
Shen and Shen Advances in Difference Equations        (2020) 2020:565 
https://doi.org/10.1186/s13662-020-03015-y

R E S E A R C H Open Access

https://doi.org/10.1186/s13662-020-03015-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03015-y&domain=pdf
mailto:stfcool@126.com


Shen and Shen Advances in Difference Equations        (2020) 2020:565 Page 2 of 15

Fractional di�erential equations have a wide application background on many research
�elds such as physics, biology, electrical circuits, material, etc. (see [1�7]). For instance,
Leszczynski and Blaszczyk [2] took advantage of a fractional di�erential model to show
the height of granular material falling over time in a silo:

CD�
T�D

�
a+h

� (t) + �h� (t) = 0, t � [0,T],

where CD�
T� represents left Caputo fractional derivative, D�

a+ means right Caputo frac-
tional derivative with � � (0, 1), h� (t) = hbed � h(t) in which h(t) acts as dropping height
for silo emptying and hbed stands for the initial bed height. In recent years, more and
more scholars have focused on investigating the existence and multiplicity of solutions
to boundary value problems of fractional di�erential equations by various methods such
as �xed point theory (see [8�10]), coincidence degree method (see [11�14]), critical point
theory (see [15, 16]), etc. For example, by the �xed point theorem for multivalued opera-
tors, Ahmad and Ntouyas [9] considered the existence of solutions to the following frac-
tional di�erential inclusions with nonlocal multi-point ErdØlyi�Kober fractional integral
boundary value conditions:

�
Dq

0+x(t) � F(t,x(t)) +G(t,x(t)), t � (0,T),
x(0) = 0, �x(T) =

	m
i=1 �iI

�i ,�i
�i x(	i),

(1.2)

where �,�i � R, 	i � (0,T), i = 1, 2, . . . ,m, Dq
0+ is Riemann�Liouville fractional derivative

of order q that 1 < q � 2, I�i ,�i�i is the ErdØlyi�Kober fractional integral of order �i > 0 with
�i > 0, and �i � R, i = 1, 2, . . . ,m, F ,G : [0,T] × R � P(R) are multivalued maps, where
P(R) is the family of all nonempty subsets of R.
As is known to all, the boundary value problem with p-Laplacian operator is a classical

problem in di�erential equations of integer order (see [17�19] and the references therein).
Recently, a growing number of scholars have devoted their attention to studying fractional
boundary value problems with p-Laplacian operator (see [20�23]). For example, by con-
structing Green�s functions and using some �xed point theorems, Mahmudov and Unul
[20] considered the existence and uniqueness of solutions to integral boundary value prob-
lem of the following fractional di�erential equations with p-Laplacian operator:

�
����

����

D�
0+�p(D�

0+x(t)) = f (t,x(t),D�
0+x(t)), t � [0, 1],

x(0) +µ1x(1) = �1

 1
0 g(s,x(s))ds,

x�(0) +µ2x�(1) = �2

 1
0 h(s,x(s))ds,

D�
0+x(0) = 0, D�

0+x(1) = �D�
0+x(�),

(1.3)

where D�
0+, D

�
0+, D

�
0+ are Caputo fractional derivatives, 1 < � � 2, 0 < � ,� � 1, 0 < � < 1,

�,µi,�i > 0 (i = 1, 2), �p(·) is a p-Laplacian operator, f , g , h are continuous. After that,
Shen and Liu [24] studied the following integral boundary value problem of fractional
di�erential equations with p(t)-Laplacian operator at non-resonance or resonance:

�
D�

0+�p(t)(D�
0+x(t)) + f (t,x(t)) = 0, t � (0, 1),

x(0) = 0, D��1
0+ x(1) = � I��10+ x(�), D�

0+x(0) = 0,
(1.4)
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where 1 < � � 2, 0 < � � 1, D�
0+ and D�

0+ are Riemann�Liouville fractional derivatives,
� > 0, 0 < � < 1, f : [0, 1] × R � R is continuous. �p(t)(·) is a p(t)-Laplacian opera-
tor with p(t) � C1[0, 1] and p(t) > 1. Note that the dimension of the kernel of operator
D�

0+�p(t)(D�
0+x) is equal to 1 when � �2��2 = 
(2� � 1) that is called the resonant case. By

the coincidence degree method, the existence of solutions to problem (1.4) was obtained.
It should be mentioned that the p(t)-Laplacian operator acts as the generalized operator
which occurs inmany research �elds such as elasticity theory, image restoration, and non-
linear electrorheological �uids (see [25�27]). Moreover, for boundary value problems of
di�erential equations of integer order with p(t)-Laplacian operator, please refer to [28, 29]
and the references therein. Note that it is a nonstandard growth operator and can turn
into the p-Laplacian operator when p(t) = p.
Motivated by the above work, in our paper we aim to study the existence of solutions to

problem (1.1). It should be emphasized that the ErdØlyi�Kober fractional integral operator
is a generalization of the integral of integer order and can convert into Riemann�Liouville
fractional integral with a power weight when � = 1 and � = 0. So, a problem of this type
becomes more interesting and challenging. Moreover, noting that the dimension of the
kernel of operator D�

0+�p(t)(D�
0+x) is equal to 2 in (1.1), it will cause a lot of di�culties

when we use the coincidence degree method such as constructing continuous linear pro-
jections. Thus, our results extend and enrich some existing papers. Furthermore, there
are few papers studying fractional integral boundary value problem with p(t)-Laplacian
operator.

2 Preliminaries
For the convenience of readers, some basic knowledge will be presented.

Definition 2.1 ([30]) Let X and Y be real Banach spaces, and let L : domL � X � Y be
a linear operator. If dim KerL = codim ImL < +� and ImL is a closed subset in Y , then L
is a Fredholm operator with index zero. De�ne the continuous linear projections P : X �

X and Q : Y � Y that satisfy ImP = KerL and KerQ = ImL; it follows that L|domL	 KerP :
domL 	 KerP � ImL is reversible. Denote its inverse map by KP , and let KP,Q = KP(I �Q).
If 
 is an open bounded subset of X and domL 	 
 
= � , the map N is L-compact on 

when QN : 
 � Y is bounded and KP(I �Q)N :
 � X is compact.

Lemma 2.2 ([30]) Let L : domL � X � Y be a Fredholm operator of index zero and N :
X � Y be L-compact on 
. Assume that the following conditions are satisfied:

(i) Lx 
= �Nx for every (x,�) � [(domL \ KerL)] 	 �
 × (0, 1);
(ii) Nx /� ImL for every x � KerL 	 �
;

(iii) deg(QN |KerL,KerL 	 
, 0) 
= 0, where Q : Y � Y is a projection such that
ImL = KerQ.

Then the equation Lx =Nx has at least one solution in domL 	 
.

Definition 2.3 ([1]) The Riemann�Liouville fractional integral of order � > 0 for the func-
tion x : (0, +� ) � R is de�ned by

I�0+x(t) =
1


(�)

� t

0
(t � s)��1x(s) ds,
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provided the right-hand side is pointwise de�ned on (0,+� ), where 
(�) is the standard
gamma function.

Definition 2.4 ([1]) The Riemann�Liouville fractional derivative of order � > 0 of x :
(0, +� ) � R is de�ned by

D�
0+u(t) =

1

(n � �)

�
d
dt

�n � t

0
(t � s)n���1x(s)ds,

provided the right-hand side integral is pointwise de�ned on (0,+� ), where n = [�] + 1.

Definition 2.5 ([1]) The Erdlyi�Kober fractional integral of order � > 0 with � > 0 and
� � R of a continuous function x : (0, � ) � R is de�ned by

I� ,�0+,�x(t) =
�t��(�+� )


(�)

� t

0

s��+��1x(s)
(t� � s�)1�� ds,

provided the right-hand side is pointwise de�ned on (0,+� ).

Remark 2.6 If � = 1, � > 0, and � > 0, the above operator changes into the Kober opera-
tor (see [31]). Moreover, if � = 0, the Kober operator turns into the following Riemann�
Liouville fractional integral with a power weight:

I1,�0+,1x(t) =
t��


(�)

� t

0
(t � s)��1x(s)ds, � > 0.

Lemma 2.7 ([1]) If x(t) � Lp(0, 1) (1 � p � � ), then
(i) D�

0+I�0+x(t) = x(t) with � > 0 holds almost everywhere on [0, 1];
(ii) D�

0+I�0+x(t) = I���
0+ x(t) with � > � > 0 holds almost everywhere on [0, 1].

Lemma 2.8 ([1]) Let � � 0,m � N, and D = d/dt. If the fractional derivatives D�
0+x(t) and

D�+m
0+ x(t) exist, then

DmD�
0+x(t) =D�+m

0+ x(t).

Lemma 2.9 ([1]) The following equalities hold for fractional integral and derivative:
(i) If � � 0, � > �1, � 
= � � i, i = 1, 2, . . . , [�] + 1, we have

D�
0+t

� =

(� + 1)


(� � � + 1)
t��� .

Moreover, D�
0+t��i = 0, i = 1, 2, . . . , [�] + 1.

(ii) If � > 0, � > �1, we have

I�0+t
� =


(� + 1)

(� + � + 1)

t�+� .

(iii) If �,�,� > 0, � � 0, we have

I� ,�0+,�t
� =

t�
(� + (�/�) + 1)

(� + (�/�) + � + 1)

.
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Lemma 2.10 ([1]) Assume that x � C(0, 1) 	 L1(0, 1) with a fractional derivative of order
� > 0 which belongs to C(0, 1) 	 L1(0, 1). Then

I�0+D
�
0+x(t) = x(t) + c1t��1 + c2t��2 + · · · + cNt��N

for some ci � R, i = 1, 2, . . . ,N, where N = [�] + 1.

Lemma 2.11 ([29]) For any (t,x) � [0, 1]× R, �p(t)(x) = |x|p(t)�2x is a homeomorphism from
R to R. Moreover, it is strictly monotone increasing for any fixed t. Furthermore, for any
t � [0, 1], its inverse operator ��1

p(t)(·) is defined by

�
��1
p(t)(x) = |x|

2�p(t)
p(t)�1 x, x � R \ { 0},

��1
p(t)(0) = 0, x = 0,

that is continuous and sends bounded sets into bounded sets.

In order to make the continuation theorem of Mawhin applicable, the following lemma
needs to be established.

Lemma 2.12 Problem (1.1) is equivalent to the following fractional integral boundary
value problem:

�
��

��

D�
0+x(t) = ��1

p(t)(I
�
0+f (t,x(t),D��2

0+ x(t),D��1
0+ x(t))), t � (0, 1),

x(0) = 0, a1D��2
0+ x(1) + b1D��1

0+ x(1) = �1I
�1,�1
0+,�1x(	1),

a2D��2
0+ x(0) + b2D��1

0+ x(0) = �2I
�2,�2
0+,�2x(	2).

(2.1)

Proof Firstly, since D�
0+x(0) = 0, it is clear that problem (1.1) implies (2.1). On the other

hand, taking t = 0 into the following equality

D�
0+x(t) = ��1

p(t)
�
I�0+f

�
t,x(t),D��2

0+ x(t),D��1
0+ x(t)




,

we have D�
0+x(0) = 0. Additionally, making the operators �p(t) and D�

0+ act on both sides
of the above equality, it follows that D�

0+�p(t)(D�
0+x(t)) = f (t,x(t),D��2

0+ x(t),D��1
0+ x(t)). Thus,

problem (2.1) implies (1.1). �

3 Main result
Let Y = C[0, 1] with the norm � y� � = maxt� [0,1] |y(t)|, X = {x|x,D��2

0+ x,D��1
0+ x � C[0, 1]}

with the norm � x� X = max{� x� � , � D��2
0+ x� � , � D��1

0+ x� � }. Clearly, X and Y are Banach
spaces. Based on Lemma 2.12, we just need to consider the existence of solutions to prob-
lem (2.1). De�ne the operator L : domL � X � Y by

Lx =D�
0+x(t), (3.1)

where

domL =
�
x � X|D�

0+x(t) � Y ,x(0) = 0,a1D��2
0+ x(1) + b1D��1

0+ x(1) = �1I
�1,�1
0+,�1x(	1)

a2D��2
0+ x(0) + b2D��1

0+ x(0) = �2I
�2,�2
0+,�2x(	2)

�
.
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Moreover, de�ne N : X � Y by

Nx(t) = ��1
p(t)

�
I�0+f

�
t,x(t),D��2

0+ x(t),D��1
0+ x(t)




, 
 t � [0, 1].

Then problem (1.1) is equivalent to the following operator equation:

Lx =Nx, x � domL.

De�ne the operators �1,�2 : Y � Y by

�1y = b1I10+y(1) + a1I20+y(1) � �1I
�1,�1
0+,�1 I

�
0+y(	1),

�2y = I�2,�20+,�2 I
�
0+y(	2).

Next, some important lemmas will be presented before establishing main conclusions.

Lemma 3.1 Let L be given by (3.1), then

KerL =
�
x � X|x(t) = c1t��1 + c2t��2, c1, c2 � R, 
 t � [0, 1]

�
, (3.2)

ImL = {y � Y |�1y = �2y = 0}. (3.3)

Proof It is clear that (3.2) is satis�ed, which is linearly homeomorphic toR2. If y � ImL, we
can �nd a function x � domL such that y(t) =D�

0+x(t). Based onLemma2.2 andLemma2.9,
it follows

x(t) = I�0+y(s) + c1t��1 + c1t��2,

D��2
0+ x(t) = I20+y(s) + c1
(�)t + c2
(� � 1),

D��1
0+ x(t) = I10+y(s) + c1
(�),

which together with the boundary conditions

a1D��2
0+ x(1) + b1D��1

0+ x(1) = �1I
�1,�1
0+,�1x(	1),

a2D��2
0+ x(0) + b2D��1

0+ x(0) = �2I
�2,�2
0+,�2x(	2)

yields that

b1I10+y(1) + a1I20+y(1) � �1I
�1,�1
0+,y1 I

�
0+y(	1) +

�
(a1 + b1)
(�) �

�1	��1
1 
(�1 + ��1

�1
+ 1)


(�1 + ��1
�1

+ �1 + 1)

�
c1

+
�
a1
(� � 1) �

�1	��2
1 
(�1 + ��2

�1
+ 1)


(�1 + ��2
�1

+ �1 + 1)

�
c2 = 0

and

I�2,�20+,y2 I
�
0+y(	2) +

�
b2
(�) �

�2	��1
2 
(�2 + ��1

�2
+ 1)


(�2 + ��1
�2

+ �2 + 1)

�
c1

+
�
a2
(� � 1) �

�2	��2
2 
(�2 + ��2

�2
+ 1)


(�2 + ��2
�2

+ �2 + 1)

�
c2 = 0.
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By (H), one has �jy(t) = 0, j = 1, 2.
On the other hand, if y belongs to Y and satis�es �jy(t) = 0, j = 1, 2, setting x(t) = I�0+y(t),

one has x � domL and Lx(t) =D�
0+x(t) = y(t). Thus, y � ImL and (3.3) holds. �

For convenience, the following notations are given:

�1 :=
b1
�

+
a1

�(1 + �)
�

�1	
�+��1
1 
(�)
(�1 + 1 + �+��1

�1
)


(� + �)
(�1 + �1 + 1 + �+��1
�1

)
,

�2 :=
	�+��1
2 
(�)
(�2 + 1 + �+��1

�2
)


(� + �)
(�2 + �2 + 1 + �+��1
�2

)
,

�3 :=
b1

� � 1
+

a1
�(� � 1)

�
�1	

�+��2
1 
(� � 1)
(�1 + 1 + �+��2

�1
)


(� + � � 1)
(�1 + �1 + 1 + �+��2
�1

)
,

�4 :=
	�+��2
2 
(� � 1)
(�2 + 1 + �+��2

�2
)


(� + � � 1)
(�2 + �2 + 1 + �+��2
�2

)
,

� :=

�����
�1 �2

�3 �4

�����
.

Lemma 3.2 If � 
= 0, the continuous linear projection operators P : X � X and Q : Y � Y
can be written as

Px(t) =
1


(�)
D��1

0+ x(0)t��1 +
1


(� � 1)
D��2

0+ x(0)t��2, t � [0, 1],

Qy(t) =
�
�1y(t)



t��1 +

�
�2y(t)



t��2, t � [0, 1],

where

�1y(t) =
1
�

�
�4�1y(t) ��3�2y(t)



, �2y(t) =

1
�

�
��2�1y(t) +�1�2y(t)



.

Moreover, L is a Fredholm operator of index zero and KP : ImL � domL 	 KerP can be
presented as follows:

KPy(t) =
1


(�)

� t

0
(t � s)��1y(s) ds, 
 t � [0, 1].

Proof For the operator P, it is clear that for x � X, P2x = Px, ImP = KerL, and X = KerL �

KerP. For the operator Q, if y � Y , then

�1
��

�1y(t)


t��1



=

1
�

�
�4�1

��
�1y(t)



t��1



��3�2

��
�1y(t)



t��1





=
�1y
�

�
�4�1

�
t��1



��3�2

�
t��1





=
1
�
(�4�1 ��3�2)�1y = �1y,
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�1
��

�2y(t)


t��2



=

1
�

�
�4�1

��
�2y(t)



t��2



��3�2

��
�2y(t)



t��2





=
�2y
�

�
�4�1

�
t��2



��3�2

�
t��2





=
1
�
(�4�3 ��3�4)�2y = 0,

�2
��

�1y(t)


t��1



=

1
�

�
��2�1

��
�1y(t)



t��1



+�1�2

��
�1y(t)



t��1





=
�1y
�

�
��2�1

�
t��1



+�1�2

�
t��1





=
1
�
(��2�1 +�1�2)�1y = 0,

�2
��

�2y(t)


t��2



=

1
�

�
��2�1

��
�2y(t)



t��2



+�1�2

��
�2y(t)



t��2





=
�2y
�

�
��2�1

�
t��2



+�1�2

�
t��2





=
1
�
(��2�3 +�1�4)�2y = �2y.

Thus, Q2y = Qy. Next, we will show KerQ = ImL. In fact, if y � KerQ � Y , we can get
�1y = �2y = 0, i.e.,

�4�1y(t) ��3�2y(t) = 0, ��2�1y(t) +�1�2y(t) = 0,

which together with � 
= 0 yields �1y(t) = �2y(t) = 0 and KerQ � ImL. If y � ImL � Y ,
from (3.2), it is clear that ImL � KerQ. Thus, ImL = KerQ, which together with Q2y =Qy
implies Y = ImL � ImQ. Thus, the operators P and Q are well de�ned. Moreover,

dim KerL = dim ImQ = codim ImL = 2,

which means that L is a Fredholm operator of index zero.
Finally, KPx = (L|domL	 KerP)�1(x) will be proved. On the one hand, if x � domL 	 KerP,

one has

D��1
0+ x(0) =D��2

0+ x(0) = 0,

which together with x(0) = 0 yields KPLx(t) = I�0+D�
0+x(t) = x(t). On the other hand, if y �

ImL, it is clear that LKPy =D�
0+I�0+y = y. The proof is complete. �

Theorem 3.3 Assume � 
= 0 and the following conditions hold:
(H1) There exist nonnegative functions hi � C[0, 1], i = 1, 2, 3, 4, such that, for any t �

[0, 1], (x, y, z) � R3,

��f (t,x, y, z)
�� � h1(t) + h2(t)|x|��1 + h3(t)|y|��1 + h4(t)|z|��1, 1 < � � Pm,

where Pm = mint� [0,1] p(t).
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(H2) For x � domL, there exists a constant B1 > 0 such that if |D��2
0+ x(t)| > B1 for any

t � [	2, 1], either

sgn
�
D��2

0+ x(t)
�
�2Nx(t) > 0 or sgn

�
D��2

0+ x(t)
�
�2Nx(t) < 0.

(H3) For x � domL, there exists a constant B2 > 0 such that if |D��1
0+ x(t)| > B2 for any

t � [0, 	1], either

sgn
�
D��1

0+ x(t)
�
�1Nx(t) > 0 or sgn

�
D��1

0+ x(t)
�
�1Nx(t) < 0.

Then problem (1.1) admits at least one solution, provided that

2�


(� + 1)

�
� h2� �

(
(� � 1))��1
+ � h3� � + � h4� �

�
< 1. (3.4)

Proof Let


1 =
�
x � domL \ KerL|Lx = �Nx,� � (0, 1)

�
,


2 = {x|x � KerL,Nx � ImL},


3 =
�
x � KerL|�J�1x + (1 � �)QNx = 0,� � [0, 1]

�
and


�
3 =

�
x � KerL| � �J�1x + (1 � �)QNx = 0,� � [0, 1]

�
,

where J�1 : KerL � ImQ is de�ned by J(c1t��1 + c2t��2) = 1
� (�4c1 ��3c2)t��1 +

1
� (��2c1 +�1c2)t��2, c1, c2 � R.
For any x � 
1, clearly,Nx � ImL = KerQ andQNx = 0, which implies�1Nx = �2Nx = 0.

In view of (H2) and (H3), we can �nd two constantsµ1,µ2 � [0, 1] such that |D��2
0+ x(µ1)| �

B1, |D��1
0+ x(µ2)| � B2. Thus, from Lemma 2.8, one has

D��2
0+ x(t) =D��2

0+ x(µ1) +
� t

µ1

D��1
0+ x(t)dt,

D��1
0+ x(t) =D��1

0+ x(µ2) +
� t

µ2

D�
0+x(t)dt,

which leads to � D��1
0+ x� � � B2 + � D�

0+x� � and � D��2
0+ x� � � B2 +B1 + � D�

0+x� � . Moreover,
based on x(0) = 0, it follows that

x(t) = I��20+ D��2
0+ x(t),

which yields

��x(t)
�� �

1

(� � 2)

� t

0
(t � s)��3 dt

��D��2
0+ x

��
� �

1

(� � 1)

��D��2
0+ x

��
� .

Thus, � x� � � B1+B2

(��1) +

� D�
0+x� �


(��1) . From Lu = �Nu, we know that

D�
0+x(t) = ���1

p(t)
�
I�0+f

�
t,x(t),D��2

0+ x(t),D��1
0+ x(t)




.
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Taking the operator �p(t) act on both sides of the above equality, we have

�p(t)
�
D�

0+x(t)


= �p(t)�1�I�0+f

�
t,x(t),D��2

0+ x(t),D��1
0+ x(t)




.

In view of (H1) and � � (0, 1), one has

��D�
0+x(t)

��p(t)�1 �
1


(�)

� t

0
(t � s)��1

��f
�
t,x(t),D��2

0+ x(t),D��1
0+ x(t)


��ds

�
1


(� + 1)
�
� h1� � + � h2� � � x� ��1

� + � h3� �
��D��2

0+ x
����1

�

+ � h4� �
��D��1

0+ x
����1

�




�
1


(� + 1)

�
� h1� � + � h2� �

�
B1 + B2


(� � 1)
+

1

(� � 1)

��D�
0+u

��
�

���1

+ � h3� �
�
B1 + B2 +

��D�
0+u

��
�


��1 + � h4� �
�
B2 +

��D�
0+u

��
�


��1
�
,

which together with the basic inequality (x + y)p � 2p(xp + yp), x, y,p > 0 yields

��D�
0+x(t)

��p(t)�1 � K1 +K2
��D�

0+x
����1

� ,

where

K1 =
2��1


(� + 1)

�
� h1� � +

�
B1 + B2


(� � 1)

���1

� h2� � + (B1 + B2)��1� h3� � + B��1
2 � h4� �

�
,

K2 =
2��1


(� + 1)

�
1

(
(� � 1))��1
� h2� � + � h3� � + � h4� �

�
.

Thus, it follows that

��D�
0+x

��
� � 2

1
p(t)�1

�
K

1
p(t)�1
1 +K

1
p(t)�1
2

��D�
0+x

�� ��1
p(t)�1
�



.

Clearly, ��1
p(t)�1 � (0, 1], based on the basic inequality xl � x + 1, for x > 0, l � (0, 1], we can

obtain that

��D�
0+x

��
� � 2

1
p(t)�1K

1
p(t)�1
1 + 2

1
p(t)�1K

1
p(t)�1
2

���D�
0+x

��
� + 1



,

which together with (3.4) implies that there exists a positive constant M1 such that
� D�

0+x� � � M1, � D��1
0+ x� � � B2 +M1, � D��2

0+ x� � � B2 + B1 +M1, and � x� � � B1+B2+M1

(��1) .

Thus, � x� X � M, whereM = max{B2 +M1,B2 + B1 +M1, B1+B2+M1

(��1) }.

If x � 
2, then x(t) = c1t��1 + c2t��2, c1, c2 � R and Nx � ImL. Therefore, one has
QN(c1t��1 + c2t��2) = 0 and

D��1
0+ x(t) = c1
(�), D��2

0+ x(t) = c1
(�)t + c2
(� � 1),

which together with (H2) and (H3) yields |c1| � B2

(�) and |c2| � B1+B2


(��1) . Thus, 
2 is
bounded.
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If x � 
3, we can obtain that x(t) = c1t��1 + c2t��2, c1, c2 � R and

�
�
1
�
(�4c1 ��2c2)t��1 +

1
�
(��3c1 +�1c2)t��2

�

+ (1 � �)
�
�1N

�
c1t��1 + c2t��2



t��1 +�2N

�
c1t��1 + c2t��2



t��2



= 0,

which implies

�(�4c1 ��2c2) + (1 � �)
�
�4�1N

�
c1t��1 + c2t��2



��2�2N

�
c1t��1 + c2t��2




= 0,

�(��3c1 +�1c2) + (1 � �)
�
��3�1N

�
c1t��1 + c2t��2



+�1�2N

�
c1t��1 + c2t��2




= 0.

Based on � 
= 0, we have

�c1 + (1 � �)�1N
�
c1t��1 + c2t��2



= 0, (3.5)

�c2 + (1 � �)�2N
�
c1t��1 + c2t��2



= 0. (3.6)

For � = 1, one has c1 = c2 = 0, which means 
3 is bounded. For � = 0, in view of the �rst
inequality of (H2) and (H3), it follows that 
3 is bounded. For � � (0, 1), one has

sgn
�
c1
(�)

�
�c1 + sgn

�
c1
(�)

�
(1 � �)�1N

�
c1t��1 + c2t��2



= 0, (3.7)

sgn
�
c1
(�)t + c2
(� � 1)

�
�c2

+ sgn
�
c1
(�)t + c2
(� � 1)

�
(1 � �)�2N

�
c1t��1 + c2t��2



= 0. (3.8)

From (3.7) and the �rst inequality of (H3), it follows that |c1| � B2

(�) . Since (3.8) holds for

all t � [0, 	1], by choosing t = 0, we can obtain that

sgn
�
c2
(� � 1)

�
�c2 + sgn

�
c2
(� � 1)

�
(1 � �)�2N

�
c1t��1 + c2t��2



= 0,

which together with the �rst inequality of (H2) yields |c2| � B1+B2

(��1) . Hence, 
3 is bounded.

Similarly, based on the second inequality of (H2) and (H3), we can get that


�
3 =

�
x � KerL| � �J�1x + (1 � �)QNx = 0,� � [0, 1]

�

is bounded.
Set
 = {x � X|� x� X < max{M,B1 +2B2, B2


(�) +
B1+B2

(��1) }+1}. By the continuity of f , it is clear

that QN :
 � Y is bounded and KP(I �Q)N :
 � X is compact, i.e., N is L-compact on

.Moreover, fromLemma 3.1, L is a Fredholmoperator of index zero. Furthermore, based
on the de�nition of 
, one has:

(i) Lx 
= �Nx for every (x,�) � [(domL \ KerL) 	 �
] × (0, 1);
(ii) Nx /� ImL for every x � KerL 	 �
.

De�ne

H(x,�) = ± �J�1(x) + (1 � �)QNx.
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Clearly, H(x,�) 
= 0 for every x � KerL 	 �
. Hence, in view of the homotopic property of
degree, it follows that

deg(QN ,
 	 KerL, 0) = deg
�
H(·, 0),
 	 KerL, 0



= deg

�
H(·, 1),
 	 KerL, 0




= deg(± I,
 	 KerL, 0) 
= 0.

Therefore, fromLemma2.2, we can get that Lx =Nx admits at least one solution in domL 	


. Then problem (1.1) possesses at least one solution. �

Corollary 3.4 Let p(t) = p, � 
= 0, (H2), (H3), and the following condition hold.
(H1)� There exist nonnegative functions hi � C[0, 1], i = 1, 2, 3, 4, such that, for any t �

[0, 1], (x, y, z) � R3,

��f (t,x, y, z)
�� � h1(t) + h2(t)|x|p�1 + h3(t)|y|p�1 + h4(t)|z|p�1.

Then problem (1.1) admits at least one solution, provided that

2p


(� + 1)

�
� h2� �

(
(� � 1))p�1
+ � h3� � + � h4� �

�
< 1. (3.9)

Corollary 3.5 Let �1 = �2, �1 = �2, �1 = �2 = 1, and 0 < 	1 < 	2 � �+��1
1+� < 1, �1 > 0, �b1 +

a1 > 0.Assume that (H1), (H2), and (H3) hold.Then problem (1.1) has at least one solution,
provided that (3.4) holds.

Proof From Theorem 3.3, we just need to prove � 
= 0. In fact,

� =

�����
�1 �2

�3 �4

�����
= �1�4 ��2�3 = (A1 �A2) � (A3 �A4),

where

A1 =
�
b1
�

+
a1

�(1 + �)

�
	�+��2
2 
(� � 1)
(�1 + � + � � 1)


(� + � � 1)
(�1 + �1 + � + � � 1)
,

A2 =
�1	

�+��1
1 
(�)
(�1 + � + �)


(� + �)
(�1 + �1 + � + �)
·

	�+��2
2 
(� � 1)
(�1 + � + � � 1)


(� + � � 1)
(�1 + �1 + � + � � 1)
,

A3 =
�

b1
� � 1

+
a1

�(� � 1)

�
	�+��1
2 
(�)
(�1 + � + �)


(� + �)
(�1 + �1 + � + �)
,

A4 =
�1	

�+��2
1 
(� � 1)
(�1 + � + � � 1)


(� + � � 1)
(�1 + �1 + � + � � 1)
·

	�+��1
2 
(�)
(�1 + � + �)


(� + �)
(�1 + �1 + � + �)
.
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Since 0 < 	1 < 	2 < 1 and �1 > 0, we have A4 > A2. Next, we will prove A1 > A3. Based on

(x + 1) = x
(x) for x > 0 and �1 > 0, it follows

A3 =
�

b1
� � 1

+
a1

�(� � 1)

�
	2	

�+��2
2 (� � 1)(�1 + � + � � 1)

(� + � � 1)(�1 + �1 + � + � � 1)

·

(� � 1)
(�1 + � + � � 1)


(� + � � 1)
(�1 + �1 + � + � � 1)

<
�

b1
� + � � 1

+
a1

�(� + � � 1)

�
	2	

�+��2
2 
(� � 1)
(�1 + � + � � 1)


(� + � � 1)
(�1 + �1 + � + � � 1)
,

which together with 2 < � � 3, 0 < � � 1, and 0 < 	1 < 	2 � �+��1
1+� < 1 yields that

A3 <
�

b1
� + � � 1

+
a1

�(� + � � 1)

�
	2	

�+��2
2 
(� � 1)
(�1 + � + � � 1)


(� + � � 1)
(�1 + �1 + � + � � 1)

�
�

b1
� + � � 1

+
a1

�(� + � � 1)

�
� + � � 1
1 + �

·
	�+��2
2 
(� � 1)
(�1 + � + � � 1)


(� + � � 1)
(�1 + �1 + � + � � 1)

=
�

b1
1 + �

+
a1

�(1 + �)

�
	�+��2
2 
(� � 1)
(�1 + � + � � 1)


(� + � � 1)
(�1 + �1 + � + � � 1)
= A1.

Thus, we have � > 0. The proof is complete. �

Example 3.6 Consider the following example:

�
����

����

D
1
2
0+�3+sin2t(D

5
2
0+x(t)) = f (t,x(t),D

1
2
0+x(t),D

5
2
0+x(t)), t � (0, 1),

x(0) = 0, 2
3D

1
2
0+x(1) �

4
9D

1
2
0+x(1) = ( 23 )

1
2 I0,

1
2

0+,1x(
2
3 ),

D
5
2
0+x(0) = 0, 3

4
( 12 )
D��2

0+ x(0) + 1
4
( 12 )

D��1
0+ x(0) = ( 34 )

1
2 I

1
2 ,1
0+,1x(

3
4 ),

(3.10)

where � = 1
2 , � = 5

2 , p(t) = 3, �1 = 0, �2 = 1
2 , �1 = �2 = 1, �1 = 1

2 , �2 = 1, 	1 = 2
3 , 	2 =

3
4 , �1 =

( 23 )
1
2 , �2 = ( 34 )

1
2 , a1 = 2

3 , a2 =
3

4
( 12 )
, b1 = �4

9 , b2 =
1

4
( 12 )
,

f (t,x, y, z) =

�
���

���

t2
32 +

t2
32 sin2 x + (t� 2

3 )
2

32 sin2 z + 1, t � [0, 23 ],x, z � R;
t2
32 +

t2
32 sin2 x + 1, t � ( 23 ,

3
4 ],x � R;

t2
32 +

t2
32 sin2 x + (t� 3

4 )
2

8 y2 + 1, t � ( 34 , 1],x, y � R.

By simple calculation, it is clear that � 
= 0 and (H) is satis�ed. Moreover,

��f (t,x, y, z)
�� � h1(t) + h2(t)|x|2 + h3(t)|y|2 + h4(t)|z|2,

where h1(t) = t2
32 + 1, h2(t) = t2

32 ,

h3(t) =

�
0, t � [0, 34 ],
(t� 3

4 )
2

8 , t � ( 34 , 1];
h4(t) =

�
(t� 2

3 )
2

32 , t � [0, 23 ],
0, t � ( 23 , 1],

which implies that (3.4) and (H1) hold. Let D
1
2
0+x(t) > 1 for any t � [ 34 , 1]. Since f (t,x, y, z) >

0, we have sgn{D
1
2
0+x(t)}�2Nx(t) > 0. Similarly, if D

1
2
0+x(t) < �1 for any t � [ 34 , 1], it follows
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sgn{D
1
2
0+x(t)}�2Nx(t) < 0. Hence, (H2) is satis�ed. If D

3
2
0+x(t) > 1 for any t � [0, 23 ], we have

1 < f (t,x, y, z) < 75
72 and

�
2t

1
2


( 12 )

� 1
2
<Nx(t) <

�
150t

1
2

72
( 12 )

� 1
2
.

Since

�
4
9

� 1

0
Nx(s)ds +

2
3

� 1

0
(1 � s)Nx(s)ds

< �
4
9

�
2


( 12 )

� 1
2
� 1

0
s
1
4 ds +

2
3

�
150

72
( 12 )

� 1
2
� 1

0
(1 � s)s

1
4 ds

= �
16
45

�
2


( 12 )

� 1
2
+

32
135

�
150

72
( 12 )

� 1
2
< 0

and �( 23 )
1
2 I0,

1
2

0+,1I
5
2
0+Nx(

2
3 ) < 0, we can obtain sgn{D

3
2
0+x(t)}�1Nx(t) < 0. Similarly, if D

3
2
0+x(t) <

�1 for any t � [0, 23 ], one has sgn{D
1
2
0+x(t)}�1Nx(t) > 0. Therefore, (H3) is veri�ed. Based

on the above facts, problem (3.10) has at least one solution.

4 Conclusions
This paper is concerned with the solvability for ErdØlyi�Kober fractional integral bound-
ary value problems with p(t)-Laplacian operator at resonance. By employing the coin-
cidence degree method of Mawhin, some new results on the existence of solutions are
acquired. It should be emphasized that the ErdØlyi�Kober fractional integral operator is
a generalization of the integral of integer order and can convert into Riemann�Liouville
fractional integral with a power weight when � = 1 and � = 0. So, a problem of this type be-
comes more interesting and challenging. Moreover, we consider the ErdØlyi�Kober frac-
tional integral boundary value problems with p(t)-Laplacian operator at resonance when
the dimension of the kernel of operator D�

0+�p(t)(D�
0+x) is equal to 2, which causes a lot of

di�culties such as constructing continuous linear projections. Thus, our results extend
and enrich some existing papers. Furthermore, there are few papers studying fractional
integral boundary value problem with p(t)-Laplacian operator.
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