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Abstract
The aim of this work is to improve the oscillation results for second-order neutral
differential equations with damping term. We consider the noncanonical case which
always leads to two independent conditions for oscillation. We are working to
improve related results by simplifying the conditions, based on taking a different
approach that leads to one condition. Moreover, we obtain different forms of
conditions to expand the application area. An example is also given to demonstrate
the applicability and strength of the obtained conditions over known ones.
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1 Introduction
This work is concerned with studying the oscillation properties of the second-order neu-
tral delay differential equations with damping term of the form

(
r(t)

(
z′(t)

)α)′ + p(t)
(
z′(t)

)α + q(t)f
(
x
(
σ (t)

))
= 0, t ≥ t0, (1)

where

z(t) = x(t) + c(t)x
(
τ (t)

)
. (2)

Throughout this work, we assume α ∈ Q+
odd := {a/b : a, b ∈ Z+ are odd}, r, c, τ , σ , p,

q ∈ C([t0,∞)), r is positive, c, p and q are nonnegative, τ (t) ≤ t, σ (t) ≤ t, σ ′(t) > 0,
limt→∞ τ (t) = limt→∞ σ (t) = ∞, f ∈ C(R, R), and it satisfies the following property:

f (x) > kxβ for all x �= 0, (3)

where k > 0 is a constant and β ∈ Q+
odd. Furthermore, this study requires that

∫ ∞

t0

1
r1/α(h)

exp

(
–1
α

∫ h

t0

p(s)
r(s)

ds
)

dh < ∞ (4)
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and

c(t) < min

{
1,

η(t)
η(τ (t))

}
,

where

η(t) :=
∫ ∞

t

(
1

r(v)
exp

(
–

∫ v

t0

p(s)
r(s)

ds
))1/α

dv.

A real-valued function x ∈ C([tx,∞), R), tx ≥ t0 is a solution of (1) if x satisfies (1) on
[tx,∞), and it has the property that z(t) and r(t)(z′(t))α are continuously differentiable for
t ∈ [tx,∞). A nontrivial solution x is said to be oscillatory, if it has arbitrary large zeros.
Otherwise, it is said to be non-oscillatory. The set of all eventually positive solutions of
(1) is denoted by 	, that is, if x ∈ 	, then there exists a t1 ≥ t0 large enough such that
x(t) > 0 for all t ≥ t1. We only focus on solutions of (1), which exist on [t0,∞) and satisfy
sup{|x(t)| : tx ≤ t} > 0 for every t ≥ tx.

Half-linear differential equations arise in real problems; for instance, in the study of non-
Newtonian fluid theory and the turbulent flow of a polytropic gas in a porous medium;
see [1, 2].

In the past few years, there has been research studying the asymptotic properties and
the oscillatory behavior of solutions of differential equations with different order. This re-
search focused on developing and improving the oscillation criteria for differential equa-
tions. References [3–9] improved the oscillation criteria for noncanonical second-order
equations with delay and advanced argument. For canonical second-order delay equa-
tions, Refs. [10, 11] developed the oscillation criteria. The results in [12–21] dealt with
the issue of oscillation of equations of higher order. For differential equations with damp-
ing, we present the following results that are closely related to this paper.

Tunc and Kaymaz [22] studied the oscillatory behavior of equations with damping term

z′′(t) + r(t)z′(t) + q(t)x
(
σ (t)

)
= 0, t ≥ t0 > 0,

under the condition

∫ ∞

t0

exp

(
–

∫ t

t0

r(s) ds
)

dt = ∞.

They are extended to more general second-order linear and/or nonlinear neutral differ-
ential equations with damping in [23–25]. Saker et al. [26] established Kamenev-type and
Philos-type theorems for oscillation of equation with damping term

(
a(t)x′(t)

)′ + p(t)x′(σ (t)
)

+ q(t)f
(
x
(
g(t)

))
= 0.

Results in [26] are extended and improved results in [27–29].
In this paper, we try to improve the oscillation criteria for solutions of (1) by creating new

and more effective criteria. In a noncanonical case, we always have two cases of deriva-
tives signs for corresponding function z, which often leads to two independent conditions
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to ensure oscillatory. As an extension of the results of [4], we create a new criterion for
oscillation of (1), which in turn is a simplification of the previous results in [26].

Although the theoretical advantage lies in reducing the number of conditions that are
sufficient to verify the oscillation of solutions of differential equations, but sometimes a
single condition is less effective in practical applications. So, we also follow the usual ap-
proach to creating two independent criteria of oscillation.

Remark 1 The functional inequalities in this paper are supposed to hold eventually, that
is, they are satisfied for all t large enough.

2 Preliminaries
In the following, we provide some notations which help us to easily display the results.
Moreover, we present the auxiliary lemmas which help in validating the main results.

Notation 1 For the sake of brevity, we define the operators γ := (α/(α + 1))α+1,

μ(t) := exp

(∫ t

t1

p(s)
r(s)

ds
)

,

and

�(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if α = β ,

l1 if α > β ,

l2η
β–α(t) if α < β ,

where l1, l2 are positive constants.

Notation 2 For the sake of brevity, we define the functions

G(t) := kμ(t)q(t)
(
1 – c

(
σ (t)

))β

and

Q(t) := kμ(t)q(t)
(

1 – c
(
σ (t)

)η(τ (σ (t)))
η(σ (t))

)β

.

Lemma 1 Let 	(θ ) = A1θ – A2(θ – A3)(α+1)/α , where A2 > 0, A1 and A3 are constants. Then
the maximum value of 	 on R at θ∗ = A3 + (αA1/((α + 1)A2))α is

max
θ∈R

	(θ ) = 	
(
θ∗) = A1A3 +

γ

α

Aα+1
1

Aα
2

. (5)

Lemma 2 Assume that x ∈ 	. Then:
(i) The function z satisfies z(t) > 0, (μ(t)r(t)(z′(t))α)′ ≤ 0 and one of the next cases:

(D1) z′(t) > 0;

(D2) z′(t) < 0.
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(ii) If z satisfies (D2), then

zβ–α(t) ≥ �(t) (6)

and

(
μ(t)r(t)

(
z′(t)

)α)′ ≤ –Q(t)zβ
(
σ (t)

)
. (7)

Proof Since x ∈ 	, it is obvious that there exists a t1 ≥ t0 such that x(t), x(τ (t)) and x(σ (t))
are positive functions. As a direct conclusion from the definition (2), we find that z(t) > 0.
Next, from (1) and (3), we obtain

(
μ(t)r(t)

(
z′(t)

)α)′ = –μ(t)q(t)f
(
x
(
σ (t)

))

≤ –kμ(t)q(t)xβ
(
σ (t)

)
, (8)

which means that μ(t)r(t)(z′(t))α is a nonincreasing function and has a fixed sign. Since
μ(t)r(t) > 0, we get either z′(t) > 0 or z′(t) < 0.

Now, let z′(t) < 0 for all t ≥ t2 ≥ t1, where t2 is large enough. Then there exists a constant
K1 > 0 such that

zβ–α(t) ≥ Kβ–α
1 = l1 for α ≥ β .

On the other hand, using the fact that (μ(t)r(t)(z′(t))α)′ ≤ 0, we get

μ(t)r(t)
(
z′(t)

)α ≤ μ(t2)r(t2)
(
z′(t2)

)α = –K2 < 0 (9)

and therefore

z′(t) ≤
(

–K2

μ(t)r(t)

)1/α

. (10)

Integrating (10) from t to ∞ we obtain –z(t) ≤ –K1/α
2 η(t). Thus,

zβ–α(t) ≥ K
β–α
α

2 ηβ–α(t) := l2η
β–α(t) for α < β ,

i.e., (6) holds. Moreover, we have

z(t) ≥ –
∫ ∞

t
z′(θ ) dθ ≥ –η(t)

(
μ(t)r(t)

)1/αz′(t) (11)

and so

d
dt

(
z(t)
η(t)

)
=

η(t)z′(t) + (μ(t)r(t))–1/αz(t)
η2(t)

≥ 0.

Hence,

x(t) ≥
(

1 – c(t)
η(τ (t))
η(t)

)
z(t),

which, in view of (8), gives (7). The proof of the lemma is complete. �
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Lemma 3 Let x ∈ 	, the function z satisfy (D2) and

∫ t

t0

(
1

μ(v)r(v)

∫ v

t1

Q(s) ds
)1/α

dv = ∞. (12)

Then

lim
t→∞ x(t) = lim

t→∞ z(t) = 0. (13)

Proof Suppose that x ∈ 	 and the function z satisfies (D2). Since z is a positive decreasing
function, we have limt→∞ z(t) = ε ≥ 0.

Let ε > 0. From Lemma 2, there exists a t1 ≥ t0 such that

(
μ(t)r(t)

(
z′(t)

)α)′ ≤ –Q(t)zβ
(
σ (t)

) ≤ –εβQ(t).

Integrating this inequality from t1 to t, we have

–z′(t) ≥ εβ/α
(

1
μ(t)r(t)

∫ t

t1

Q(s) ds
)1/α

. (14)

Integrating (14) from t1 to t, we get

z(t) ≤ z(t1) – εβ/α
∫ t

t1

(
1

μ(v)r(v)

∫ v

t1

Q(s) ds
)1/α

dv.

Taking limt→∞ of this inequality and using (12), we are led to a contradiction with posi-
tivity of z. Therefore, ε = 0 and (13) hold. This completes the proof. �

Lemma 4 Let x ∈ 	, the function z satisfy (D2) and (12) hold. If, moreover there exists a
constant δ ∈ [0, 1) such that

η(t)
(

�(t)
∫ t

t0

Q(s) ds
)1/α

≥ δ, (15)

then

d
dt

(
z(t)
ηδ(t)

)
≤ 0. (16)

Proof Suppose that x ∈ 	 and the function z satisfies (D2). From Lemma 2, we see that (7)
holds. Integrating (7) from t1 to t, we obtain

μ(t)r(t)
(
z′(t)

)α ≤ μ(t1)r(t1)
(
z′(t1)

)α –
∫ t

t1

Q(s)zβ
(
σ (s)

)
ds

≤ μ(t1)r(t1)
(
z′(t1)

)α – zβ
(
σ (t)

)∫ t

t1

Q(s) ds. (17)

From Lemma 3, clearly (13) holds. Thus,

μ(t1)r(t1)
(
z′(t1)

)α + zβ
(
σ (t)

)∫ t1

t0

Q(s) ds > 0, (18)



Moaaz et al. Advances in Difference Equations        (2020) 2020:553 Page 6 of 12

for t ≥ t2, where t2 is large enough. Combining (17) and (18) and using the fact that
zβ–α(t) ≥ �(t), we find

μ(t)r(t)
(
z′(t)

)α ≤ –zβ
(
σ (t)

)∫ t

t0

Q(s) ds ≤ –�(t)zα(t)
∫ t

t0

Q(s) ds, (19)

which, in view of (15), gives

z′(t) ≤ –
(
μ(t)r(t)

)–1/αz(t)
(

�(t)
∫ t

t0

Q(s) ds
)1/α

≤ –
δ

η(t)
(
μ(t)r(t)

)–1/αz(t).

Thus,

d
dt

(
z(t)
ηδ(t)

)
=

ηδ–1(t)(η(t)z′(t) + δ(μ(t)r(t))–1/αz(t))
η2δ(t)

≤ 0.

This completes the proof. �

3 The one criterion theorems
In the following theorems, we obtain a criterion which ensure oscillation of (1) without
verifying the extra condition.

Theorem 1 If

∫ ∞

t1

(
1

μ(h)r(h)

∫ h

t1

ηβ
(
σ (v)

)
Q(v) dv

)1/α

dh = ∞, (20)

for any t1 ≥ t0, then all solutions of (1) are oscillatory.

Proof Assuming that the required result is not fulfilled. We assume that (1) has a solution
x ∈ 	. From Lemma 2, we see that z satisfies either (D1) or (D2) for all t ≥ t1.

Let (D2) hold. As in the proof of Lemma 2, we arrive at (19). Integrating (19) from t to
∞, we find

z(t) ≥ K1/α
2 η(t) (21)

for all t ≥ t2 ≥ t1, where t2 is large enough. From (7) in Lemma 2, we have

(
μ(t)r(t)

(
z′(t)

)α)′ ≤ –Kβ/α
2 Q(t)ηβ

(
σ (t)

)
.

Integrating this inequality from t2 to t, we get

z′(t) ≤ –Kβ/α2

2

(
1

μ(t)r(t)

∫ t

t2

ηβ
(
σ (v)

)
Q(v) dv

)1/α

.

Integrating again from t2 to t, we obtain

z(t) ≤ z(t2) – Kβ/α2

2

∫ t

t2

(
1

μ(h)r(h)

∫ h

t2

ηβ
(
σ (v)

)
Q(v) dv

)1/α

dh.
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Taking limt→∞ of this inequality and using (20), we are led to a contradiction with posi-
tivity of z.

Next, we let (D1) hold. Since z(t) ≥ x(t), τ (t) ≤ t and z′(t) > 0, we get x(t) ≥ (1 – c(t))z(t).
Hence, (1) becomes

(
μ(t)r(t)

(
z′(t)

)α)′ ≤ –G(t)zβ
(
σ (t)

)
. (22)

Since η(τ (σ (t))) ≥ η(σ (t)), we obtain

1 – c
(
σ (t)

)η(τ (σ (t)))
η(σ (t))

≤ 1 – c
(
σ (t)

)
. (23)

We note that the function
∫ t

ηβ (σ (v))Q(v) dv is unbounded due to (20) and (4). Taking into
account η′(t) ≤ 0 and (23), it is easy to see that

∫ ∞
G(v) dv ≥

∫ ∞
Q(v) dv = ∞. (24)

Combining (22) and (23), we have

μ(t)r(t)
(
z′(t)

)α ≤ μ(t1)r(t1)
(
z′(t1)

)α –
∫ t

t1

G(v)zβ
(
σ (v)

)
dv

≤ μ(t1)r(t1)
(
z′(t1)

)α – zβ
(
σ (t2)

)∫ t

t1

G(v) dv,

which, in view of (24), contradicts the positivity z′(t). The proof of the theorem is com-
plete. �

Theorem 2 If

lim sup
t→∞

η(t)
(

�(t)
∫ t

t1

Q(s) ds
)1/α

> 1 (25)

for any t1 ≥ t0, then all solutions of (1) are oscillatory.

Proof Assuming that the required result is not fulfilled. We assume that (1) has a solution
x ∈ 	. From Lemma 2, we see that z satisfies either (D1) or (D2) for all t ≥ t1.

Let (D2) hold. From the proofs of Lemmas 2 and 4, we arrive at (11) and (17), respectively.
Combining (11) and (17), we get

μ(t)r(t)
(
z′(t)

)α ≤ �(t)ηα(t)μ(t)r(t)
(
z′(t)

)α

∫ t

t1

Q(s) ds

and so

η(t)
(

�(t)
∫ t

t1

Q(s) ds
)1/α

≤ 1,

which contradicts (25).
Next, we let z′(t) > 0 for t ≥ t1. We note that (25) along with (4) imply (24). The rest of

the proof is similar to the proof of Theorem 1. The proof of the theorem is complete. �
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4 Theorems of two independent criteria
Theorem 3 Assume that (12) holds. If

lim sup
t→∞

η(t)
(

�(t)
∫ t

t0

Q(s) ds
)1/α

> 1, (26)

then all solutions of (1) are oscillatory.

Proof For the proof of this lemma, it suffices to use (19) [from the proof of Lemma 4]
instead of (17) in the proof of Theorem 2. �

Using Lemma 4, we obtain the new results which improve the previous theorems when

lim sup
t→∞

η(t)
(

�(t)
∫ t

t0

Q(s) ds
)1/α

≤ 1.

Theorem 4 Assume that (12) and there exists a δ ∈ [0, 1) such that (15) holds. If

lim sup
t→∞

η(t)
(

�(t)
(

η(σ (t))
η(t)

)δβ ∫ t

t0

Q(s) ds
)1/α

> 1, (27)

then all solutions of (1) are oscillatory.

Proof Assuming that the required result is not fulfilled. We assume that (1) has a solution
x ∈ 	. From Lemma 2, we see that z satisfies either (D1) or (D2) for all t ≥ t1.

Let (D2) hold. Using Lemma 4, we arrive at (16) and (19). From (16), we conclude that

z
(
σ (t)

) ≥ ηδ(σ (t))
ηδ(t)

z(t), (28)

which with (19) gives

μ(t)r(t)
(
z′(t)

)α ≤ –zβ (t)
(

η(σ (t))
η(t)

)δβ ∫ t

t0

Q(s) ds. (29)

As in the proof of Lemma 2, we arrive at (11). Combining (11) and (29), we obtain

μ(t)r(t)
(
z′(t)

)α ≤ –�(t)zα(t)
(

η(σ (t))
η(t)

)δβ ∫ t

t0

Q(s) ds

≤ �(t)ηα(t)μ(t)r(t)
(
z′(t)

)α

(
η(σ (t))
η(t)

)δβ ∫ t

t0

Q(s) ds,

then

η(t)
(

�(t)
(

η(σ (t))
η(t)

)δβ ∫ t

t0

Q(s) ds
)1/α

≤ 1.

This contradicts (27).
Next, we let (D1) hold. We note that (12) along with (4) imply (24). The rest of the proof

is similar to the proof of Theorem 1. The proof of the theorem is complete. �
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Theorem 5 Assume that (12) and there exists a δ ∈ [0, 1) such that (15) holds. If there exist
a function ρ ∈ C1([t0,∞), (0,∞)) and a t1 ∈ [t0,∞) such that

lim sup
t→∞

{
ηα(t)
ρ(t)

∫ t

t0

(
ρ(v)Q(v)�(v)

(
η(σ (v))
η(v)

)δα

– γ
μ(v)r(v)(ρ ′(v))α+1

αα+1ρα(v)

)
dv

}
> 1, (30)

then all solutions of (1) are oscillatory.

Proof Assuming that the required result is not fulfilled. We assume that (1) has a solution
x ∈ 	. From Lemma 2, we see that z satisfies either (D1) or (D2) for all t ≥ t1.

Let (D2) hold. From Lemma 2, we see that (6), (7) and (11) hold. We define the function

w(t) := ρ(t)
(

μ(t)r(t)(z′(t))α

zα(t)
+

1
ηα(t)

)
. (31)

Using (11), we see that w(t) ≥ 0 for all t ≥ t2 ≥ t1. Differentiating (31), we get

w′(t) =
ρ ′(t)
ρ(t)

w(t) + ρ(t)
(μ(t)r(t)(z′(t))α)′

zα(t)
– αρ(t)

μ(t)r(t)(z′(t))α+1

zα+1(t)

+ αρ(t)
1

(μ(t)r(t))1/αηα+1(t)
.

Combining (6), (7) and (31), we obtain

w′(t) ≤ –
α

(ρ(t)μ(t)r(t))1/α

(
w(t) –

ρ(t)
ηα(t)

)1+1/α

– ρ(t)Q(t)�(t)
zα(σ (t))

zα(t)

+ αρ(t)
1

(μ(t)r(t))1/αηα+1(t)
+

ρ ′(t)
ρ(t)

w(t). (32)

Using inequality (5) with A1 := ρ ′/ρ , A2 := α/(ρμr)–1/α , A3 = ρ/ηα and θ := w, we get

ρ ′

ρ
w –

α

(ρμr)1/α

(
w –

ρ

ηα

)1+1/α

≤ ρ ′

ηα
+

γ

αα+1 μr
(ρ ′)α+1

ρα
,

which, in view of (32), gives

w′(t) ≤ ρ ′(t)
ηα(t)

+
γ

αα+1 μ(t)r(t)
(ρ ′(t))α+1

ρα(t)
– ρ(t)Q(t)�(t)

zα(σ (t))
zα(t)

+ αρ(t)
1

(μ(t)r(t))1/αηα+1(t)
. (33)

As in the proof of Theorem 4, we arrive at (28). Thus, (33) becomes

w′(t) ≤ –ρ(t)Q(t)�(t)
(

η(σ (t))
η(t)

)δα

+
γ

αα+1 μ(t)r(t)
(ρ ′(t))α+1

ρα(t)
+

(
ρ(t)
ηα(t)

)′
.



Moaaz et al. Advances in Difference Equations        (2020) 2020:553 Page 10 of 12

Integrating this inequality from t2 to t, we have

∫ t

t2

(
ρ(v)Q(v)�(v)

(
η(σ (v))
η(v)

)δα

– γ
μ(v)r(v)(ρ ′(v))α+1

αα+1ρα(v)

)
dv

≤
(

ρ(t)
ηα(t)

– w(t)
)∣∣

∣∣

t

t2

≤ –
(

ρ(t)
μ(t)r(t)(z′(t))α

zα(t)

)∣∣∣
∣

t

t2

. (34)

From (11), we have

–
(μ(t)r(t))1/αz′(t)

z(t)
≤ 1

η(t)
,

which, in view of (34), implies

ηα(t)
ρ(t)

∫ t

t2

(
ρ(v)Q(v)�(v)

(
η(σ (v))
η(v)

)δα

– γ
μ(v)r(v)(ρ ′(v))α+1

αα+1ρα(v)

)
dv ≤ 1.

Taking the lim sup on both sides of this inequality, we are led to a contradiction with (30).
The rest of proof is the same and hence we omit it. The proof of the theorem is com-

plete. �

Example 1 Consider the differential equation

(
tα+1

[(
x(t) + c0x

(
t
2

))′])′
+ t

((
x(t) + c0x

(
t
2

))′)
+ q0t3x(λt) = 0, (35)

where t ≥ 1, q0 ∈ (0,∞), c0 ∈ (0, 1/16) and λ ∈ (0, 1]. From Theorem 2, we deduce that
Eq. (35) is oscillatory if

1
16

q0(1 – 16c0) > 1. (36)

To apply Theorem 4, we first note that (12) and (15) are satisfied with

δ =
1

16
q0(1 – 16c0).

Therefore, (35) is oscillatory if

1
16λ4δ

q0(1 – 16c0) > 1.
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