∥∥θn+1∥∥2 +
∥∥ηn+1∥∥2

≤ ∥∥θn–1∥∥2 +
∥∥ηn–1∥∥2 + 2τ

(∥∥R̄n
u
∥∥2 +

∥∥R̄n
v
∥∥2)

+ 2C4τ
(∥∥φn+1∥∥2 +

∥∥ξn+1∥∥2 + 2
∥∥φn∥∥2 + 2

∥∥ξn∥∥2 +
∥∥φn–1∥∥2 +

∥∥ξn–1∥∥2)

+
(
10C4 + 2|�| + 1

)
τ
(∥∥θn+1∥∥2 +

∥∥ηn+1∥∥2 +
∥∥θn∥∥2

+
∥∥ηn∥∥2 +

∥∥θn–1∥∥2 +
∥∥ηn–1∥∥2). (109)

By virtue of Lemma 6 and (86), it follows from (109) that

∥
∥θn+1∥∥2 +

∥
∥ηn+1∥∥2

≤ ∥
∥θn–1∥∥2 +

∥
∥ηn–1∥∥2 +

(
10C4 + 2|�| + 1

)
τ
(∥∥θn+1∥∥2 +

∥
∥ηn+1∥∥2 (110)

+
∥
∥θn∥∥2 +

∥
∥ηn∥∥2 +

∥
∥θn–1∥∥2 +

∥
∥ηn–1∥∥2) + Cτ

(
τ 2 + N–s). (111)

Summing (111) for n from 1 to m leads to

∥∥θm+1∥∥2 +
∥∥ηm+1∥∥2 +

∥∥θm∥∥2 +
∥∥ηm∥∥2

≤ (
10C4 + 2|�| + 1

)
τ
(∥∥θm+1∥∥2 +

∥∥ηm+1∥∥2) +
∥∥θ1∥∥2 +

∥∥η1∥∥2

+
(
1 +

(
10C4 + 2|�| + 1

)
τ
)(∥∥θ0∥∥2 +

∥∥η0∥∥2)

+ 3
(
10C4 + 2|�| + 1

)
τ

m∑

n=1

(∥∥θn∥∥2 +
∥∥ηn∥∥2) + mCτ

(
τ 2 + N–s). (112)

This combined with (97)–(99) gives

∥∥θm+1∥∥2 +
∥∥ηm+1∥∥2

≤ (
10C4 + 2|�| + 1

)
τ
(∥∥θm+1∥∥2 +

∥∥ηm+1∥∥2) + C
(
τ 2 + N–s)

+ 3
(
10C4 + 2|�| + 1

)
τ

m∑

n=1

(∥∥θ l∥∥2 +
∥∥ηl∥∥2) + mCτ

(
τ 2 + N–s). (113)

Consequently, when τ ≤ 1
2(10C4+2|�|+1) , from Lemma 8

∥
∥θm+1∥∥2 +

∥
∥ηm+1∥∥2 ≤ C(1 + mCτ ) exp(mCτ )

(
τ 2 + N–s), (114)

which further indicates that

∥∥em+1
u

∥∥ +
∥∥em+1

v
∥∥ ≤ C

(
τ 2 + N–s), (115)

where Lemma 6 and the triangle inequality have been used. It means that the conclusion
(70) still holds for n = m + 1, which completes the proof of Theorem 3 for α 
= 3

2 .
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For the case of α = 3
2 , the stated result (71) can be obtained by a similar analysis. Hence,

we have completed the proof of Theorem 3. �

5 Numerical experiment
In this section, we present some numerical results to confirm our theoretical analysis of
the spectral scheme (24)–(28).

Example 1 Consider the following strongly coupled fractional Schrödinger system:

iut – (–�)
α
2 u + 2

(|u|2 + |v|2)u + u + v = 0, x ∈ �, 0 < t ≤ T , (116)

ivt – (–�)
α
2 v + 2

(|v|2 + |u|2)v + v + u = 0, x ∈ �, 0 < t ≤ T , (117)

subject to the initial conditions

u(x, 0) = sech(x + 10) exp(3ix),

v(x, 0) = sech(x – 10) exp(–3ix), x ∈ �,
(118)

and the homogeneous boundary conditions

u(x, t) = 0, v(x, t) = 0, x ∈ R\�, 0 ≤ t ≤ T , (119)

where the computation domain is chosen sufficiently large as � = (–25, 25).
The first objective is to check the convergence behavior of the spectral scheme (24)–

(28). Since the analytical solutions of the system (116)–(119) are difficult to find, we take
the numerical solutions computed by fixed τ = 10–5 and N = 512 as the “exact” solutions.
When fixing N = 512, we present the L2-errors with different time steps in Fig. 1. It can be

Figure 1 The L2-error versus time step with N = 512. It shows that the derived spectral scheme has
second-order temporal accuracy
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Figure 2 The L2-error versus N with τ = 10–5. It shows that the derived spectral scheme has spectral accuracy
in space

Figure 3 The values of the mass Mn for different α with time evolution. It shows that the spectral scheme
preserves the total discrete mass very well and the values of the mass Mn are independent of α

observed that the derived spectral scheme has second-order temporal accuracy. Moreover,
we fix τ = 10–5 and plot the L2-errors with the change of N in Fig. 2. It shows that the errors
are exponentially decaying with N increases, and this indicates the spectral accuracy in
space.

Now we turn to a validation of the discrete conservation laws of Theorem 1. To the
end, we take τ = 0.001 and N = 256 and depict the mass Mn and the energy En as well as
corresponding error functions for different α in Figs. 3–6. It can be found that the spec-
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Figure 4 The values of the error function enM := |Mn –M0| for different α with time evolution. It shows that the
spectral scheme preserves the total discrete mass very well

Figure 5 The values of the energy En for different α with time evolution. It shows that the spectral scheme
preserves the total discrete energy very well and the values of the energy En are dependent of α

tral scheme preserves the total discrete mass and energy very well. Moreover, it can be
observed that the values of the mass Mn are independent of α, while the values of the en-
ergy En are dependent of α. These numerical results are all in line with our theoretical
analysis. Finally, we plot the graphs of the numerical solutions for α = 1.6 and α = 1.95
in Figs. 7 and 8. It shows that the value of α affects the shape of wave functions dramati-
cally.
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Figure 6 The values of the error function enE := |En – E1| for different α with time evolution. It shows that the
spectral scheme preserves the total discrete energy very well

Figure 7 The Graphs of |u| and |v| for α = 1.7 with time evolution

6 Conclusion
In the current work, we have constructed a linearized Galerkin–Legendre spectral method
for solving the strongly coupled nonlinear fractional Schrödinger equations. The main
novelty of this paper is that the proposed scheme can preserve both the mass- and the
energy-conservation laws in the discrete sense, and the optimal error estimate is estab-
lished rigorously without imposing any restriction on the grid ratio. The discrete scheme
is efficient in the sense that only a linear system needs to be solved at each time step. The-
oretical results show that our scheme is second-order convergent in time and at the same
time has the advantage of spectral accuracy in space. Numerical results show that the de-
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Figure 8 The Graphs of |u| and |v| for α = 1.95 with time evolution

rived scheme is quite efficient and exhibits remarkable mass- and energy-preserving prop-
erties. The spectral method and corresponding theoretical analysis for high-dimensional
SCFSEs is worth of further investigation.
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