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1 Introduction
Fifty years ago, Nadler [1] introduced the idea of multivalued contraction mappings and
presented his famous result, which generalized the Banach contraction principle [2] for
multivalued mappings. In [3], the authors studied a problem of a global optimization using
a common best proximity point of a pair of multivalued mappings. Also, Debnath and Sri-
vastava [4] introduced a new and proper extension of Kannan’s fixed point theorem to the
case of multivalued maps using Wardowski’s F-contraction. Going in same direction, sev-
eral research works in fixed point theory related to multivalued contractions in different
areas have appeared. For more details, see [4–23].

Let (X, d) be a metric space and denote by CB(X) the family of nonempty, bounded, and
closed subsets of X. For �1,�2 ∈ CB(X), define H : CB(X) × CB(X) → [0,∞) by

H(�1,�2) = max
{

sup
a∈�1

d(a,�2), sup
b∈�2

d(b,�1)
}

,

where d(a,�2) = inf{d(a,ρ) : ρ ∈ �2}. Such a function H is called the Hausdorff–Pompieu
metric induced by the metric d. Also, denote by CL(X) the family of nonempty and closed
subsets of X and by K(X) the family of nonempty and compact subsets of X.

On the other hand, a new type of a contraction mapping, known as an θ -contraction,
was introduced by Jleli and Samet [24].
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Definition 1.1 ([24]) Let (X, d) be a metric space. A map T : X → X is said to be a θ -
contraction whenever there are k ∈ (0, 1) and θ ∈ � such that

θ
(
d(Tς , Tτ )

) ≤ [
θ
(
d(ς , τ )

)]k ,

for all ς , τ ∈ X with d(Tς , Tτ ) > 0, where � is the set of functions θ : (0,∞) → (1,∞)
verifying the following conditions:

(θ1) θ is nondecreasing;
(θ2) for each positive sequence {tn}, limn→∞ θ (tn) = 1 iff limn→∞ tn = 0;
(θ3) there are ν ∈ (0,∞] and μ ∈ (0, 1) such that limt→0+ θ (t)–1

tμ = ν .

Some years later, Vetro [23] introduced multivalued θ -contraction mappings and gave
the multivalued version of the main results of Jleli and Samet [24].

Definition 1.2 ([23]) A map T : X → CL(X) is said to be a weak θ -contraction if there are
k ∈ (0, 1) and θ ∈ � such that

θ
(
H(Tς , Tτ )

) ≤ [
θ
(
d(ς , τ )

)]k

for all ς , τ ∈ X with H(Tς , Tτ ) > 0.

Theorem 1.3 ([23]) Let (X, d) be a complete metric space and T : X → K(X) be a weak
θ -contraction mapping. Then T admits a fixed point.

Later in 2017, Ahmad et al. [25] replaced condition (θ3) by the continuity condition of
θ on (0,∞).

Example 1.4 ([25]) Note that (θ3) and the continuity condition on θ are independent.
Indeed, for s > 1, the function given by θ (u) = eus satisfies conditions (θ1) and (θ2), but it
does not satisfy (θ3), while it is continuous. On the other hand, for all s > 1 and t ∈ (0, 1

s ),
the function defined by θ (u) = 1 + ut(1 + [u]), where [u] denotes the integer part of u,
satisfies conditions (θ1), (θ2), and (θ3) for each k ∈ ( 1

s , 1), but it is not continuous. Also,
the function θ (u) = e

√
u is continuous and satisfies conditions (θ1), (θ2), and (θ3).

Now, denote by �∗ the set of continuous functions satisfying (θ1) and (θ2). We observe
that � � �∗, �∗ � �, and � ∩ �∗ 	= ∅.

In [25], the authors gave the following fixed point theorem, extending the results of Jleli
and Samet [24]. In [25] they considered θ ∈ �∗ instead of θ ∈ �.

Theorem 1.5 ([25]) Any θ -contraction mapping T : X → X (with θ ∈ �∗) on a complete
metric space (X, d) possesses a unique fixed point.

Recently, Cho [26] initiated the concept L-simulation functions. Let ξ : [1,∞)2 → R

verify the following assertions:
(ξ1) ξ (1, 1) = 1;
(ξ2) ξ (τ ,υ) < υ

τ
for all υ, τ > 1;
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(ξ3) for all sequences {τn} and {υn} in (1,∞) with τn < υn for n = 1, 2, 3, . . . ,

lim
n→∞ τn = lim

n→∞υn > 1 �⇒ lim sup
n→∞

ξ (τn,υn) < 1.

Any ξ ∈ L is said an L-simulation function. Here, ξ (ι, ι) < 1 for each ι > 1. As examples of
L-simulation functions, we state the following:

Example 1.6 ([26]) ξ (t, s) = sk

t for all s, t ≥ 1, where k ∈ (0, 1).

Example 1.7 ([26]) ξ (t, s) = s
tϕ(s) for all s, t ≥ 1 where ϕ : [1,∞) → [1,∞) is nondecreasing

and lower semicontinuous such that ϕ–1({1}) = {1}.

Example 1.8 ([26])

ξ (υ,η) =

⎧⎪⎪⎨
⎪⎪⎩

1 if (υ,η) = (1, 1),
υ
2η

if υ < η,
υν

η
otherwise,

for all υ,η ≥ 1 where ν ∈ (0, 1).

This class of L-simulation functions is used as control functions in order to enrich the
fixed point theory when dealing with several types of contraction mappings in variant
(generalized) metric spaces. In this paper, based on L-simulation functions, we define a
new type of multivalued contraction mappings, called multivalued L-contraction map-
pings via θ -functions. We give some related fixed point results in the context of complete
metric spaces. Some consequences are also derived. Moreover, an example to support our
results is given. At the end, as an application, a homotopy result is provided.

2 Main results
Now, we introduce the definition of multivalued L-contraction mappings via θ -functions.

Definition 2.1 Let (X, d) be a metric space. A multivalued mapping T : X → CB(X) is
called an L-contraction with respect to ξ whenever there are θ ∈ �∗ and ξ ∈L such that

ξ
(
θ
(
H(Tς , Tτ )

)
, θ

(
d(ς , τ )

)) ≥ 1, (2.1)

for all ς , τ ∈ X with H(Tς , Tτ ) > 0.

Lemma 2.2 If T : X → CB(X) is an L-contraction with respect to ξ , then T is continuous.

Proof Let υ ∈ X and {σn} ⊂ X be such that

lim
n→∞ d(σn,υ) = 0, and H(Tσn, Tυ) > 0, n ≥ 0.

Since T satisfies condition (2.1), we have

1 ≤ ξ
(
θ
(
H(Tσn, Tx)

)
, θ

(
d(σn,υ)

))
<

θ (d(σn,υ))
θ (H(Tσn, Tυ))

, ∀n = 0, 1, 2, . . . .
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This implies that

θ
(
H(Tσn, Tυ)

)
< θ

(
d(σn,υ)

)
, ∀n = 0, 1, 2, . . . .

From (θ1), one gets

H(Tσn, Tυ) < d(σn,υ), ∀n = 0, 1, 2, . . . .

As n → ∞, we find

lim
n→∞H(Tσn, Tυ) = 0.

This proves that T is continuous. �

Theorem 2.3 Any L-contraction mapping T : X → CB(X) with respect to ξ on a complete
metric space (X, d) possesses a fixed point.

Proof Let σ0 ∈ X and σ1 ∈ Tσ0. If σ0 = σ1, then σ0 is a fixed point. If σ1 ∈ Tσ1, σ1 is a fixed
point. So, assume that σ0 	= σ1 and σ1 /∈ Tσ1. We have

0 < d(σ1, Tσ1) ≤H(Tσ0, Tσ1). (2.2)

Since T satisfies condition (2.1) and H(Tσ0, Tσ1) > 0, we have

1 ≤ ξ
(
θ
(
H(Tσ0, Tσ1)

)
, θ

(
d(σ0,σ1)

))
<

θ (d(σ0,σ1))
θ (H(Tσ0, Tσ1))

.

This implies that

θ
(
H(Tσ0, Tσ1)

)
< θ

(
d(σ0,σ1)

)
.

Using (θ1), we get

H(Tσ0, Tσ1) < d(σ0,σ1). (2.3)

Since θ is continuous and nondecreasing, one has

inf
y∈Tσ1

θ
(
d(σ1, y)

)
= θ

(
d(σ1, Tσ1)

) ≤ θ
(
H(Tσ0, Tσ1)

)
.

Hence, there exists σ2 ∈ Tσ1 such that

θ
(
d(σ1,σ2)

) ≤ θ
(
H(Tσ0, Tσ1)

)
. (2.4)

By using (θ1), (2.3), and (2.4), we obtain

d(σ1,σ2) ≤H(Tσ0, Tσ1) < d(σ0,σ1).
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If σ2 ∈ Tσ2, then σ2 is a fixed point. Otherwise, proceeding similarly, there is σ3 ∈ Tσ2

such that

d(σ2,σ3) ≤H(Tσ1, Tσ2) < d(σ1,σ2).

Similarly,

0 < d(σn,σn+1) ≤H(Tσn–1, Tσn) < d(σn–1,σn), for all n = 1, 2, . . . . (2.5)

Hence {d(σn–1,σn)} is decreasing, and so there is r ≥ 0 such that

lim
n→∞ d(σn–1,σn) = r.

By (2.5), we have

r = lim
n→∞H(Tσn–1, Tσn) = lim

n→∞ d(σn–1,σn). (2.6)

Assume that r > 0. Using (θ1) and the continuity of θ , we get

lim
n→∞ θ

(
H(Tσn–1, Tσn)

)
= lim

n→∞ θ
(
d(σn–1,σn)

)
= θ (r) > 1.

Due to (ξ3), we have

1 ≤ lim sup
n→∞

ξ
(
θ
(
H(Tσn–1, Tσn)

)
, θ

(
d(σn–1,σn)

))
< 1,

which is a contradiction. Therefore,

lim
n→∞ d(σn,σn+1) = 0. (2.7)

Now, we will show that {σi} is bounded in (X, d).
If it is not the case, then there is a subsequence {σi(q)} of {σi} such that for i(1) = 1 and

for all q = 1, 2, . . . , we have that i(q + 1) is the minimum integer greater than i(q) with

d(σi(q+1),σi(q)) > 1 and d(σi(q),σl) ≤ 1, (2.8)

for all i(q) ≤ l ≤ i(q + 1) – 1. We have

1 < d(σi(q+1),σi(q)) ≤ d(σi(q+1),σi(q+1)–1) + d(σi(q+1)–1,σi(q))

≤ d(σi(q+1),σi(q+1)–1) + 1.

Letting q → ∞ and using (2.7), we get

lim
q→∞ d(σi(q+1),σi(q)) = 1. (2.9)

Also,

d(σi(q+1)–1,σi(q)–1) ≤ d(σi(q+1)–1,σi(q+1)) + d(σi(q+1),σi(q)) + d(σi(q),σi(q)–1).
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By taking the limit as q → ∞, from (2.7) and (2.9), we have

lim
q→∞ d(σi(q+1)–1,σi(q)–1) ≤ 1. (2.10)

Since

1 = lim
q→∞ d(σi(q+1),σi(q)) ≤ lim

q→∞
[
d(σi(q+1),σi(q+1)–1) + d(σi(q+1)–1,σi(q)–1) + d(σi(q)–1,σi(q))

]

≤ lim
q→∞ d(σi(q+1)–1,σi(q)–1) ≤ 1,

we obtain

lim
q→∞ d(σi(q+1)–1,σi(q)–1) = 1. (2.11)

Again,

1 < d(σi(q),σi(q+1)) ≤H(Tσi(q)–1, Tσi(q+1)–1), (2.12)

so

0 < H(Tσi(q)–1, Tσi(q+1)–1).

Hence, using condition (2.1), we get

1 ≤ ξ
(
θ
(
H(Tσi(q+1)–1, Tσi(q)–1)

)
, θ

(
d(σi(q+1)–1,σi(q)–1)

))
<

d(σi(q+1)–1,σi(q)–1)
H(Tσi(q+1)–1, Tσi(q)–1))

.

One then gets

H(Tσi(q+1)–1, Tσi(q) – 1) < d(σi(q+1)–1,σi(q)–1). (2.13)

By the continuity of θ , we have

θ
(
d(σi(q+1), Tσi(q)–1)

)
= inf

σi(q)∈Tσi(q)–1
θ
(
d(σi(q+1),σi(q))

) ≤ θ
(
H(Tσi(q+1)–1, Tσi(q)–1)

)

< θ
(
d(σi(q+1)–1,σi(q)–1)

)
.

By taking the limit as q → ∞, we obtain

lim
q→∞ θ

(
H(Tσi(q+1)–1, Tσi(q)–1)

)
= lim

q→∞ θ
(
d(σi(q+1)–1,σi(q)–1)

)
= θ (1) > 1.

Due to (ξ3), we get

1 ≤ lim sup
q→∞

ξ
(
θ
(
H(Tσi(q+1)–1, Tσi(q)–1)

)
, θ

(
d(σi(q+1)–1,σi(q)–1)

))
< 1,

which is a contradiction. Hence, {σn} is bounded.
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We shall show the Cauchy property of {σn}. Let

Mi = sup
{

d(σk ,σm) : k, m ≥ i
}

. (2.14)

It is clear that 0 ≤ Mi+1 ≤ Mi < ∞ for every i = 1, 2, 3, . . . . Thus, there is M ≥ 0 such that
limi→∞ Mi = M. Assume that M > 0. Using (2.14), there exist i(q), j(q) ≥ q such that

Mq –
1
q

≤ d(σi(q),σj(q)) ≤ Mq.

Then

lim
q→∞ d(σi(q),σj(q)) = M.

By the triangle inequality, we have

d(σi(q),σj(q)) ≤ d(σi(q),σi(q)–1) + d(σi(q)–1,σj(q)–1) + d(σj(q)–1,σj(q)).

As q → ∞, we find that

lim
q→∞ d(σi(q)–1,σj(q)–1) ≥ M. (2.15)

Also,

lim
q→∞ d(σi(q)–1,σj(q)–1) ≤ lim

q→∞
[
d(σi(q)–1,σi(q)) + d(σi(q),σj(q)) + d(σj(q),σj(q)–1)

] ≤ M. (2.16)

From (2.15) and (2.16), we have

lim
q→∞ d(σi(q)–1,σj(q)–1) = lim

q→∞ d(σi(q),σj(q)) = M.

Due to the continuity of θ , we obtain

θ
(
d(σi(q), Tσj(q)–1)

)
= inf

σj(q)∈Tσj(q)–1
θ
(
d(σi(q),σj(q))

) ≤ θ
(
H(Tσi(q)–1, Tσj(q)–1)

)
.

Letting q → ∞, we have

θ (M) ≤ θ
(

lim
q→∞H(Tσi(q)–1, Tσj(q)–1)

)
.

Applying (θ1), one gets

0 < M ≤ lim
q→∞H(Tσi(q)–1, Tσj(q)–1).

This implies that H(Tσi(q)–1, Tσj(q)–1) > 0. So by using condition (2.1), we have

1 ≤ ξ
(
θ
(
H(Tσi(q)–1, Tσj(q)–1)

)
, θ

(
d(σi(q)–1,σj(q)–1)

))
<

d(σi(q)–1,σj(q)–1)
H(Tσi(q)–1, Tσj(q)–1))

.
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Hence,

θ
(
H(Tσi(q+1)–1, Tσj(q)–1)

)
< θ

(
d(σi(q)–1,σj(q)–1)

)
.

Letting q → ∞ and using (θ1), we have

lim
q→∞H(Tσi(q)–1, Tσj(q)–1) = lim

q→∞ d(σi(q)–1,σj(q)–1) = M. (2.17)

In view of (ξ3), one gets

1 ≤ lim sup
q→∞

ξ
(
θ
(
H(Tσi(q)–1, Tσj(q)–1)

)
, θ

(
d(σi(q)–1,σj(q)–1)

))
< 1,

which is a contradiction.
Thus, limq→∞ d(σi(q),σj(q)) = 0, and hence {σi} is a Cauchy sequence in the complete met-

ric space X. Therefore, there is y ∈ X such that

lim
i→∞ d(σi, y) = 0.

By Lemma 2.2, T is continuous, and so

0 ≤ d(y, Ty) = lim
i→∞ d(σi, Ty) ≤ lim

i→∞H(Tσi–1, Ty) = H(Ty, Ty) = 0.

This implies that y is a fixed point of T . �

We state some corollaries.

Corollary 2.4 Let (X, d) be a complete metric space and T : X → CB(X) be a given map-
ping such that for all ς , τ ∈ X with H(Tς , Tτ ) 	= 0,

H(Tς , Tτ ) ≤ d(ς , τ ) – ϕ
(
d(ς , τ )

)
, (2.18)

where ϕ : [0,∞) → [0,∞) is lower semicontinuous and nondecreasing such that ϕ–1({0}) =
{0}. Then T admits a unique fixed point.

Proof From condition (2.18), we have

eH(Tς ,Tτ ) ≤ ed(ς ,τ )–ϕ(d(ς ,τ ).

Putting θ (t) = et , we get

θ
(
H(Tς , Tτ )

) ≤ θ (d(ς , τ ))
eϕ(d(ς ,τ )) .

Also, define ϕ(t) = ln(ψ(θ (t))), where ψ : [1,∞) → [1,∞) is lower semicontinuous and
nondecreasing such that ψ–1({1}) = {1}. We get

θ
(
H(Tς , Tτ )

) ≤ θ (d(ς , τ ))
ψ(θ (d(ς , τ )))

.
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By putting ξ (t, s) = s
tψ(s) , we get

1 ≤ θ (d(ς , τ ))
θ (H(Tς , Tτ ))ψ(θ (d(ς , τ )))

= ξ
(
θ
(
H(Tς , Tτ )

)
, θ

(
d(ς , τ )

))
.

In view of Theorem 2.3, T has a unique fixed point. �

Now, take in Theorem 2.3 the function ξ (υ,η) = υκ

η
for all υ,η ≥ 1, where κ ∈ (0, 1).

Corollary 2.5 Let (X, d) be a complete metric space and T : X → K(X) be such that for all
ς , τ ∈ X with H(Tς , Tτ ) 	= 0,

θ
(
H(Tς , Tτ )

) ≤ [
θ
(
d(ς , τ )

)]k , (2.19)

where θ ∈ �∗. Then T possesses a unique fixed point.

Corollary 2.6 Let (X, d) be a complete metric space and T : X → CB(X) be such that for
all ς , τ ∈ X with H(Tς , Tτ ) 	= 0,

θ
(
H(Tς , Tτ )

) ≤ [
θ
(
d(ς , τ )

)]k , (2.20)

where θ ∈ �∗ satisfies (θ4). Then T admits a unique fixed point.

Remark 2.7 Corollary 2.4 is the multivalued version of Theorem 3.2 in [24], and improves
it by replacing the compact range condition by the closed and bounded range, and by
considering that ϕ as lower semicontinuous and not necessary continuous. Corollary 2.5 is
the multivalued version of Theorem 1.5. Also, Corollary 2.6 is an extension of Theorem 2.5
in [23] without condition (θ3).

The following example supports Theorem 2.3. Here, the main result of Vetro [23] is not
applicable.

Example 2.8 Let X = {0, 1, 2, 4} be a metric space endowed with the metric d(ς , τ ) = |ς –τ |
for all ς , τ ∈ X. Consider the mapping T : X → K(X) given by

Tς =

⎧⎨
⎩

{0}, ς = 4,

{0, 2}, ς 	= 4.

Take θ (t) = et for each t > 0. Choose ξ (t, s) = s
tφ(s) for all t, s ≥ 1, where

φ(s) =

⎧⎨
⎩

1 if s ≤ e2,
3√s if s > e2.

We shall prove that T is a multivalued L-contraction with respect to such ξ . We notice that
H(Tς , Tτ ) > 0 iff ς = 4 and τ 	= 4. In this case, we have θ (H(Tς , Tτ )) = θ (H({0}, {0, 2})) =
e2. We need the following:
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Case 1. If ς = 4 and τ = 0, then θ (d(4, 0)) = e4 and hence

ξ
(
θ
(
H(T4, T0)

)
, θ

(
d(4, 0)

))
=

e4

e 10
3

= e
2
3 > 1.

Case 2. If ς = 4 and τ = 1, then θ (d(4, 1)) = e3. So,

ξ
(
θ
(
H(T4, T1)

)
, θ

(
d(4, 1)

))
=

e3

e2 3√e3
= 1.

Case 3. If ς = 4 and τ = 2, then θ (d(4, 2)) = e2 and so

ξ
(
θ
(
H(T4, T2)

)
, θ

(
d(4, 2)

))
=

e2

e2(1)
= 1.

Then T is a multivalued L-contraction with respect to ξ . Hence all the conditions of The-
orem 2.3 hold. Here, T admits a fixed point.

Note that for all θ ∈ �, we have

θ
(
H(T4, T2)

)
= θ (2) >

[
θ
(
d(4, 2)

)]k =
[
θ (2)

]k for all κ ∈ [0, 1).

That is, T is not an θ -contraction of Vetro [23].

3 Application
Now, we present a homotopy result as an application of Corollary 2.4.

Theorem 3.1 Let (X, d) be a complete metric space, E ⊂ X be a nonempty open set and let
D ⊂ X be a closed set with E ⊂ D. Also, let T : D × [0, 1] → CB(X) verify condition (2.18)
such that

(i) s /∈ T(s, u), for all s ∈ D�E, u ∈ [0, 1];
(ii) there is a continuous function γ : [0, 1] →R such that for all u, v ∈ [0, 1] and s ∈ D,

H
(
T(s, u), T(s, v)

) ≤ λ
∣∣γ (u) – γ (v)

∣∣, where λ ∈ (0, 1);

(iii) if s ∈ T(s, u), then T(s, u) = {s}.
Then T(·, 0) possesses a fixed point iff T(·, 1) possesses a fixed point.

Proof Let A = {u ∈ [0, 1]; s ∈ T(s, u), for some s ∈ E}. Since T(·, 0) has a fixed point and
from condition (i), we have 0 ∈ A, therefore A is nonempty. We claim that A is both open
and closed in [0, 1], then by the connectedness of [0, 1], the proof is completed.

First, we show that A is open in [0, 1]. Let u0 ∈ A, then there is s0 ∈ E with s0 ∈ T(s0, u0).
Since E is open in (X, d), there is r > 0 such that B(s0, r) ⊂ E. Take ε = ϕ(r)

λ
> 0, where

ϕ is given in Corollary 2.4. Using the continuity of γ at u0, there is δ(ε) > 0 such that
|γ (u) – γ (u0)| < ε, for all u ∈ (u0 – δ, u0 + δ).

Let u ∈ (u0 – δ, u0 + δ). For s ∈ B[s0, r] = {s ∈ X; d(s, s0) ≤ r}, we get

d
(
T(s, u), s0

) ≤H
(
T(s, u), T(s0, u0)

)

≤H
(
T(s, u), T(s, u0)

)
+ H

(
T(s, u0), T(s0, u0)

)
. (3.1)
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If H(T(s, u0), T(s0, u0)) = 0, then using (iii),

d
(
T(s, u), s0

) ≤ λ
∣∣γ (u) – γ (u0)

∣∣ < λε < r. (3.2)

In the case that H(T(s, u0), T(s0, u0)) > 0 and since T satisfies the contraction condition
(2.18), we obtain

H
(
T(s, u0), T(s0, u0)

) ≤ d(s, s0) – ϕ
(
d(s, s0)

)
. (3.3)

By substituting in (3.1) from (3.3) and from (iii), we have

d
(
T(s, u), s0

) ≤ λ
∣∣γ (u) – γ (u0)

∣∣ + d(s, s0) – ϕ
(
d(s, s0)

)

< λε + r – ϕ(r) = r. (3.4)

Combining (3.2) and (3.4), and for all u ∈ (u0 – δ, u0 + δ), the operator T(·, u) : B[s0, r] →
CB(X) satisfies all hypotheses of Corollary 2.5. Hence, T(·, u0) has a fixed point in B[s0, r] ⊂
D, and since (i) holds, this fixed point has to lie in E, and (u0 – δ, u0 + δ) ⊂ A. Therefore, A
is open.

Next, we prove that A is closed. Let {un} be a sequence in A such that limn→∞ un = u ∈
[0, 1]. Since {un} ⊂ A, there is {sn} ⊂ E such that sn ∈ T(sn, un). Then, by using condition
(iii) and for all m, n ∈ Z+, we have

d(sn, sm) ≤ H
(
T(sn, un), T(sm, um)

)

≤ H
(
T(sn, un), T(sn, um)

)
+ H

(
T(sn, um), T(sm, um)

)
. (3.5)

Case 1. If H(T(sn, um), T(sm, um)) = 0 for some m, n ∈ Z+, then from condition (ii) we have

d(sn, sm) ≤ λ
∣∣γ (un) – γ (um)

∣∣. (3.6)

Case 2. If H(T(sn, um), T(sm, um)) > 0, then from the contraction condition (2.18), we have

H
(
T(sn, um), T(sm, um)

) ≤ d(sn, sm) – ϕ
(
d(sn, sm)

)
. (3.7)

By substituting (3.7) and condition (iii) in (3.5), we have

d(sn, sm) ≤ λ
∣∣γ (un) – γ (um)

∣∣ + d(sn, sm) – ϕ
(
d(sn, sm)

)
. (3.8)

From (3.6) and (3.8), we have

d(sn, sm) ≤ λ
∣∣γ (un) – γ (um)

∣∣ + d(sn, sm) – ϕ
(
d(sn, sm)

)
,

for each m, n ∈ Z+. Hence

ϕ
(
d(sn, sm)

) ≤ λ
∣∣γ (un) – γ (um)

∣∣.
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By taking the limit as n, m → ∞ and from the lower semicontinuity of ϕ and continuity of
γ , we get

lim
n,m→∞ d(sn, sm) = 0.

Hence, the sequence {sn} is Cauchy in (X, d), which is complete, so there is s ∈ D with
limn→∞ d(sn, s) = 0. We have

d
(
sn, T(s, u)

) ≤ H
(
T(sn, un), T(s, u)

)

≤ H
(
T(sn, un), T(sn, u)

)
+ H

(
T(sn, u), T(s, u)

)
. (3.9)

Case 1. If H(T(sn, u), T(s, u)) = 0, for some n then from condition (ii) we have

d
(
sn, T(s, u)

) ≤ λ
∣∣γ (un) – γ (u)

∣∣. (3.10)

Case 2. If H(T(sn, u), T(s, u)) > 0 for each n, then from the contraction condition (2.18), we
have

H
(
T(sn, u), T(s, u)

) ≤ d(sn, s) – ϕ
(
d(sn, s)

)
. (3.11)

By substituting from (3.11) and condition (iii) in (3.9), we have

d
(
sn, T(s, u)

) ≤ λ
∣∣γ (un) – γ (u)

∣∣ + d(sn, s) – ϕ
(
d(sn, s)

)
. (3.12)

By (3.10) and (3.12), we get that

d
(
sn, T(s, u)

) ≤ λ
∣∣γ (un) – γ (u)

∣∣ + d(sn, s),

for each n ∈ Z+. By taking the limit as n → ∞ and from continuity of γ , we obtain that

lim
n→∞ d

(
sn, T(s, u)

)
= d

(
s, T(s, u)

)
= 0. (3.13)

We deduce that s ∈ T(s, u), and by using condition (i), we have s ∈ E. Thus, u ∈ A, and so
A is a closed subset of [0, 1].

Similarly, we can deduce the reverse implication. �
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