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Abstract
In this paper, we propose a new fractional-order financial model which is a
generalized version of the financial model reported in the previous publications. By
applying a suitable time-delayed feedback controller, we have control for the chaotic
behavior of the fractional-order financial model. We investigate the stability and the
existence of a Hopf bifurcation of the fractional-order financial model. A new
sufficient condition that guarantees the stability and the existence of a Hopf
bifurcation for a fractional-order delayed financial model is presented by regarding
the delay as bifurcation parameter. The investigation shows that the delay and the
fractional order have an important effect on the stability and Hopf bifurcation of
involved model. Some simulations justifying the validity of the derived analytical
results are given. The obtained results of this article are innovative and are of great
significance in handling the financial issues.
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1 Introduction
In modern society, the study on complex dynamics of financial systems has become a
topic of focus in the microeconomic and macroeconomic fields. Numerous researchers
pay much attention to this theme. For example, Gao and Ma [1] considered the chaos and
Hopf bifurcation of a finance model. Ma and Chen [2, 3] investigated the bifurcation phe-
nomenon and the global character for a nonlinear finance model. Ma and Wang discussed
the Hopf bifurcation and topological horseshoe for a chaotic finance model.

Chaotic phenomenon often occur in many economics. Serletic [4] point out that chaos
stands for a radical change of perspective on business cycles. In many cases, chaos will
cause the instability of economical systems. Thus chaos control has become an important
problem that must be solved for real human life. Generally speaking, the aim of chaotic
control is to stabilize a chaotic attractor to an equilibrium point or a periodic solution. In
recent years, there have been two main ways to control chaos. One was developed by Ott
et al. [5] and another is the time-delayed feedback method proposed by Pyragas [6]. The
latter is more convenient than the former. So we adopt the latter to control chaos in this
article.
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Fractional calculus has a history of over 300 years. The investigation progress on frac-
tional calculus is very slow due to the lack of theoretical basis and realistic background.
In recent years, fractional differential equations have been proved to be potentially useful
in electroanalytical chemistry, robotics, bioengineering, viscoelasticity, medicine and so
on [7–48]. Different from integer-order models, fractional-order models possess memory,
namely, the fractional-order model depends on the history of the model.

In 2016, Yang et al. [49] studied the following financial model:

⎧
⎪⎪⎨

⎪⎪⎩

du1
dt = a1(u1 + u2),

du2
dt = –u2 – a1u1u3,

du3
dt = a2 + a1u1u2,

(1.1)

where ai > 0 (i = 1, 2) is the constant, u1 represents the interest rate, u2 represents invest-
ment demand and u3 represents the price index. Based on the model (1.1) and considering
that fractional differential equations have memory and hereditary properties, for practical
dynamical process, we can modify system (1.1) as a fractional-order version:

⎧
⎪⎪⎨

⎪⎪⎩

dpu1
dtp = a1(u1 + u2),

dpu2
dtp = –u2 – a1u1u3,

dpu3
dtp = a2 + a1u1u2,

(1.2)

where p represents the fractional order. In economic operation, the interest rate, invest-
ment demand and price index are under the impact of their memories. In addition, the
process of economic operation has a close connection with the whole time information of
the financial system. The model (1.2) has memory and hereditary properties for practical
dynamical process, so we think that the model (1.2) shows some novelty and it is better
than model (1.1). When p = 0.8 and a1 = 1.79, a2 = 4, system (1.2) is chaotic, which is
shown in Fig. 1.

The main object of this paper is to discuss two topics: (1) designing a suitable time-
delayed feedback controller to suppress the chaos of the system (1.2) and (2) the effect of
time delay and the fractional order on the stability and the existence of Hopf bifurcation
of controlled system are presented. During the past decades, the time-delayed feedback
control technique has only been applied to the control of chaos and Hopf bifurcation of
integer-order differential dynamical systems. There are relatively few works that deal with
chaos and Hopf bifurcation control by applying time-delayed feedback controllers. Con-
sidering the introduction of fractional order for delayed differential systems, the corre-
sponding characteristic equation will be more complex. Thus it is more difficult to ana-
lyze the distribution of roots of the characteristic equation of the involved fractional-order
dynamical systems. The contributions of this article lie in four aspects:

• The integer-order delayed financial model has been extended to a delayed
fractional-order financial model, which can better describe the memory properties of
the model.

• The control technique is more complex than that for integer-order differential systems
due to the introduction of the fractional order. A set of sufficient conditions that
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Figure 1 Time history plots, variable relation plots and phase diagrams of system (1.2) with a1 = 1.79, a2 = 4

ensure the stability and the existence of Hopf bifurcation of the fractional-order
delayed financial model are established. The study shows that the delay and fractional
order have an important effect on the stability and the existence of Hopf bifurcation of
involved controlled systems.
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• Up to now, there are few papers that focus on the Hopf bifurcation of fractional-order
delayed financial model. The theoretical findings of this article will enrich and develop
the Hopf bifurcation theory of fractional-order delayed differential equations and
supplement the earlier publications.

• The approach of this paper can provide a good reference in the study of some similar
fractional-order delayed differential models.

The rest of this paper is organized as follows. In Sect. 2, several definitions and lemmas
on fractional calculus are given. In Sect. 3, a time-delay feedback controller is designed to
control the chaos of the chaotic fractional-order financial model. In Sect. 4, a numerical
example is given to check the theoretical predictions. Finally, a brief conclusion is included.

2 Preliminary results
In this section, two definitions and two lemmas of fractional calculus are introduced.

Definition 2.1 ([50]) The fractional integral of order δ for a function h(ξ ) is defined as
follows:

Iδh(ξ ) =
1

�(δ)

∫ ξ

ξ0

(ξ – s)δ–1h(s) ds,

where ξ ≥ ξ0, δ > 0, �(·) denotes the Gamma function and �(s) =
∫ ∞

0 ξ s–1e–ξ dξ .

Definition 2.2 ([50]) The Caputo fractional-order derivative of order δ for a function
h(ξ ) ∈ ([ξ0,∞), R) is defined as follows:

Dδh(ξ ) =
1

�(n – δ)

∫ ξ

ξ0

h(n)(s)
(ξ – s)δ–n+1 ds,

where ξ ≥ ξ0 and n is a positive integer such that n–1 ≤ δ < n. In particular, when 0 < δ < 1,

Dδh(ξ ) =
1

�(1 – δ)

∫ ξ

ξ0

h′(s)
(ξ – s)δ

ds.

Lemma 2.1 ([51]) Let there be given an autonomous system Dδz = Az, z(0) = z0 where
0 < δ < 1, z ∈ Rn, A ∈ Rn×n. Suppose that λi (i = 1, 2, . . . , n) is the root of the characteristic
equation of Dδz = Az. Then system Dδz = Az is asymptotically stable ⇔ | arg(λi)| > δπ

2
(i = 1, 2, . . . , n). Especially, this system is stable ⇔ | arg(λi)| > δπ

2 (i = 1, 2, . . . , n) and those
critical eigenvalues that satisfy | arg(λi)| = δπ

2 (i = 1, 2, . . . , n) possess geometric multiplicity
one.

Lemma 2.2 ([8]) For the given fractional-order delayed differential equation with Caputo
derivative: Dδu(t) = C1u(t) + C2u(t – �), where u(t) = φ(t), t ∈ [–�, 0], δ ∈ (0, 1], u ∈ Rn,
C1,C2 ∈ Rn×n, � ∈ R+(n×n). Then the characteristic equation of the system is det |sδI – C1 –
C2e–s�| = 0. If all the roots of the characteristic equation of the system have negative real
roots, then the zero solution of the system is asymptotically stable.
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3 Controller design for chaos control
Over the past few decades, many linear time-delay feedback methods are applied to con-
trol the Hopf bifurcation of integer-order models. However, the linear time-delay feedback
controllers are very rare in controlling a Hopf bifurcation of fractional-order models. To
make up for the deficiency, we design a linear time-delay feedback controller [52] which
takes the form

κi
[
ui(t) – ui(t – �)

]
(i = 1, 2), (3.1)

where κi (i = 1, 2) is the feedback strength and � is the time delay. κi,� ∈ R and � ≥ 0.
Clearly, system (1.2) has two equilibrium points,

E1

(

–
√

a2

a1
,
√

a2

a1
,

1
a1

)

, E2

(√
a2

a1
, –

√
a2

a1
,

1
a1

)

.

In this paper, we only consider the equilibrium point E1 and E2 can be handled in a sim-
ilar approach. Adding the time-delayed feedback controller κi[ui(t) – ui(t – �)] to the ith
equation of system (1.2), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dup
1

dtp = a1(u1 + u2) + κ1[u1(t) – u1(t – �)],
dup

2
dtp = –u2 – a1u1u3 + κ2[u2(t) – u2(t – �)],
dup

3
dtp = a2 + a1u1u2.

(3.2)

The linear equation of (3.2) near the equilibrium point E1 takes the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dup
1

dtp = (a1 + κ1)u1 + a1u2 – κ1u1(t – �)],
dup

2
dtp = –u1 + (κ2 – 1)u2 + √a1a2u3 – κ2u2(t – �),
dup

3
dtp = √a1a2u1 – √a1a2u2.

(3.3)

The corresponding characteristic equation of (3.3) is given by

det

⎡

⎢
⎣

sp – (a1 + κ1) + κ1e–s� –a1 0
1 sp – (κ2 – 1) + κ2e–s� –√a1a2

–√a1a2
√a1a2 sp

⎤

⎥
⎦ , (3.4)

which leads to

A1(s) + A2(s)e–s� + A3(s)e–2s� = 0, (3.5)

where

A1(s) = s3p – (κ1 – 1 + a1 + κ2)s2p +
[
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

]
sp

+ a1a2κ1,

A2(s) = (κ1 + κ2)s2p –
[
κ2(a1 + κ1) + κ1(κ2 – 1)

]
sp + a1a2κ1,

A3(s) = κ1κ2sp.
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It follows from (3.5) that

A1(s)es� + A2(s) + A3(s)e–s� = 0. (3.6)

Let s = iφ = φ(cos π
2 + i sin π

2 ) be a root of (3.6). Then

⎧
⎨

⎩

H1(φ) cosφσ + H2(φ) sinφσ = H3(φ),

G1(φ) cosφσ + G2(φ) sinφσ = G3(φ),
(3.7)

where

H1(φ) = φ3p cos
3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p cos pπ +

[
a1a2 – κ1

– (a1 + κ1)(κ2 – 1) + κ1κ2
]
φp cos

pπ

2
+ a1a2κ1,

H2(φ) = –φ3p sin
3pπ

2
+ (κ1 – 1 + a1 + κ2)φ2p sin pπ –

[
a1a2 – κ1

– (a1 + κ1)(κ2 – 1) + κ1κ2
]
φp sin

pπ

2
,

H3(φ) = –(κ1 + κ2)φ2p cos pπ +
[
κ2(a1 + κ1) + κ1(κ2 – 1)

]
φp cos

pπ

2
– a1a2κ1,

G1(φ) = φ3p sin
3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p cos pπ +

[
a1a2 – κ1

– (a1 + κ1)(κ2 – 1) + κ1κ2
]
φp sin

pπ

2
,

G2(φ) = φ3p cos
3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p cos pπ +

[
a1a2 – κ1

– (a1 + κ1)(κ2 – 1) – κ1κ2
]
φp cos

pπ

2
+ a1a2(a1 + κ1),

G3(φ) = –(κ1 + κ2)φ2p sin pπ +
[
κ2(a1 + κ1) + κ1(κ2 – 1)

]
φp sin

pπ

2
.

Let

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = cos 3pπ

2 , α2 = –(κ1 – 1 + a1 + κ2) cos pπ ,

α3 = [a1a2 – κ1 – (a1 + κ1)(κ2 – 1) + κ1κ2] cos pπ

2 ,

α4 = a1a2κ1, α5 = – sin 3pπ

2 , α6 = (κ1 – 1 + a1 + κ2) sin pπ ,

α7 = –[a1a2 – κ1 – (a1 + κ1)(κ2 – 1) + κ1κ2] sin pπ

2 ,

α8 = –(κ1 + κ2) cos pπ , α9 = [κ2(a1 + κ1) + κ1(κ2 – 1)] cos pπ

2 ,

α10 = –a1a2κ1, α11 = sin 3pπ

2 , α12 = –(κ1 – 1 + a1 + κ2) cos pπ ,

α13 = [a1a2 – κ1 – (a1 + κ1)(κ2 – 1) + κ1κ2] sin pπ

2 , α14 = cos 3pπ

2 ,

α15 = –(κ1 – 1 + a1 + κ2) cos pπ ,

α16 = [a1a2 – κ1 – (a1 + κ1)(κ2 – 1) – κ1κ2] cos pπ

2 ,

α17 = a1a2(a1 + κ1), α18 = –(κ1 + κ2) sin pπ ,

α19 = [κ2(a1 + κ1) + κ1(κ2 – 1)] sin pπ

2 .

(3.8)



Xu et al. Advances in Difference Equations        (2020) 2020:573 Page 7 of 17

Then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(φ) = α1φ
3p + α2φ

2p + α3φ
p + α4,

H2(φ) = α5φ
3p + α6φ

2p + α7φ
p,

H3(φ) = α8φ
2p + α9φ

p + α10,

G1(φ) = α11φ
3p + α12φ

2p + α13φ
p,

G2(φ) = α14φ
3p + α15φ

2p + α16φ
p + α17,

G3(φ) = α18φ
2p + α19φ

p.

(3.9)

By (3.7), one has

⎧
⎨

⎩

cosφσ = H3(φ)G2(φ)–G3(φ)H2(φ)
H1(φ)G2(φ)–G1(φ)H2(φ) ,

sinϕσ = H1(φ)G3(φ)–G1(φ)H3(φ)
H1(φ)G2(φ)–G1(φ)H2(φ) .

(3.10)

In view of the equation cos2 φσ + sin2 φσ = 1, one has

[
H3(φ)G2(φ) – G3(φ)H2(φ)

]2 +
[
H1(φ)G3(φ) – G1(φ)H3(φ)

]2

=
[
H1(φ)G2(φ) – G1(φ)H2(φ)

]2. (3.11)

Since

[
H3(φ)G2(φ) – G3(φ)H2(φ)

]2 =
(
l1φ

5p + l2φ
4p + l3φ

3p + l4φ
2p + l5φ

p + l6
)2,

[
H1(φ)G3(φ) – G1(φ)H3(φ)

]2 =
(
l7φ

5p + l8φ
4p + l9φ

3p + l10φ
2p + l11φ

p)2,
[
H1(φ)G2(φ) – G1(φ)H2(φ)

]2

=
(
l12φ

6p + l13φ
5p + l14φ

4p + l15φ
3p + l16φ

2p + l17φ
p + l18

)2,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 = α8α14 – α5α18, l2 = α8α15 + α9α14 – α6α18 – α5α19,

l3 = α8α16 + α9α15 + α10α14 – α7α18 – α6α19,

l4 = α8α17 + α9α16 + α10α15 – α7α19, l5 = α10α16, l6 = α10α17,

l7 = α1α18 – α8α11, l8 = α1α19 + α2α18 – α9α11 – α8α12,

l9 = α2α19 + α3α18 – α10α11 – α9α12 – α8α13,

l10 = α3α19 + α4α18 – α10α12 – α9α13, l11 = α4α19 – α10α13,

l12 = α1α14 – α3α11, l13 = α1α15 + α2α14 – α6α11 – α3α12,

l14 = α1α16 + α2α15 + α3α14 – α7α11 – α6α12 – α3α13,

l15 = α1α17 + α2α16 + α3α15 + α4α14 – α7α12 – α7α13,

l16 = α2α17 + α3α16 + α4α15 – α7α13,

l17 = α3α17 + α4α16, l18 = α4α17,

(3.12)
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we have

b1φ
12p + b2φ

11p + b3φ
10p + b4φ

9p + b5φ
8p + b6φ

7p + b7φ
6p

+ b8φ
5p + b9φ

4p + b10φ
3p + b11φ

2p + b12φ
p + b13 = 0, (3.13)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = l2
12, b2 = 2l12l13, b3 = l2

13 + 2l12l14 – l2
7 – l2

1,

b4 = 2(l12l15 + l13l14 – l7l8 – l1l2),

b5 = l2
14 + 2l12l16 + 2l13l15 – l2

8 – 2l7l8 – l2
2 – 2l1l3,

b6 = 2[l12l17 + l13l16 + l14l15 – l8l9 – l7l10 – l1l4 – l2l3],

b7 = l2
15 + 2l12l18 + 2l14l16 + 2l13l17 – l2

9 – 2l7l11 – 2l8l10 – l2
3 – 2l1l5 – 2l2l4,

b8 = 2[l13l18 + l14l17 + l15l16 – l8l11 – l9l10 – l1l6 – l2l5 – l3l4],

b9 = l2
16 + 2l14l18 + 2l15l17 – l2

10 – 2l9l11 – l2
4 – 2l2l6 – 2l3l5,

b10 = 2[l15l18 + l16l17 – l10l11 – l3l6 – l4l5],

b11 = l2
17 + 2l16l18 – l2

5 – 2l4l6, b12 = 2(l17l18 – 2l5l6), b13 = l2
18.

(3.14)

Denote

χ (φ) = b1φ
12p + b2φ

11p + b3φ
10p + b4φ

9p + b5φ
8p + b6φ

7p + b7φ
6p

+ b8φ
5p + b9φ

4p + b10φ
3p + b11φ

2p + b12φ
p + b13 (3.15)

and

ρ(μ) = b1μ
12 + b2μ

11 + b3μ
10 + b4μ

9 + b5μ
8 + b6μ

7 + b7μ
6

+ b8μ
5 + b9μ

4 + b10μ
3 + b11μ

2 + b12μ + b13. (3.16)

The following assumption is given:
(A1) κ1 	= 0.

Lemma 3.1 For (3.5), the following conclusions are true:
(i) If bi > 0 (i = 1, 2, 3, . . . , 12), then (3.5) possesses no root with zero real parts.

(ii) If there exists a positive constant μ0 such that ρ(μ0) < 0, then (3.5) possesses at least
two pairs of purely imaginary roots.

Proof We will prove the two cases, respectively.
(i) By (3.15), one gets

dχ (φ)
dφ

= 12pb1φ
12p–1 + 11pb2φ

11p–1 + 10pb3φ
10p–1 + 9pb4φ

9p–1 + 8pb5φ
8p–1

+ 7pb6φ
7p–1 + 6pb7φ

6p–1 + 5pb8φ
5p–1 + 4pb9φ

4p–1 + 3pb10φ
3p–1

+ 2pb11φ
2p–1 + pb12φ

p–1. (3.17)
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Since bi > 0 (i = 1, 2, 3, . . . , 13), we have dχ (φ)
dφ

> 0 ∀φ > 0. In view of χ (0) = b13 > 0, we know
that (3.15) possesses no positive real root. In view of (A1), we can conclude that s = 0 is
not the root of (3.5). The proof of (i) is completed.

(ii) Because ρ(0) = b13 > 0, ρ(ε0) < 0 (ε0 > 0) and limν→+∞ ρ(ν)
dν

= +∞, one can know that
∃ε01 ∈ (0, ε0) and ε02 ∈ (ε0, +∞) such that ρ(ε01) = ρ(ε02) = 0, which implies that (3.13)
possesses at least two positive real roots. Then (3.5) possesses at least two pairs of purely
imaginary roots. The proof of (ii) is finished. �

Without loss of generality, assume that (3.13) has six positive real roots identified by φl

(l = 1, 2, . . . , 13). By (3.10), one gets

�k
l =

1
φl

[

arccos

(H3(φl)G2(φl) – G3(φl)H2(φl)
H1(φl)G2(φl) – G1(φl)H2(φl)

)

+ 2kπ

]

, (3.18)

where k = 0, 1, 2, . . . , l = 1, 2, . . . , 13. Then ±iφl is a pair of purely imaginary roots of (3.5)
when � = �k

l . Let

�0 = min
l=1,2,...,13

{
�0

l
}

, φ0 = φ|�=�0 . (3.19)

Now the following assumption is made:
(A2) M1N1 + M2N2 > 0, where

M1 = κ1κ2φ
p
0

(

cosφ0�0 cos
pπ

2
+ sinφ0�0 sin

pπ

2

)

+ φ0 sinφ0�0

[

φ
3p
0 cos

3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p

0 cos pπ

+
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p
0 cos

pπ

2
+ a1a2κ1

]

+ φ0 cosφ0�0

[

φ
3p
0 sin

3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p

0 sin pπ

+
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p
0 sin

pπ

2

]

,

M2 = κ1κ2φ
p
0

(

cosφ0�0 sin
pπ

2
– sinφ0�0 cos

pπ

2

)

+ φ0 sinφ0�0

[

φ
3p
0 sin

3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p

0 sin pπ

+
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p
0 sin

pπ

2

]

+ φ0 cosφ0�0

[

φ
3p
0 cos

3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p

0 cos pπ

+
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p
0 cos

pπ

2
+ a1a2κ1

]

,

N1 =
[

3pφ
3p
0 cos

3pπ

2
– 2p(κ1 – 1 + a1 + κ2)φ2p–1

0 cos
(2p – 1)π

2
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+ p
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p–1
0 cos

(p – 1)π
2

]

cosφ0�0

– sinφ0�0

[

3pφ
3p
0 sin

3pπ

2
– 2p(κ1 – 1 + a1 + κ2)φ2p–1

0 sin
(2p – 1)π

2

+ p
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p–1
0 sin

(p – 1)π
2

]

+ �0 cosφ0�0

[

φ
3p
0 cos

3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p

0 cos
2pπ

2

+
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p
0 cos

pπ

2
+ a1a2κ1

]

– �0 sinφ0�0

[

φ
3p
0 sin

3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p

0 sin
2pπ

2

+
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p
0 sin

pπ

2

]

+ 2p(κ1 + κ2)φ2p–1
0 cos

(2p – 1)π
2

– p
[
κ2(a – 1 + a2) – κ1(κ2 – 1)

]
φ

p–1
0 cos

(p – 1)π
2

+ pκ1κ2φ
p–1
0 cos

(p – 1)π
2

cosφ0�0 – pκ1κ2φ
p–1
0 sin

(p – 1)π
2

sinφ0�0

+ �0κ1κ2φ
p
0 cos

pπ

2
cosφ0�0 + �0κ1κ2φ

p
0 sin

pπ

2
sinφ0�0,

N2 =
[

3pφ
3p
0 cos

3pπ

2
– 2p(κ1 – 1 + a1 + κ2)φ2p–1

0 cos
(2p – 1)π

2

+ p
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p–1
0 cos

(p – 1)π
2

]

sinφ0�0

– cosφ0�0

[

3pφ
3p
0 sin

3pπ

2
– 2p(κ1 – 1 + a1 + κ2)φ2p–1

0 sin
(2p – 1)π

2

+ p
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p–1
0 sin

(p – 1)π
2

]

+ �0 sinφ0�0

[

φ
3p
0 cos

3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p

0 cos
2pπ

2

+
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p
0 cos

pπ

2
+ a1a2κ1

]

+ �0 cosφ0�0

[

φ
3p
0 sin

3pπ

2
– (κ1 – 1 + a1 + κ2)φ2p

0 sin
2pπ

2

+
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
φ

p
0 sin

pπ

2

]

+ 2p(κ1 + κ2)φ2p–1
0 sin

(2p – 1)π
2

– p
[
κ2(a – 1 + a2) – κ1(κ2 – 1)

]
φ

p–1
0 sin

(p – 1)π
2

+ pκ1κ2φ
p–1
0 cos

(p – 1)π
2

sinφ0�0 + pκ1κ2φ
p–1
0 sin

(p – 1)π
2

cosφ0�0

– �0κ1κ2φ
p
0 cos

pπ

2
sinφ0�0 + �0κ1κ2φ

p
0 sin

pπ

2
cosφ0�0.

Lemma 3.2 Suppose that s(�) = ν(�)+ iφ(�) is the root of (3.5) at � = �0 satisfying ν(�0) = 0,
φ(�0) = φ0, then Re[ ds

d�
]|�=�0,φ=φ0 > 0.



Xu et al. Advances in Difference Equations        (2020) 2020:573 Page 11 of 17

Proof According to (3.6), one gets

ds
d�

=
B1(�)
B2(�)

, (3.20)

where

B1(�) = e–s�κ1κ2sp – ses�[s3p – (κ1 – 1 + a1 + κ2)s2p

+
(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
sp + a1a2κ1

]
,

B2(�) =
{

3ps3p–1 – 2p(κ1 – 1 + a1 + κ2)s2p–1 + p
[
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

]
sp–1}es�

+ es��
[
s3p – (κ1 – 1 + a1 + κ2)s2p +

(
a1a2 – κ1 – (a1 + κ1)(κ2 – 1)

)
sp + a1a2κ1

]

+ 2p(κ1 + κ2)s2p–1 – p
[
κ2(a1 + a2) – κ1(κ2 – 1)

]
sp–1

+ pκ1κ2sp–1e–s� – e–s��κ1κ2sp.

Then

Re

{
ds
dσ

}

= Re

{B1(�)
B2(�)

}

. (3.21)

Hence

Re

{
ds
dσ

}∣
∣
∣
∣
�=�0,φ=φ0

= Re

{
B1(�)
B2(�)

}∣
∣
∣
∣
�=�0,φ=φ0

=
M1N1 + M2N2

N 2
1 + N 2

2
. (3.22)

In terms of (A3), one has

Re

{[
ds
d�

]–1}∣
∣
∣
∣
�=�0,φ=φ0

> 0.

The proof of Lemma 3.2 is finished. �

Next we give an assumption as follows:
(A3) κ1 > 0, (1 – a1)(a1a2 – 2κ1κ2 – 2a1κ2 + a1 + κ1) > 2a1a2κ1.

Lemma 3.3 If � = 0 and (A3) hold true, then system (3.2) is asymptotically stable.

Proof If � = 0, then (3.5) takes the form

λ3 + (1 – a1)λ2 + (a1a2 – 2κ1κ2 – 2a1κ2 + a1 + κ1)λ + 2a1a2κ1 = 0. (3.23)

It follows from (A3) that all the roots λi of (3.20) satisfy | arg(λi)| > pπ

2 (i = 1, 2). By
Lemma 2.1, we know that system (3.2) with � = 0 is asymptotically stable. The proof of
Lemma 3.3 is finished. �

According to the analysis above and Lemmas 3.2 and 3.3, one has the following theo-
rem.
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Theorem 3.1 For system (3.2), assume that (A1)–(A3) are satisfied, then the equilibrium
point E1 is globally asymptotically stable for � ∈ [0,�0) and system (3.2) undergoes a Hopf
bifurcation near the equilibrium point E1 when � = �0.

Remark 3.1 In [1–3, 53], the authors studied the Hopf bifurcation and chaotic behav-
ior of integer-order finance systems. In this paper, we investigate the chaos control of
fractional-order delayed finance systems. All the obtained results and analysis methods
[1–3, 53] cannot be applied to (3.2) to obtain the stability and the existence of Hopf bi-
furcation for (3.2). For these reasons, the fruits of our research about the chaos control
for (1.2) are completely innovative and are an important supplement to some previous
research results.

Remark 3.2 Xu and Zhang [54] focused on the chaos control of the Qi system by linear
time-delay feedback control. They do not involve fractional-order models. From this view-
point, the results of this article also supplement the research of Xu and Zhang [54].

4 An example
Consider the fractional-order finance model:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d0.8u1
dt0.8 = 1.79(u1 + u2) + κ1[u1(t) – u1(t – �)],

d0.8u2
dt0.8 = –u2 – 1.79u1u3 + κ2[u2(t) – u2(t – �)],

d0.8u3
dt0.8 = 4 + a1u1u2.

(4.1)

Clearly, system (4.1) possesses the equilibrium point (–1.4949, 1.4949, 0.5587). Let κ1 =
κ2 = 1. Then the critical frequency φ0 = 0.3944 and the bifurcation point �0 = 1.1844.
Then all the conditions (A1)–(A3) of Theorem 3.1 hold true. Figure 2 reveals that the
equilibrium point (–1.4949, 1.4949, 0.5587) of system (4.1) is locally asymptotically stable
for � ∈ [0, 1.1844). Figure 3 manifests that system (4.1) loses its stability and a Hopf bifur-
cation takes place when � ∈ [1.1844, +∞). The relationship of the three parameters p, φ0

and �0 of (4.1) is clearly presented in Table 1.

5 Conclusions
In this article, based on earlier studies, we propose a new fractional-order financial model.
By designing a suitable time-delayed feedback controller, the chaotic behavior of the
fractional-order financial model has been controlled. By adding the linear time-delayed
feedback controller to both equations of fractional-order financial model and choosing
the time delay as bifurcation parameter, we establish the sufficient conditions ensuring
the stability and the existence of a Hopf bifurcation of a controlled fractional-order finan-
cial model. The investigation reveals that the equilibrium point of the involved system is
locally asymptotically stable when the delay remains in an appropriate value, while the
system will lose its stability and a Hopf bifurcation will occur when the delay exceeds the
critical value. The study also shows that fractional-order and time delay have an impor-
tant influence on the stability and the Hopf bifurcation of the controlled fractional-order
financial model. The obtained results can help us grasp the laws of finance and interpret
economical phenomena in theory.
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Figure 2 � = 1.15 < �0 = 1.1844. Time history plots, variable relation plots and phase diagrams of system
(4.1). The equilibrium point (–1.4949, 1.4949, 0.5587) of system (4.1) is asymptotically stable
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Figure 3 � = 1.2677 > �0 = 1.1844. Time history plots, variable relation plots and phase diagrams of system
(4.1). A Hopf bifurcation of system (4.1) takes place around the equilibrium point (–1.4949, 1.4949, 0.5587)
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Table 1 The relation of the three parameters p, φ0, �0 of (4.1)

p φ0 �0

0.24 1.8435 0.4377
0.29 1.6087 0.5171
0.31 1.4811 0.5479
0.42 1.2062 0.7092
0.49 1.0134 0.8054
0.52 0.8913 0.8453
0.67 0.7426 1.0337
0.78 0.5866 1.1619
0.80 0.3944 1.1844
0.94 0.1699 1.3360
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