Karapinar et al. Advances in Difference Equations (2020) 2020:557 ® Advances in Difference Eq uations
https://doi.org/10.1186/513662-020-02998-y a SpringerOpen Journal

RESEARCH Open Access

Check for
updates

ldentifying the space source term problem
for time-space-fractional diffusion equation

Erdal Karapinar'?, Devendra Kumar?®, Rathinasamy Sakthivel*, Nguyen Hoang Luc® and N.H. Can®’

"Correspondence:
nguyenhuucan@tdtu.eduvn Abstract

5Applied Analysis Research Group, In thi id . bl f he ti f . |
Faculty of Mathematics and N tnis paper, we consider an inverse source problem for the time-space-fractiona

Statistics, Ton Duc Thang University, diffusion equation. Here, in the sense of Hadamard, we prove that the problem is

Ho Chi Minh City, Vietnam severely ill-posed. By applying the quasi-reversibility regularization method, we

Full list of author information is . .

available at the end of the article propose by this method to solve the problem (1.1). After that, we give an error
estimate between the sought solution and regularized solution under a prior

parameter choice rule and a posterior parameter choice rule, respectively. Finally, we

present a numerical example to find that the proposed method works well.

MSC: 35K05; 35K99; 47J06; 47H10x

Keywords: Inverse source problem; Time-space-fractional diffusion equation;
lll-posed problem; Convergence estimates; Regularization method

1 Introduction

Let T be a given positive number, 2 a bounded domain in R” (# > 1) with a smooth
boundary 9€2. In this work, we consider the inverse source problem of the time-fractional
diffusion equation as follows:

Dfu(x, ) =-Lu(x,t)+ o) (x), (xt)eQx(0,T),
ulx,t)=0, x€0dR,te(0,T],

u(x,0)=glx), xe9,

ulx, T)=£(x), x€€,

(1.1)

where Df u(x, t) is the Caputo fractional derivative of order 8 defined as [1] in the following
form:

Fu 1 L uy(x, s)
AP TA-B) Jo (t—s)P

Dlu(x,t) = ds, 0<B<l, (1.2)

where I'(-) is the Gamma function. In fact (g, ¢, ) is noised by observation data (g°, £°, ¢*)
where the order of ¢ is the noise level. We have

lg-g ”LZ(Q) =¢ |e—e ”LZ(Q) <e and [o-¢° ”Lw(g) =¢. (1.3)
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In all functions g(x), £(x), and ¢(¢) are given data. It is well known that, if ¢ is small enough,
the sought solution f(x) may have a large error. It is known that the inverse source prob-
lem mentioned above is ill-posed. In general, the definition of the ill-posed problem was
introduced in [2]. Therefore, regularization is needed.

As is well known, in the last few decades, the fractional calculation is a concept that has
a great influence on the mathematical background and its application in modeling real
problems. Fractional calculus has many applications in mechanics, physics and engineer-
ing science, etc. We present to the reader much of the published work on these issues, such
as [3—-21] and the references cited therein. This makes it attractive to study this model.
The space source term problem for the time-fractional partial differential equations has
attracted a lot of attention, and much work has been completed to study many aspects of
this problem, specifically as follows.

In 2009, Cheng, Yamamoto et al. considered the problem (1.1) with ¢(£)f(x) = 0, the
operator L = %(p(x)g—Z) and the homogeneous Neumann boundary condition; see [22].

In 2016, the homogeneous problem, i.e, ¢(t)f(x) = 0, in Eq. (1.1) has been considered
by Dou and Hon; see [23]. They used the Tikhonov regularization method to solve this
problem (1.1) based on the kernel-based approximation technique.

In 2019, the authors Yan, Xiong and Wei proposed a conjugate gradient algorithm to
solve the Tikhonov regularization problem for the case y = 1.

In the case f(x) = 1, in 2014, Fan Yang and his group considered the Fourier transform
and the quasi-reversibility regularization method; see [24]. Recently, the simple source
problem, i.e, ¢(¢£) =1 and y =1 in Eq. (1.1) has been considered by Fan Yang, Zhang and
Li, see [20, 21, 25-27]; the authors used the Landweber iterative regularization, Trunca-
tion regularization and Tikhonov regularization methods solve this problem and achieved
the results of convergence results to the order of 7T for 0 < p<2and € for p>2, re-
spectively.

The problem (1.1) with discrete random noise has been studied by Tuan et al, they used
the filter regularization and trigonometric methods to solve this problem (1.1); see [28—
30]. According to our searching, the results about applying the quasi-reversibility regular-
ization method to solve the inverse source problem for the time-space-fractional diffusion
equation is still limited. To the best of our knowledge, this is one of the first results of this
type of problem. In particular, one addressed the case where £¥ and the right-hand side
@(t)f (x) are represented in a general form. Motivated by all the above reasons, we con-
sider the quasi-reversibility regularization method to solve the problem (1.1). The present
paper aims to use the quasi-reversibility regularization method (QR method) to solve the
problem (1.1).

The outline of the paper is as follows. In Sect. 2, we show some basic concepts, the func-
tion setting, the definitions, and the ill-posed problem are presented in Sect. 2. In Sect. 3,
we construct the structure for the regularized problem (in Sect. 3.1), and the convergent
rate between the sought solution and the regularized solution under a prior parameter
choice rule (in Sect. 3.2), and a posterior parameter choice rule (in Sect. 3.3). A numerical

example is presented in Sect. 4.
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2 Preliminary results
The eigenvalues of the operator LV is introduced in [31]. Let us recall that the spectral
problem

LY ex(x) = - ex(x), x€,

(2.1)
er(x) =0, x€0€,
admits a family of eigenvalues
0<A) <A <AL < <A+ > o0
Defining
D) = {VELZ(Q):iklzﬂ(v,ek)‘2<+oo}, (2.2)
k=1

where (-) is the inner product in L?(£2), then D*() is a Hilbert space equipped with the

norm

1

IVllpe () = <Z )wzﬂ(Vr ek)’2> . (2.3)
k=1

Definition 2.1 (see [1]) The Mittag-Leffler function is

00 i
z
Eg,(2) = E ”.4, z€C,

where 8 >0 and y € R are arbitrary constant.

Lemma 2.2 (see [1]) Let 0 < By < B1 < 1. Then there exist positive constants A, BB, C de-
pending only on By, 1 such that, for all B € [Bo, B1],

A <Egi(-2) < %, Eg.(-2) < L, forallz>0,k e R. (2.4)
z

Lemma 2.3 ([32]) The following equality holds for > >0, >0 and m e N

dm

dt—mEa,l(—xt“) = A" " Eqq-mi (-At%), £>0. (2.5)

Lemma 2.4 ([33]) For 0< B <1, w >0, we get 0 < Eg(-w) < 1. Therefore, Eg(-w) is
completely monotonic, that is,

(4

d
~1)¢
( )dwc

Egi1(-0)>0, w=>0.

Lemma 2.5 Let 8 >0, y € R, then we get

1
Eg,(z) =zEg g+ (2) + T)/)’ zeC. (2.6)
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Lemma 2.6 For A >0, 8 >0, and positive integer k € N, we have

d d
E(tﬂm(xktﬁ)) = Eg1(—MtP), g(Eﬂ,1 (—=2it?)) = —ritP ' Eg g (—2itP). (2.7)

Lemma 2.7 For any A, satisfying .}, > 1} >0, A, B are positive constants satisfying

A 1
e < |Ep g1 (-2 TP)| < , 2.8
where Ay =1 - Eg (=) TP).
Proof By [33], it is easy to get the above conclusion. O
Lemma 2.8 ([32]) Let Egg(—n) >0,0< S <1, we have
M 1 (Md
/ |2 Ep p(-ay ") | dr = ——y/ ——Epa(-a7h)de
0 Mo Joo o dr
1
= E(l — Eg1(=Af MP)). (2.9)

Lemma 2.9 Assume that o < |@.(t)| < ¢1, YVt € [0, T], by choosing ¢ € (0, 2), then we
know

% < lo®| < Plgo 01). (2.10)

Proof First of all, we have

lo:(0)] < |o®)] + |0 (&) —0@®)| < |@(®)] + sup |g.(t) - (2)|

te[0,T]
<|e@®| + lge = @l < o) +&. (2.11)
From (2.11), we know that
Po Yo
le®| = [ec@] ez po—e =7, and |pO) <gr+e <o+, (212)
Denoting P(go, ¢1) = ¢1 + 4, combining with (2.12) leads to (2.10). |

Lemma 2.10 Let ¢ : [0,T] — R* be a continuous function such that ‘Z—O < lp®)] <

P(@o, ¢1) . Then we have

@o(1 — Eg (=AY T#)) -

P(eo, ¢1)
40 - 4

k

., (2.13)

T

/ (T -1)f ' Eg s (-25(T - 1)P)p(r)dr <
0

and using Lemmas 2.5 and 2.6 we get

T
/0 (T - 1) Eg g (-2 (T - 7)P) dv = TPEg g (-1} TP). (2.14)
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Theorem 2.11 Letg,f € L*(Q) and ¢ € L>(0, T), then there exists a unique weak solution
ue C([0, T);L2(R)) U C([0, T); D4 () for (1.1) given by

u(x, t) = Z[{g(x)» ek(x)>E5,1 (_)‘Z tﬁ)
k=1
) [ =0 Epp(HL (e~ 2 )oto df]ek(x)- (215)
0

From (2.15), letting t = T, we obtain
(€(), ex(x)) = (g(x), ex(x))Eg1 (=2} TP)
T
+ (f(x),ek(x)>/0 (T - 1) Eg (-2} (T - 1)P)p(v) dr. (2.16)

By a simple transformation we can see that

(£(x), ex(x)) = (g(x), ex (%)) Ep,1 (=2} T*)

) = . 2.17
(f (%), ex()) (T = P Ep g (T~ 1)P)p(r) dt (2.17)
This implies that
[o¢] _ _ Y ﬂ
) = Z [(€(x), ex(x)) — (g(x), ex(x)) ] Eg,1(=A; T" )ek(x). (2.18)

= [T =) E y(-2L (T = 7)P)g(v) dr

2.1 Theill-posedness of inverse source problem (1.1)
Theorem 2.12 The inverse source problem is not well-posed.

Proof Denote ||¢llz(1) = P(¢o,91). A linear operator is defined R : L*(Q) — L*(Q) as
follows:

o T
Rf (x) = Z[ /0 (T - 0P Ep (-2 (T - r)ﬂ)w(r)dr}(ﬂx),ek(x))ek(x)
k=1

- fQ k(x, £)(8) dE

oo

= [{e@), ex(x)) - (g), ex@))Ep (-1 T#) Jex(x), (2.19)

k=1

the integral kernel is
00 T
k(x, &) = Z(/(; (T - r)ﬂ‘lEﬂ,ﬂ (—)L,f(T - r)ﬁ)go(T) dr)ek(x)ek(é). (2.20)
k=1

Because of k(x, &) = k(&,x), we can see that R is self-adjoint operator. Next, we are going
to prove its compactness. Let us define R as follows:

M

T
Ruf (x) = Z(/o (T - t)ﬁ_lEﬂ,lg (—)»,):(T - t)ﬂ)<p(r) dt)(f(x),ek(x)>ek(x). (2.21)

k=1

Page 5 of 23
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We check that R is a finite rank operator. From (2.19) and (2.21) we have
IRwf — Rf”iz Q)

(/ (T -1)f lEﬂﬂ( (T—r)ﬁ) l')d‘[) |(f(x) ek(x))|

k=M+1
[Ploe)] Y A%Kf(x),ek(x))!z

k=M+1 "k

<—— P %’%) Z |(f x), ek(x . (2.22)
M k=M+1
This implies that

P b

IRaef ~ Rf 2 < © “"" Po el o) (2.23)

Therefore, | Rar — Rl ;2(q) — 0 in the sense of operator norm in L(L*($2); L*(2)) as M —
00. We know that R is a compact operator. Next, the linear self-adjoint compact operator
R is
T
O = / (T = 1) LEy 4 (AL (T - 1)) () d, (2.24)
0

and the corresponding eigenvectors are ex which is known as an orthonormal basis in
L%(R). From (2.19), the inverse source problem can be formulated as an operator equation,

x) =Y (g), ex@)Ep 1 (1) )ex(x), (2.25)
k=1

and by Kirsch ([2]), we conclude that the problem (1.1) is ill-posed. We present an example.
Fix B and choose

_em(x) _em(x)
em(x) - m ’ gm = m . (2.26)
Because of (2.18) and combining (2.26), the source term " is
(28, ¢ (x)) - Eg (~hf T9) (242, ex ()
Ju®) =" ?M - b ” ex(x
oy Jo (T =1)P1Eg g(—2) (T - T)ﬁ)w(f)df
_en(x) (1-Ep1(-A),TP))
. 2.27
Vo [T =P Eg g (AT - 0)P)g(x) de 227

If we have input data £, g = 0, then the source term f = 0. An error in L*(2) norm between
(6,g) and (€, gm) is

1 1
1€ = ll 2 = i lgm — glli2@) = N (2.28)
m

3

Page 6 of 23
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Therefore,

. . 1
7 =] oy = im0,

. . 1
mlililoo”g’” _g“LZ(Q) = mlil?oo e — 0.

The error ||f,, —fll2(q) is

o 1 (1-Eg1(=A,TP)) A,
on — 2 = .
e P@o#1))  om

From (2.30), we obtain

fn = fllr2) = [73(<P0’<P1)]_1)Jn_% (1 -Egy (—ALT’S)),

From (2.31), by choosing y > %,

[T

. . 1. y—
im fn —flli2 > lim [P(go, ¢1)] Ao
m—+00 m— +00

A
I—W = +00

Page 7 of 23

(2.29)

(2.30)

(2.31)

(2.32)

Combining (2.29) and (2.32), we conclude that the inverse source problem is not well-

posed.

2.2 Conditional stability of source term f
Theorem 2.13 Suppose that |f || yviiq) < M for My >0, then

.

AT 2 2 B>\
If 2@ < CM3 2||£||L2(Q) + 2||g||L2(Q)W )
1

— J
[ 1 = —4 j+1
in which C (rpo 1**) .

Proof From (2.18) and the Holder inequality, we get

s = i ( [(£(), ex()) = (g(), ex (N Epa (=2, TF)] )2
PO "L\ [T — o)1 Ey y(<2] (T - 1)F)p(z) dr

- i [(£(), ex()) = (g(), ex(NEga (AL TH2  \7

T\ o (T = 1) Eg y (-2 (T - 7)) () d |2

x (Z[(é(-),ek(» —(g(), ex())Ep1 (-2} Tﬂ)]2>

k=1

< (L)) x (L)1

O

(2.33)

(2.34)
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Step 1: For an estimate of (I;), applying Lemma 2.7, it gives

A

o . [{F (), ex ()] M
L) <
) (kXI: |fo - )P Eg 5 (-2} (T - T)ﬁ)¢(f)d1|2’)

A

AN (S e\
(‘Po) (;Wﬁfﬂ,ﬁu(—K}:Tﬁ)Pj)

J+1 vj 2 }%1 4 7l 1%1
S(‘ﬂo«‘l ) Zkk W a ’ S(Gl’o-/‘l ) M (235

Step 2: For an estimate of (L,), it gives

IA

g

i N 2 j+1
(m)mf(ZZK e + 2llg0exO)f fTZ“’)
k=1

B\
< (2||e||§2(m+2||g||§2m)ﬂ)’ . (2.36)
AT

Combining (2.35) and (2.36), we conclude that

3 g

T /‘*ll 2 BZ j+1
My | 201172 q +2”g”LZQ)TT2ﬂ . (2.37)

4
/17 5(
4 @) oA

Kok

3 Quasi-reversibility method

In this section, the quasi-reversibility method is used to investigate problem (1.1), and give
information for convergence of the two estimates under a prior parameter choice rule and
a posterior parameter choice rule, respectively.

3.1 Construction of a regularization method
We employ the QR method to established a regularized problem, namely

Dfus(x,t) = a(e) (L7 )ue (6, 8) + 0 (Ofs (6) + (&) (~L)7 £ (1): (8),
(x,8) € 2 x (0, T),
u.(x,t) =0, xe€dL,tec (0,77, (3.1)
us(x,0) = ge(x), x€,
(%,

u(x, T) = Le(x), x€,

where g, . are perturbed initial data and final data satisfying

llge = gllz2) < & 1€e = £l o) < & (3.2)

and «(¢) is a regularization parameter. We can assert that

oo

; :Z %), ex(0)) (g (1), ex () Epn (~1] T9)ex (x)
sate (1+a(ew)/0 (T — O)F1E5 5 (AL(T - 0)P)pu(r) dt

(3.3)

Page 8 of 23
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From now on, for brevity, we denote

Cypler @er Mty T) = [(€: (%), ex (%)) = (g: (%), ex (1)) E1 (=21 TP)],

D, p(@es A, T, 1) = (T = ‘r)ﬂ"lEﬂ,ﬂ (—A,’:(T - T)ﬂ)(ps(‘[). (3.4)

With (3.4), (3.3) becomes

[e¢]

( s:gsr)\kr T)
&,x\& 3.5
Jeate Zl 1+a(e fo v.8(@er i, T, T) dT () (3.5
and
fuwy® =Y Crpl6.8 1 T) ex(x). (3.6)

(1 +Ol(8))\]):)f0 D, s, M, T, r)dr

3.2 A prior parameter choice
Afterwards, ||f(-) = fea(e)(-)ll12() is shown under a suitable choice for the regularization

parameter. To do this, we introduced the following lemma.

Lemma 3.1 For «, y, A are positive constants. The function G is given by

as? Y/
g(S):l-!-aSy, Z>Oy
then
JA =) if0<j<1,
g <y 3.7)

WO[ lijl,Sz)\l.

Proof (1) If j > 1 then from s > X4, we get

as’V o o o
G(s) = =

<<,
l+asr  (1+as?)syv — svi-v — A{O—D

(2) If 0 <j < 1 then it can be seen that lims_, G(s) = lim,_, ;o0 G(s) = 0. We have G'(s) =
ays? Vi [1-j—as? ]
(1+as?)?

. Solving G'(s) = 0, we can see that sy = (?)%of%. Therefore,
G(s) < Glso) =/ (1 - ) 7.

This is precisely the assertion of the lemma. O

Theorem 3.2 Let f be as (2.18) and the noise assumption (2.13) hold. We obtain the fol-

lowing two cases.

1
e If0<j<1,bychoosing a(e) = (J\fll )71, we have

J_

1O = Frat 12y = 677 (HBoys it gouf) + 71 = )T M), (38)

Page 9 of 23
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o Ifj>1, by choosing a(e) = (MLI)%, we have

Hf() ~feue) () ||L2(Q) % <H(B YA @0.f) + V(ll ) Mé) (3.9)

Proof By the triangle inequality, we know
IF¢) —ﬁ:,a(g)(')”Lz(Q) < fa ) _fs,a(s)(’)”L2<Q) + ) —ﬁx(s)(')”Lz(Q) (3.10)

The proof falls naturally into two steps.

Step 1: Estimation for ||f()(-) — foa(e) ()l [2(e)» We receive

Joe) (%) = fea(e) (%)

Ey

N Cy (s (x) — €(%), g0 (x) — g(x), Ak, T)
= A+ a@r]) [ Dy plgere, T, 1) dT

Ey

0 T

D e — @, e T,T)d
oy Celbgh Dol Byrlo el 00 g
k=1 (1+Ol(8))\. )fo yﬁ((ﬂ:)\k’ T’T)d‘[ fo D}/,,B((psr)‘-k,T )dT

From (3.11), using the Lemma 2.10, we have an estimate of IIE 2

~ = [Cy p(Le(x) - £(x), g (%) — g(x), Ak, T)]?
11250 = 4
i) Zl(l+)»y )2|fo v.8(@es Ay T, T) dT|?

oo 4e?| max{1

=3

—~ (L+a(e)r)?  @ll-Ega(-2] TF)]>

2
, 284 2V
U{Tﬁ}| Tﬁkk

5 i

[01(8)] @31 - Eﬁl( ATR)2 (3.12)

Next, using the condition of f in Theorem 2.13, we have the estimate for IE> |l 12(q) as
follows:

~ &2 = (e D & =
Eallf2ey < 22 kZ 0 +a(8k%)2 = T 2 kZ|<f(.),ek(.))|z
=1 =1
82 ”f”]le(Q)
O i (3.13)

=

Combining (3.12) and (3.13), one has

2| max({1, -2 }| T
e M TP I 1lz2(0
|lﬁ¥(8)(') _fE,a(e)(')”LZ( = < 1 @ '

D = Ta(e)] \goll — g1 (AL TP)] " gon! (3.14)

Page 10 of 23
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Step 2: For an estimation for ||f(-) — fu(e) () [l 12()» we have

oo

1 C i (E,g,)\k, T)
—Ja(e = 1- v.p .
&) ~Ja) ;( 1 +oz(e)kl) Iy Dy (.0 T, T) d e

From (3.15), we get

a(e))»,f(l_j)

IO = O oy = Z(W) RO, e )

k=1
1)\ 2
a(e))»,); ) 2 2
<sup| ——F— | M7{ <supG(r ) M.
ke§<1+a(8)kz ! keg e

Combining with Lemma 3.1, it gives

a(s)k,’:(l_j)> - JA-)ae)) if0<j<1,

sup G (i) = SuP(w

keN keN ﬁa("?) ifj>1,A > A1

Therefore, combining (3.16) and (3.17), we can find that

JA =)@l M; if0<j<l,
VO -LeaoOlize =} _y [a(e)] M, ifj>1,A > Ay

yG-1)
M

Choose the regularization parameter as follows:

1
(Afll)/'Tl if0<j<1,

LA VES WYYy

a(e) =

Finally, from (3.14), (3.18) and (3.19), we conclude the following.
« If0<j<1then

j 1 oL
1FO) = fra0O 2y < €71 (KB, 7, o, IMTT 471 =T M.

+ Ifj>1then

; 1
H,f() _f:&‘,()l(&‘)(') ||L2(Q) =< 8% (H(B) Y )\'ly(pO’f) + WMf)’

1

B B
2‘max{1’ﬂl’Tﬂ HT

12 )
woll-Eg1 (-2} TP)] wor]

where H(B,y, 1, 90,f) = (

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Page 11 of 23
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3.3 A posterior parameter choice
In this subsection, a posterior regularization parameter choice rule is considered. By the
Morozov discrepancy principle here we find ¢ such that

R(@(e)) = ole) (~£7) (1 =)L) (frate = {£:0) ex()
+ <g€()» ek(')>Eﬂ,1 (_)LZ Tﬁ))) ||L2(§2)
_ce, (3.22)

see [2], where ¢ > 1 is a constant. We know there exists an unique solution for (3.22) if
[(£e(x), ex(x)) — (g (%), ex (X)) Eg 1 (-2 TP)] > ¢ .

Lemma 3.3 We need the following auxiliary result.
(a) R(w(e)) is a continuous function.
(b) limg(e)—o+ Rle(e)) = 0.
(©) TiMmage) o0 R(@(E)) = [ (€ (3), €4(3) — (- (), ex(6)) Ep (<AL T 120q)-
(d) R(al(e)) is a strictly increasing function.

Proof Our proof starts with the observation that

1
2

= @ \*
R(a@)):(;(lfjﬁ) [{€: (), ex@)) - { g<x),ek(x>)Eﬁ,1(—xzTﬂ)]2> . (3.23)

In this section, for brevity, by we put

[(€. (%), ex(x)) - (g (%), ex(¥))Eg 1 (~2F T?)] = (x: (%), ex (%))

« From (3.23), we have

[R(a(s))]2 = Z(%) |(X,ek)|2. (3.24)

k=1

We directly verify the continuity of R and R(«(g)) for all «(e) > 0.
« Assume that 6 be a positive number. From
Il xe ”iZ(Q) = Z|<£8() - (gs; ek>Eﬂ,l (_)"]1: Tﬂ)r ek(x)> 2;
k=1

. . 2
there exists a positive number my such that Z/(ngu [{(xerex)]? < %- For

1 1
0<a(e) < i—ji (A 1% 1l 2()] "5 we have

o 2@y \* =
[R(a(e))]ZSZ(lijkAZ> @) @)+ Y |t e

k=1 k=mg+1

- 4,4 2 02 4 6?
< [e@] 2 | (xerend | + - = [a(@)] A0 llxelI* + 5 = 62
k=1
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» From (3.24), we can see that
Ria(e)) < [(€e(-), k() = (ge() ex(-)) Eg 1 (=2} TP), ex(x)) |*, one has

o]

Z [{Xe> ek H Xs
1 )Lk ) 1 + ) LZ(Q)
Hence, || x¢ll12(q) = Rla(e)) > which implies that
a(s))\{
hma (&)= +00 (O[(S)) = ||X$||L2(Q
a1(e)r) az(E)r]

- From || xe llz2(q) > O, there exists a

+ For 0 <ai(e) < aq(e), we get T @] < Traon]
positive integer ko such that |{x., ex,)|* > 0. Then R(a;(¢)) < R(aa(e)), We can

conclude that this is a strictly increasing function. The lemma is proved. O

Lemma 3.4 Fora, y, A are positive constants. The function H is given by

~ y=%(+1)
He =L sso. (3.25)
1+as”
Then
B 2711 = j)20N(1 + )20 D39 f0<j<1,
< 3.26
HEO=y_1_ ifj>15> A (8:26)
)‘17(/71)
Proof (1) If j > 1, then from s > A;, we get
~ Y- 2(]+1
) == @« * % (3.27)
1+as? (1 +as?)sziD-r T g3l+l)-y )\'7(]*1)
1

(2) If 0 <j < 1, then it can be seen that lim_,q 7-l(s) = limg_, oo 7:2(5) = 0. Afterward,

y_vi
~ A i (O 1 1
we have H'(s) = 2= (1+[(§¢1srl))2 o) . Solving H’(s) = 0, we know that sg = (1+;)V V.
Hence, we can assert that
H(s) < H(so) = 271 (1 = /)20 (1 4 j) 2 1)y 3(14D, (3.28)
This completes the proof. d
Lemma 3.5 Let «(e) be the solution of (3.23), it gives
A
([Zﬂ]ilvl(§00v§01v]‘))/+ll Mll , 0 <j < 1’
1 (¢2-4/max(1, 5B 7)) 20D e/
m < M . 1 (329)
(ﬁVZ(‘ﬂOv‘ﬂlvij))Ll))? M12 s ]’2 1,

2 B yni o3
(¢ —4|max{1vW}\ ) €

which gives the required results.
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Proof Step 1: Using the inequality (a + b)? < 2a®+2b?, we have [(£(-), ex(-)) — (g:(-), ex ()} x
Eg (=2, TP)]? as follows:

[(:(), ex () = g () ex (Vg (<) TH)
= 2[(55() —-£(), ek(')) + (ge() —g(-), ek('))Eﬁ'l (—)\,]}(l T’s)]2
+2[(€0), ex()) - (g(), ex()Ep1 (-2] T%)]”

2

+2[(6C), ex()) - (), ex(NEg (-2 TF)]. (3.30)

< 45

max{l,

A T# }
Next, from (3.30), applying Egs. (2.18) and (2.14), we know that
(€C),ex()) = (g(), ex())Ep 1 (2] TP)
T
= (), ex0) / (T = )P B p (-4 (T = 7)) p(0) dr

<{f(),ex(- )>P(§0o,§01) Eﬁ pa1(=AL TP). (3.31)
Combining (3.30) and (3.31), it gives

[{€:(), ex()) ~ (g (), ex (Vg (-3 TF) T
< 462 ’

max{ 1

)

2|l (), exO)*[Plgo, 00)] [ TP Eppur (-1, )] (3.32)

Step 2:

oY) Y 4
£ = Z( e ) [(€ ), ex)) = (g () exO)Epa (4] 7))

Py 1+a(e)ry
= &)y [P(go,01)]? . 2 2
= max{ T } ' 2;(2_1:(1 +a(8))»’/> p 21D I ORT0)
2 oe(e))»y L(*1)
=< 4-52 max{l, )")1, Th } + 2](2:1:(W> [P((PO, (,01)]2_/\/[% (333)

From (3.33), using Lemma 3.4, we have

_¥is
sup(“(t?))wt 20 1))4
keN 1+ Ol(S))\.I}:
1=+ )2 D [a(e))M) ifo<j<1,
<
- Afy—b,n[oe(e)]‘L ifj> 1, > A1

Page 14 of 23
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Here, put

1 . .
V12(§00: gol:j) = E(l _j)2<1_])(1 +j)2(1+]) [7)((/)0,(01)]2;

) 1 2
V22(§00: $1, V}]»)‘l) = W[P(%,@l)] . (3'34‘)
Therefore, combining (3.33) to (3.34), we know that

2 1v52 . 2 2(1+)) :
_V ’ ) M o\& / ) O<j< 1,
Bk 1 (@0, 1, )M [ee(e)*] j (3.35)

%% < 4¢’
2V3 (00, 01, v jo M)Ma(e)]t, j> 1.

max{ 1,

AV TF }

From (3.35), it is very easy to see that

B 1? L2090, 01, )M [a(e)*M)],  0<j<1,
(§2—4‘max{1, )\’VT,B} > 2_ )8 ;(<Po ®1,)) | Lo )2 ] O J (3.36)
1 2V2(§00,€01,J/,],)»l)Ml[Ol(€)] ) /2 1
Therefore, we conclude that
P
[2\/— 1Vl (p0,91,))’ 11 Mil , 0 <]' < 1,
1 _ ]« —4|max{1,wn2) el (3.37)
— =< 1 .
a(e) (Ao M i=1
(;z_4|max{l,ﬁ”z)z €2 -
which gives the required results. O

Theorem 3.6 Assume that f(x) is defined in (2.18) and the quasi-reversibility solution
Jfe(e) be given by (3.5). In this theorem, we suppose that f(x) satisfy a prior bounded con-
dition (2.33), and the condition (3.2) holds. There exists { > 1 such that [(€.(-),er(-)) —
(ge (), ex(-))Ep1(=A, TP)] > ¢ & > 0. Then we have the following.

« If0<j<1,itgives

J_

IfO) = fra@ O 12y s of order e7T. (3.38)
o Ifj>1, it gives
1fO) = foa )] 2 s of order e?. (3.39)
Proof Applying the triangle inequality, we get

If ) = foae () “Lz Q)
< O =fuorO ] 20 + Vo ) = a0 | 120 (3.40)

Lemma 3.5

Page 15 of 23
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Lemma 3.7 Assume that |f| g < Mi, we see that ||[f(-) = fae)()l 12(q) is estimated as

follows:

g

j A +1 _,L
OOl =7 M (2 o)

. ._B
maxq 1, ——
A TP

Using the Holder inequality with 0 <j < 1, we get

If ) =fuo O 20

o a(e)A) Cypl,g 0k, T)
< ex(x)
;lﬁx QI fo y.8(@ i T, T) dt ‘ 12()
: i( 0 Jy Dyl i T)dr )1( (&)X )” (), ex()
oy L+a(e)r] L+a(e)r] Jo Dyplprp, T,7)dTy 2@
g
B i(a(s)x{ Iy Dy.plp,hi T, 7) de >/+1< a(e)r) )H () ex() T
=& 1+o(e)r) 1+a(e)r) ([0 D, 5@, i, T, f)dfy LZ(SZ)
N
1
14 1+ j+1
, ( (&) V) / {f(-),ex()) ) / (3.41)
T\ L+ale)i, fo 80 A, T, T) dT)
N3
From (3.41), we have estimates through two steps.
Claim 1 From (3.22) and (3.30), we can find that estimation for N1 as follows:
o y AT
al(e)) *
N = Z(l o SW) / D, (920 T, 7) drlf (), ex (e ®)
k=1 L2(Q)
j
> a(e)r) 2 1
< —= =) C, 5, g, M, T
< Z(l W(EW) (6,820 Tex(s)
k=1 k 12(Q)
a@r] \*
S ( 2(1 + a(s))\‘]/> [C%ﬂ(e;g, )\’kl T) - CV’ﬁ(KE’gsr )\-k! T)]ek(x)
k=1 12(Q)
g
00 a(g))\'}/ 2 J+1
+ Z(m) Cyp(le,ger hiy Ter(x) )
k=1 12(Q)
B IS B P
< (28 max{l, W} + Ce) = gt (2’max{ )»VT/S } + §> . (3.42)

Claim 2 Using Lemma 2.7 then we get an estimate of Ny as follows:

e \7 (O pr
Ny < ( bkl ) ey (x)
’ kX:I: 1+ a(s)kz (foT Dy,ﬂ (oA, Ty T)dTy ‘ 12(Q)

<

= (F),en())
(%)
; D, sl Toodey

12(Q)
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1
Jj+1 J 1
1

< AT MIT. (3.43)

A1), er-){ex ()
D A
k=1 ok

L12(Q)
Combining (3.41) to (3.43), we can conclude that

J

j L FT
IO ~fatr O gy = 7T M (2 ; ;)’ AT (3.44)

LB
maxjy l, ——
A TP

Now, we give the bound for the first term. Similar to (3.14), we recall that

2l max{L, TP ey
[feer() = oy V| 2y = ( e ) (3.45)
[a(e)] \@oll — Eg1(-2] TA)] QoA
« If0<j<1then
Jo .
Ifere) () = foater () ||L2(Q) <eFMMITZ, V1,8, f, ). (3.46)
o Ifj>1then
1 1
“ft‘x(s)() _f;z,ot(s)(') ||L2(Q) =< £7M12 ZV,/S (VZ: {)f; )‘-11 1)’ (3'47)
in which
Zy.ﬂ(vly g!f’ }‘l:j)
1 _B T8
) [ (123/21 Wi (g0, 91,)) 1 ( Amaxtl 1T Wil )}
(¢2 — 4| max({1, %HZ) 2 \ o[l — Ep1(=A] TP)] Por] ,
1
2,502, 8,f501,1)
B B
_ [ («/§V2(§00»§01,)/;/))% ( 2| max{1, A{TﬂHT . |lf||L2(sz)>i| (3.48)
(¢2 — 4| max({1, )LVBTﬁ 12)3 \@oll = Eg1(=A] TP)]  @or] ' .
1
« If 0 <j <1, combining (3.44) and (3.46), then we have the following estimate:
g
Hf(-) — fea(e)(+) ||L2(Q) is of order g/+1, (3.49)
« Ifj > 1, combining (3.44) and (3.47), then we have the following estimate:
1
Hf(-) —fea(e)(+) ||L2(Q) is of order 2. (3.50)
O

4 Simulation
In this example, we consider the assumptions 7 = 1, A}: = k%, er(x) = \/g sin(kx) and
choose

£(x) = sin(x), g(x) = sin(2x) + sin(4x).

Page 17 of 23
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In here, we choose the ¢ function as follows:

o 217 2t%7F
o(t) =—t +2t+F(2—ﬂ)_F(3—,B)' (4.1)

We use the fact that we have

1
f P Egs(At?) (1 - 1) dr =T(B)Eg psc(A), Vi >0. (4.2)
0

From (4.1) and (4.2), we know that

1
/ Tﬂ_lEﬂ,ﬁ (—)\.]}:Tﬂ)go(l’)d‘[ = 2Eﬁ’3(_)"Z) + F(B)Eﬂ‘ﬁ{g(—)\.]}:)
0

—2Eps(=A;) = 2T (2)Ep paa (=21 )- (4.3)

Here, the prior parameter choice rule o = (Mil)%, and a5 is chosen by the formula in
Lemma 3.5 with j = 1 and ¢ = 1.95. We see that M; plays a role as a prior condition com-
puted by [|f[l37i(,r)- From (2.18), one has

[0k — gkEp,1 (=1} TP)] sin(kx)
. 4.4
s [Zfo (T = )P Eg (A (T~ 1)P)p(r) dt 4

From (3.3), we by definition compute the regularized solution by a quasi-reversibility
method:

/2 [€ek — gexEpa (=1} TP)] sin(kx)
e,(e = . 4.5
Jeato®) = Z “ (L+a(e)n)) [ (T - t)FLEg s(-2) (T — 7)P)ge(t) de (45)

«+ Suppose that the interval [a, b] is split up into # sub-intervals, with # being an even

number. Then the Simpson rule is given by

b h n/2
/ ¢(z)dz~ 3 Z [¢(22j-2) +4¢(z0-1) + <P(Z2j)]
a 1:1
h n/2-1 n/2
=3 |:‘/)(ZO) +2) play) +4) plzya) + go(zn)} (4.6)
j=1 j=1
where zj=a +jhforj=0,1,...,n—1,n with 1 = =2, in particular, zo = 2 and z, = b.

« Use a finite difference method to discretize the tlme and spatial variable for
(x,t) € (0,7) x (0,1) as follows:

x; = (i —1)Ax, 5= (- 1AL,

1<i<N+1, 1<j<M+1, Ax =

Page 18 of 23
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+ Instead of getting accurate data (€, g, ¢.), we get approximated data of (¢,g,¢), i.e.,
the input data (¢, g, ¢) is noised by observation data (¢;,g:,¢.) with order & which
satisfies

Ly :Z+8(2rand(-)—1), ge :g+8(2rand(-)—1),

Qe =@+ 8(2rand(-) — 1).

« Next, the relative error estimation is defined by

IR et (00 = @) 2oy

s (4.7)
k=+1 lf(xk) |i2(9)

Error =

In Fig. 1, we show the convergent estimate between exact solution and its approximation
by the quasi-reversibility method under a prior parameter choice rule and under a poste-
rior parameter choice rule. In Fig. 2, we show the convergent estimate between the sought
solution and its approximation by QRM and the corresponding errors with & = 0.2. Simi-
larly, in Fig. 3 and in Fig. 4, we show the comparison in the cases ¢ = 0.02 and ¢ = 0.0125.
While drawing these figures, we choose values 8 = 0.5, ¥ = 0.5 and j = 1. In the tables of
errors that we calculated in this numerical example, we present the error estimation for
both a prior and a posterior parameter choice rule, respectively. In Table 1, we give the
comparison of the convergent rate between the sought solution and the regularized solu-
tions. Next, in Table 2, we fixed & = 0.034. In the first column, with ,,; = 8, +0.11,p=1,8
with 8; = 0.11. Using Eq. (4.7), we show the error estimate between the sought solution
and its approximation with g = 0.3, in the second column and the third column. Similarly

Figure 1 Graph of the regularized, exact solutions
under a prior parameter choice rule and under a
posterior parameter choice rule at B =y =0.5,
£=02,6=002and &=00125

(a) A priori

o 05 1 15 2 25 3
A posteriori

(b) A posteriori
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Figure 2 A comparison between the regularized
solutions and the sought solution (left), and graph
of the error estimate (right) at € = 0.2 with
B=y=05
00¢*D o : s 1
poa e HHTE T8 L
P P iriiie
R AR AR AR N I
I R [ A A i
R R AU Y AR R I
oLiiiiRiiii®iiii ERSRERRRATN
(b) e=0.2
Figure 3 A comparison between the regularized o

solutions and exact solution (left), and graph of the
error estimate (right) at e =0.02 with B =y =0.5

[ 05 1 15 2 25 3

(a) The source function and its approximation

0.035 T T T T T T
A priori
—-—a A posteriori
003 1
0.025 1
.
002 g i q
5 e i
= R i
0015 - 1
. o et i
P LeTily I
[ @ T @
RN PTTiiiiiiee® ]
AEREE EEEREREER P
ERES Pidiiiiiiiii e i
0005 i f i Pibiiiibiiiiet et o
NEREE POt
AR RSN RN N
U\\\\H\\m\\\\\\M\\\\\\\\\\H\\\\H\
o 05 1 15 2 25 3 35
.
(b) e =0.02

for B =0.5 and 8 = 0.7. According to the observations on the tables, we can conclude that
the convergent results are appropriate. It is clear that in Tables 1 and 2 the convergence

levels of these two methods are still equivalent.
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Figure 4 A comparison between the regularized
solutions and sought solution (left), and graph of
the error estimate (right) at & = 0.0125 with
B=y=05

(b) & = 0.0125

Table 1 The error between the regularized solutions and sought solution at 8 =0.5, Y =0.5

Error estimate

=02 £,=002 £3=00125
A priori 0.268594313 0.142030824 0.121436512
A posteriori 0.217617971 0.088813318 0.087031644

Table 2 The error between the regularized solutions and the sought solution at &€ = 0.034

B y=03 y =05 y =07
ErrorP™ ErrorP®s ErrorP™ ErrorP®s ErrorP™ ErrorP©s

011 0.189828678 0.10665832 0.161100525 0.109699639 0.170135495 0.136634135
022 0.187804968 0.102450104 0.164230073 0.113414581 0.175750775 0.139287245
033 0.18959939 0.103878598 0.16815453 0.114537335 0.172374182 0.136905642
044 0.187201688 0.100785564 0.164885116 0.110070543 0.173988088 0.134051288
055 0.182764654 0.096662958 0.157647122 0.100353238 0.170975222 0.131571514
066 0.185967319 0.099347633 0.165726554 0.104948524 0.171590757 0.129679578
0.77 0.183238721 0.095269988 0.158924316 0.104131646 0.170659181 0.126215027
088 0.181832006 0.093474984 0.161770899 0.099729193 0.173108134 0.123902089
099 0.173709224 0.090521975 0.162656870 0.101507134 0.173042336 0.130634178

5 Conclusions

In this work, we use the QR method to regularize the inverse problem to determine an

unknown source term of a space-time-fractional diffusion equation. We showed that the

problem (1.1) is ill-posed in the sense of Hadamard. Next, we give the results for the con-

vergent estimate between the regularized solution and the sought solution under a prior

and a posterior parameter choice rule. We illustrate our theoretical results by a numerical

example. In future work, we will be interested in the case of the source function being a

function of the general form f(x, £), and this is still an open problem and will show more
difficulty.
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