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Definition 1.2 A set X is said to be regular with respect to a given function α : X × X →
[0,∞) if for each sequence {νn} in X such that α(νn,νn+1) ≥ 1 for all n and νn → ν ∈ X as
n→ ∞, then α(νn,ν) ≥ 1 for all n.

The notion of α-admissible Z -contractions with respect to a given simulation function
was merged and used by Karapinar in [2]. Using this new type of contractive mappings,
he investigated the existence and uniqueness of a fixed point in standard metric spaces.

Definition 1.3 ([2]) Let T be a self-mapping defined on a metric space (X ,d). If there
exist a function ζ ∈ Z and α : X × X → [0,∞) such that

ζ
�
α(ν,ω)d(Tν,Tω),d(ν,ω)

� ≥ 0 for all ν,ω ∈ X , (1.4)

then we say that T is an α-admissible Z -contraction with respect to ζ .

Theorem 1.4 ([2]) Let (X ,d) be a complete metric space and let T : X → X be an α-
admissible Z -contraction with respect to ζ . Suppose that:

(a) T is triangular α-orbital admissible;
(b) there exists ν0 ∈ X such that α(ν0,Tν0) ≥ 1;
(c) T is continuous.

Then there is ν∗ ∈ X such that Tν∗ = ν∗.

Remark 1.5 The continuity condition in Theorem 1.4 can be replaced by the “regularity”
condition, which is considered in Definition 1.2.

We will consider the following set of functions:

Z =
�
ψ : [0, 1] → [0,∞) | ψ is continuous at zero with ψ(0) = 0

�

and we denote

‖ν‖ = d (ν,ν0), for an arbitrary but fixed ν0 ∈ X .

Several interesting extensions and generalizations of the Banach contraction principle [3]
appeared in the literature. For instance, see [4–10]. Among these generalizations, we cite
the paper of Pata [11]. Since then, much work appeared in the same direction; see [12–15].

Theorem 1.6 ([11]) Let (X , d ) be a complete metric space and let � ≥ 0, λ ≥ 1, β ∈ [0,λ]
be �xed constants. The mapping h : X → X has a �xed point in X if the inequality

d (hν, hω) ≤ (1 – ε)d (ν,ω) + �(ε)λψ(ε)
�
1 + ‖ν‖ + ‖ω‖� β , (1.5)

is satis�ed for every ε ∈ [0, 1] and ψ ∈ Z.

Definition 1.7 Let (X , d ) be a metric space. We say that h : X → X is a Pata type Zam-
firescu mapping if for all ν,ω ∈ X , ψ ∈ Z and for every ε ∈ [0, 1], h , it satisfies the following
inequality:

d (hν, hω) ≤ (1 – ε)M (ν,ω) + �(ε)λψ(ε)
�
1 + ‖ν‖ + ‖ω‖ + ‖hν‖ + ‖hω‖� β , (1.6)
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where

M (ν,ω) = max

�
d (ν,ω),

d (ν, hν) + d (ω, hω)
2

,
d (ν, hω) + d (ω, hν)

2

	

and � ≥ 0, λ ≥ 1 and β ∈ [0,λ] are constants.

Theorem 1.8 ([16]) Let (X , d ) be a complete metric space and let h : X → X be a Pata
type Zam�rescu mapping. Then h has a unique �xed point in X .

We state the following useful known lemma.

Lemma 1.9 Let (X , d ) be a complete metric space and {un} be a sequence in X such that
limn→∞ d (un, un+1) = 0. If the sequence {un} is not Cauchy, then there exist e > 0 and subse-
quences {unl} and {uml } of {un} such that

lim
n→∞ d (unl+1, uml+1) = e (1.7)

and

lim
n→∞ d (unl , uml ) = lim

n→∞ d (unl+1, uml ) = lim
n→∞ d (unl , uml+1) = e. (1.8)

In this paper, we combine the concepts of simulation functions and α-admissibility to
give a generalized Pata type fixed point result. At the end, we present an application on
fractional calculus.

2 Main results
We denote by Z̃ the set of all functions ζ̃ : [0,∞) × [0,∞) → R satisfying the following
condition:

(ζ̃1) ζ̃ (x , y) ≤ y – x for all x , y > 0.

Definition 2.1 Let (X , d ) be a metric space and φ ∈ �. Let � ≥ 0, λ ≥ 1 and β ∈ [0,λ]
be fixed constants. A triangular α-orbital admissible mapping h : X → X is called an α-
ζ̃ -E- Pata contraction if there exists a function ζ̃ ∈ Z̃ such that, for every ε ∈ [0, 1], the
following condition is satisfied:

ζ̃
�
α(ν,ω)d (hν, hω), (1 – ε)E(ν,ω) + S (ν,ω)

� ≥ 0 (2.1)

for all ν,ω ∈ X , where

E(ν,ω) = max



��

�


d (ν,ω) + |d (ν, hν) – d (ω, hω)|,
d (ν,hν)+d (ω,hω)+|d (ν,hν)–d (ω,hω)|

2 ,
d (ν,hω)+d (ω,hν)+|d (ν,hν)–d (ω,hω)|

2

�
��

��
(2.2)

and

S (ν,ω) = �ελψ(ε)
�
1 + ‖ν‖ + ‖ω‖ + ‖hν‖ + ‖hω‖� β . (2.3)
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Remark 2.2 It is clear that any Pata type Zamfirescu mapping is also an α-ζ̃ -E- Pata map-
ping. Indeed, letting α(ν,ω) = 1 and ζ̃ (x , y) = y – x , the inequality (2.1) becomes

d (hν, hω) ≤ (1 – ε)E(ν,ω) + S (ν,ω)

= (1 – ε)E(ν,ω) + �ελψ(ε)
�
1 + ‖ν‖ + ‖ω‖ + ‖hν‖ + ‖hω‖� β .

Moreover, note that M (ν,ω) ≤ E(ν,ω) for all ν,ω ∈ X .

Theorem 2.3 Every α�ζ̃�E�Pata contraction h on a complete metric space (X , d ) pos-
sesses a �xed point if

(i) there exists u0 ∈ X such that α(u0, hu0) ≥ 1;
(ii) h is triangular α-orbital admissible;

(iii) either h is continuous, or the set X is regular.
If in addition we assume that the following condition is satis�ed:

(iv) α(z∗,ν∗) ≥ 1 for all z∗,ν∗ ∈ FixX (h),
then such a �xed point of h is unique.

Proof Let u0 ∈ X be a point such that α(u0, hu0) ≥ 1. On account of the assumption that h

is a triangular α-orbital admissible mapping, we derive that

α(u0, hu0) ≥ 1 ⇒ α
�
hu0, h2u0

� ≥ 1,

and iteratively we find

α
�
hnu0, hn+1u0

� ≥ 1 for every n ∈N. (2.4)

Moreover, by (2.4) together with (1.3), we have

α(u0, hu0) ≥ 1 and α
�
hu0, h2u0

� ≥ 1 ⇒ α
�
u0, h2u0

� ≥ 1.

Again, iteratively, one writes

α
�
u0, hnu0

� ≥ 1 for every n ∈N. (2.5)

Starting from this point u0 ∈ X , we build an iterative sequence {un} where un = hun–1 =
hnu0 for n = 1, 2, 3, . . . . We can presume that any two consequent terms of this sequence
are distinct. Indeed, if, on the contrary, there exists i0 ∈ N such that

ui0 = ui0+1 = hui0 ,

then ui0 is a fixed point. To avoid this, we will assume in the following that for all n ∈ N

un �= un+1 ⇔ d (hun–1, hun) = d (un, un+1) > 0.

We mention that (2.4) can be rewritten as

α(un, un+1) ≥ 1, (2.6)
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respectively,

α(u0, un) ≥ 1, (2.7)

for any n ∈ N. In the sequel, we will denote d (ν, u0) = ‖ν‖ for all ν ∈ X.
Since h is an α-ζ̃ -E-Pata contraction, we have

ζ̃
�
α(un–1, un)d (hνn–1, hun), (1 – ε)E(νn–1, un) + S (νn–1, un)

� ≥ 0.

Thus, taking into account (ζ̃1), together with (2.6) we get

d (un, un+1) = d (hun–1, hun)

≤ α(un–1, un)d (hun–1, hun)

≤ (1 – ε)E(un–1, un) + S (un–1, un),

(2.8)

where

E(un–1, un) = max



��

�


d (un–1, un) + |d (un–1, hun–1) – d (un, hun)|
d (un–1,hun–1)+d (un ,hun)+|d (un–1,hun–1)–d (un ,hun)|

2
d (un–1,hun)+d (un ,hun–1)+|d (un–1,hun–1)–d (un ,hun)|

2

�
��

��

= max



��

�


d (un–1, un) + |d (un–1, un) – d (un, un+1)|,
d (un–1,un)+d (un ,un+1)+|d (un–1,un)–d (un ,un+1)|

2
d (un–1,un+1)+d (un ,un)+|d (un–1,un)–d (un ,un+1)|

2

�
��

��

≤ max



��

�


d (un–1, un) + |d (un–1, un) – d (un, un+1)|,
d (un–1,un)+d (un ,un+1)+|d (un–1,un)–d (un ,un+1)|

2
d (un–1,un)+d (un ,un+1)+|d (un–1,un)–d (un ,un+1)|

2

�
��

��

= max

�
d (un–1, un) + |d (un–1, un) – d (un, un+1)|,
d (un–1,un)+d (un ,un+1)+|d (un–1,un)–d (un ,un+1)|

2

�

and

S (un–1, un) = �ελψ(ε)
�
1 + ‖un–1‖ + ‖un‖ + ‖hun–1‖ + ‖hun‖

� β

= �ελψ(ε)
�
1 + ‖un–1‖ + ‖un‖ + ‖un‖ + ‖un+1‖

� β

= �ελψ(ε)
�
1 + ‖un–1‖ + 2‖un‖ + ‖un+1‖

� β .

Denoting by γn = d (un–1, un), we have

E(un–1, un) ≤ max

�
γn + |γn – γn+1|, γn + γn+1 + |γn – γn+1|

2

	
.

Thus, (2.8) becomes

γn+1 ≤ (1 – ε) max

�
γn + |γn – γn+1|, γn + γn+1 + |γn – γn+1|

2

	

+ �ελψ(ε)
�
1 + ‖un–1‖ + 2‖un‖ + ‖un+1‖

� β .
(2.9)
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We claim that the sequence {γn} is non-increasing. Indeed, if we suppose the contrary
that, for some p, γp < γp+1, and so max{γp,γp+1} = γp+1, then we have |γp – γp+1| = γp+1 – γp.

E(un–1, un) ≤ γn+1. (2.10)

Consequently, from (2.9), we get, for such an integer p,

γp+1 ≤ (1 – ε)γp+1 + �ελψ(ε)
�
1 + ‖up–1‖ + 2‖up‖ + ‖up+1‖

� β . (2.11)

The above inequality is true for all ε ∈ [0, 1]. In particular, for ε = 0, we get γp+1 ≤ γp+1,
which clearly is a contradiction. In this case, we find that the sequence {γn} is non-
increasing. So we can find a non-negative real number γ such that

lim
n→∞ d (un–1,un) = lim

n→∞γn = γ .

We claim that γ = 0. In order to prove this, we have to show that the sequence {κn} is
bounded, where κn = ‖un‖ = d (un, u0). Since the sequence {d (un, un+1)} is non-increasing,
we have

d (un, un+1) = γn ≤ κ1 = d (u1, u0).

By the triangle inequality, we get

κn = d (un, u0) ≤ d (un, un+1) + d (un+1, u1) + d (u1, u0)

= d (un, un+1) + d (hun, hu0) + κ1 ≤ d (hun, hu0) + 2κ1.
(2.12)

On account of (2.5), regarding that h is an α-ζ̃ -Pata-E contraction, we have

0 ≤ ζ̃
�
α(u0, un)d (hu0, hun), (1 – ε)E(u0, un) + S (u0, un)

�

≤ (1 – ε)E(u0, un) + S (u0, un) – α(u0, un)d (hu0, hun).

Taking into account (2.7), this is equivalent to

d (hun, hu0) = d (hu0, hun) ≤ α(u0, un)d (hu0, hun)

≤ (1 – ε)E(u0, un) + S (u0, un)

= (1 – ε) max



��

�


d (un, u0) + |d (un, hun) – d (u0, hu0)|,
d (un ,hun)+d (u0,hu0)+|d (un ,hun)–d (u0,hu0)|

2
d (un ,hu0)+d (u0,hun)+|d (un ,hun)–d (u0,hu0)|

2

�
��

��

+ �ελψ(ε)
�
1 + ‖un‖ + ‖u0‖ + ‖hun‖ + ‖hu0‖

� β

= (1 – ε) max



��

�


d (un, u0) + |d (un, un+1) – d (u0, u1)|,
d (un ,un+1)+d (u0,u1)+|d (un ,un+1)–d (u0,u1)|

2
d (un ,u1)+d (u0,un+1)+|d (un ,un+1)–d (u0,u1)|

2

�
��

��

+ �ελψ(ε)
�
1 + ‖un‖ + ‖u0‖ + ‖un+1‖ + ‖u1‖

� β
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≤ (1 – ε) max



��

�


κn + |γn – κ1|,
γn+κ1+|γn–κ1|

2
κn+κ1+κn+γn+|γn–κ1|

2

�
��

��

+ �ελψ(ε)[1 + κn + γn + κn + κ1]β

≤ (1 – ε) max{κn + κ1 – γn,κ1,κ1 + κn}
+ �ελψ(ε)[1 + 2κn + 2κ1]β .

Using (2.12) and the above inequality, we get

κn ≤ d (hun, hu0) + 2κ1

≤ (1 – ε) max{κn + κ1 – γn,κ1,κ1 + κn} + �ελψ(ε)[1 + 2κn + 2κ1]β + 2κ1

≤ (1 – ε)(κn + κ1) + �ελψ(ε)[1 + 2κn + 2κ1]β + 2κ1.

Moreover, since β ≤ λ, we have

εκn ≤ (3 – ε)κ1 + �ελψ(ε)[1 + 2κn + 2κ1]β

≤ (3 – ε)κ1 + �ελψ(ε)[1 + 2κn + 2γ1]λ

= (3 – ε)κ1 + �ελψ(ε)(1 + 2κn)λ
�

1 +
2κ1

1 + 2κn

� λ

≤ 3κ1 + �ελψ(ε)2λκλ
n

�
1 +

1
2κn

� λ

(1 + 2κ1)λ.

Now, supposing that the sequence {κn} is not bounded, there exists a subsequence {κnl }
of {κn} such that κnl → ∞ as l → ∞. In this case, letting ε = εl = 1+3κ1

κnl
(∈ [0, 1]), the above

inequality yields

1 ≤ �2λ
�
ελκλ

n
�
(1 + 2κ1)λ

�
1 +

1
2κnl

� λ

ψ(εl)

≤ �2λ(1 + 3κ1)λ(1 + 2κ1)λ
�

1 +
1

2κnl

� λ

ψ(εl)

≤ �2λ(1 + 3κ1)2λ

�
1 +

1
2κnl

� λ

ψ(εl) → 0 as l → ∞.

This is a contradiction. Thus, we conclude that our presumption is false and then the
sequence {κn} is bounded. Furthermore, there exists K > 0 such that κn ≤ K for all n ∈N.

Let us go back now and prove that γ = 0 (where γ = limn→∞ γn). In view of (2.10) and
the fact that the sequence {γn} is non-increasing, one writes

E(un–1, un) ≤ 2γn – γn+1.

Recall that

S (un–1, un) ≤ �ελψ(ε)
�
1 + ‖un–1‖ + 2‖un‖ + ‖un+1‖

� β ≤ �ελψ(ε)[1 + 4K ]β .
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Taking into account that h is an α-ζ̃ -E∗ contraction, keeping in mind (2.6) and using (ζ̃1),
we have

0 ≤ ζ̃
�
α(un–1, un)d (hun–1, hun), (1 – ε)E(un–1, un) + S (un–1, un)

�

≤ (1 – ε)(1 – ε)E(un–1, un) + Z(un–1, un) – α(un–1, un)d (hun–1, hun).

We have

γn = d (un, un+1) ≤ α(un–1, un)d (hun–1, hun)

≤ (1 – ε)E(un–1, un) + S (un–1, un)

≤ (1 – ε)(2γn – γn+1) + �ελψ(ε)[1 + 4K ]β ).

(2.13)

Letting n → ∞ in the previous inequality, we obtain

γ ≤ (1 – ε)γ + �ελ(1 + 4K )βψ(ε),

which is equivalent to

γ ≤ �ελ–1(1 + 4K )βψ(ε).

When ε → 0, we get γ ≤ 0. Therefore,

γ = lim
n→∞ d (un, un+1) = 0. (2.14)

As a next step, we claim that {un} is a Cauchy sequence. On the contrary, assuming
that the sequence is not Cauchy, it follows from Lemma 1.9 that there exist e > 0 and
subsequences {unl } and {uml } such that (1.7) and (1.8) hold. Replacing ν = unl and ω = uml

in (2.1), we have

0 ≤ ζ̃
�
α(unl , uml )d (hunl , huml ), (1 – ε)E + S (unl , uml )

�

≤ (1 – ε)E(unl , uml ) + S (unl , uml ) – α(unl , uml )d (hunl , huml ),
(2.15)

where

E(unl , uml ) = max



��

�


d (unl , uml ) + |d (unl , hunl ) – d (uml , huml )|,
d (unl ,hunl )+d (uml ,huml )+|unl ,hunl )–d (uml ,huml )|

2
d (unl ,huml )+d (uml ,hunl )+|unl ,hunl )–d (uml ,huml )|

2

�
��

��

= max



��

�


d (unl , uml ) + |d (unl , unl+1) – d (uml , uml+1)|,
d (unl ,unl+1)+d (uml ,uml+1)+|unl ,unl+1)–d (uml ,uml+1)|

2
d (unl ,uml+1)+d (uml ,unl+1)+|unl ,unl+1)–d (uml ,uml+1)|

2

�
��

��
.

The triangular α-orbital admissibility of h shows that α(unl , uml ) ≥ 1. Thus,

d (unl+1, uml+1) ≤ (1 – ε)E(unl , uml ) + S (unl , uml ). (2.16)
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Letting l → ∞ and taking into account (2.14) and Lemma 1.9, we have

lim
l→∞

E(unl , uml ) = e. (2.17)

At the same time, one writes

S (unl , uml ) = �ελψ(ε)
�
1 + ‖unl‖ + ‖uml‖ + ‖hunl‖ + ‖huml‖

� β

= �ελψ(ε)
�
1 + ‖unl‖ + ‖uml‖ + ‖unl+1‖ + ‖uml+1‖

� β

≤ �ελψ(ε)[1 + 4K ]β .

Denoting by al = d (unl+1, uml+1) and bl = (1 – ε)E(unl , uml ) + S (unl , uml ), by Lemma 1.9, it
follows that

al → e and lim sup
l→∞

bl ≤ (1 – ε)e + �ελψ(ε)[1 + 4K ]β .

Thus, passing to the limit as l → ∞ in (2.16), we get

e = lim sup
l→∞

al ≤ lim sup
l→∞

bl ≤ �ελψ(ε)[1 + 4K ]β .

Furthermore,

e ≤ (1 – ε)e + �ελψ(ε)[1 + 4K ]β ,

i.e.,

e ≤ �ελ–1ψ(ε)[1 + 4K ]β .

That is, e = 0. Therefore, {un} is a Cauchy sequence in the complete metric space. For this
reason, there exists ν∗ ∈ X such that un → ν∗, as n→ ∞.

Furthermore, in the case that h is a continuous mapping, we get hν∗ = ν∗, that is, ν∗ is a
fixed point of h .

Now, suppose that X is regular. From (2.1), one writes

ζ̃
�
α

�
un,ν∗�

d
�
hun, hν∗�

, (1 – ε)E
�
un,ν∗�

+ S
�
un,ν∗��

. (2.18)

Using the regularity of X and (ζ̃1), we get

d
�
hun, hν∗� ≤ α

�
un,ν∗�

d
�
hun, hν∗� ≤ (1 – ε)E

�
un,ν∗�

+ S
�
un,ν∗�

(2.19)

where

E
�
un,ν∗�

= max



��

�


d (un,ν∗) + |d (un, hun) – d (ν∗, hν∗)|
d (un ,hun)+d (ν∗ ,hν∗)+|d (un ,hun)–d (ν∗ ,hν∗)|

2 ,
d (un ,hν∗)+d (ν∗ ,hun)+|d (un ,hun)–d (ν∗ ,hν∗)|

2

�
��

��

= max



��

�


d (un,ν∗) + |d (un, un+1) – d (ν∗, hν∗)|,
d (un ,un+1)+d (ν∗ ,hν∗)+|d (un ,un+1)–d (ν∗ ,hν∗)|

2 ,
d (un ,hν∗)+d (ν∗ ,un+1)+|d (un ,un+1)–d (ν∗ ,hν∗)|

2

�
��

��
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and

S
�
un,ν∗�

= �ελψ(ε)
�
1 + ‖un‖ +

�
� ν∗�

� + ‖hun‖ +
�
� hν∗�

� � β

= �ελψ(ε)
�
1 + ‖un‖ +

�
� ν∗�

� + ‖un+1‖ +
�
� hν∗�

� � β

= �ελψ(ε)
�
1 + κn +

�
� ν∗�

� + κn+1 +
�
� hν∗�

� � β .

Taking into account the boundedness of the sequence {κn}, we have

S
�
un,ν∗� ≤ �ελψ(ε)

�
1 + 2K +

�
� ν∗�

� +
�
� hν∗�

� � β .

On the other hand,

lim
n→∞ E

�
un,ν∗�

= d
�
ν∗, hν∗�

.

Letting n → ∞ in the inequality (2.19), we find

d
�
ν∗, hν∗� ≤ (1 – ε)d

�
ν∗, hν∗�

+ �ελψ(ε)
�
1 + 2K +

�
� ν∗�

� +
�
� hν∗�

� � β ,

which is equivalent to

d
�
ν∗, hν∗� ≤ �ελ–1ψ(ε)

�
1 + 2K +

�
� ν∗�

� +
�
� hν∗�

� � β .

Obviously, we obtain for ε = 0 that d (ν∗, hν∗) ≤ 0, so ν∗ = hν∗. Thus, ν∗ is a fixed point of
h . Finally, to prove the uniqueness of the fixed point, we suppose that there exist two fixed
points ν∗,ω∗ ∈ FixX (h) such that ν∗ �= ω∗. We have

0 ≤ ζ̃
�
α

�
ν∗,ω∗�

d
�
hν∗, hω∗�

, (1 – ε)E
�
ν∗,ω∗�

+ S
�
ν∗,ω∗��

≤ (1 – ε)E
�
ν∗,ω∗�

+ S
�
ν∗,ω∗�

– α
�
ν∗,ω∗�

d
�
hν∗, hω∗�

.

Taking into account (iv), we obtain

d
�
ν∗,ω∗� ≤ α

�
ν∗,ω∗�

d
�
hν∗, hω∗� ≤ (1 – ε)E

�
ν∗,ω∗�

+ S
�
ν∗,ω∗�

= (1 – ε)d
�
ν∗,ω∗�

+ �ελψ(ε)
�
1 + 2

�
� ν∗�

� + 2
�
� ω∗�

� � β ,

which leads to

d
�
ν∗,ω∗� ≤ �ελ–1ψ(ε)

�
1 + 2

�
� ν∗�

� + 2
�
� ω∗�

� � β .

In the limit ε → 0, we get d (ν∗,ω∗) ≤ 0, that is, ν∗ = ω∗, which is a contradiction. There-
fore, the fixed point of h is unique. �

In the following, we present an example that supports our statement, that is, Theo-
rem 2.3 is a generalization of Theorem 1.8.
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Example 2.4 Take X = A × A, where A = [0, 11] and d : X × X → [0,∞) is the usual
distance. Define the mapping h : X → X by

hν =



���

��


(2, 0), if ν ∈ B,

(11, 9), if ν = (11, 0),

(5, 0), otherwise,

where B = {(x , 0)|x ∈ [0, 11)}. For ν1 = (11, 0) and ν2 = (2, 0), we have

d (ν1,ν2) = 9, d
�
h(ν1), h(ν2)

�
= d

�
(11, 9), (2, 0)

�
= 9

√
2,

d
�
ν2, h(ν2)

�
= d (ν2,ν2) = 0, d

�
ν1, h(ν1)

�
= d

�
(11, 0), (11, 9)

�
= 9,

d
�
ν1, h(ν2)

�
= d

�
(11, 0), (2, 0)

�
= 9, d

�
ν2, h(ν1)

�
= d

�
(2, 0), (11, 9)

�
= 9

√
2,

and

M (ν1,ν2) = max

�
d (ν1,ν2),

d (ν1, h(ν1)) + d (ν2, h(ν2))
2

,
d (ν1, h(ν2)) + d (ν1, h(ν1))

2

	

= max

�
9,

9
2

,
9(1 +

√
2)

2

	
=

9(1 +
√

2)
2

.

Thus,

d
�
h(ν1), h(ν2)

�
= 9

√
2 >

9(1 +
√

2)
2

= M (ν1,ν2),

so that the inequality (1.6) does not hold for ε = 0. That is, h is not a Pata type Zamfirescu
mapping.

Consider the function α : X × X → [0,∞) given as

α(ν,ω) =



���

��


2, if ν,ω ∈ B,

1, if ν = (11, 0),ω = (2, 0),

0, otherwise.

Since the assumptions (i)–(iv) are obviously satisfied, we have to prove that h is an α-ζ̃ -E-
Pata contraction. Take α = β = 1, � = 6 and the functions �(t) = t

2 , ζ̃ (x , y) = y – x .
For ν,ω ∈ B, we have d (h(ν), h(ω)) = 0, so that (2.1) holds.
For ν = (11, 0) and ω = (2, 0) we have

α(ν,ω)d
�
h(ν), h(ω)

�

= 9
√

2 ≤ 3
4

· 18 =
3
4

�
9 + |9 – 0|�

=
3
4

�
d (ν,ω) +

�
�d (ν, hν) – d (ω, hω)

�
��

≤ (1 – ε)
�
d (ν,ω) +

�
�d (ν, hν) – d (ω, hω)

�
��

+
�

3
4

+ ε – 1
�

�
d (ν,ω) +

�
�d (ν, hν) – d (ω, hω)

�
��
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≤ (1 – ε)(E(ν,ω) +
3
4

�
1 +

4(ε – 1)
3

�
�
d (ν,ω) + d (ν, hν) + d (ω, hω)

�

≤ (1 – ε)E(ν,ω) +
3
2
ε2�

2d (ν,ν0) + 2d (ν0,ω) + d (ν0, hν) + d (ν0, hω)
�

≤ (1 – ε)(E(ν,ω) + 3ε2�
1 + ‖ν‖ + ‖ω‖ + ‖hν‖ + ‖hω‖�

= (1 – ε)E(ν,ω) + S (ν,ω).

Due to the way the function α was defined, we omit the other cases.

3 An application on a fractional boundary value problem
In this section, we ensure the existence of a solution of a nonlinear fractional differen-
tial equation (for more related details, see [17–23]). Denote by X = C[0, 1] the set of all
continuous functions defined on [0, 1]. We endow X with the metric given as

d(ρ,ω) = ‖ρ – ω‖∞ = max
s∈[0,1]

�
�ρ(s) – ω(s)

�
� .

Consider the fractional differential equation

cDμρ(t) = f
�
t,ρ(t)

�
, 0 < t < 1, 1 < μ ≤ 2, (3.1)

with boundary conditions



�



ρ(0) = 0,

Iρ(1) = ρ ′(0).
(3.2)

Here, cDμ corresponds for the Caputo fractional derivative of order μ, given as

Dμf (t) =
1

�(n – μ)

� 1

0
(t – s)n–μ–1f n(s)ds, (3.3)

where n – 1 < μ < n and n = [μ] + 1, and Iμf is the Riemann–Liouville fractional integral
of order μ of a continuous function f , defined by

Iμf (t) =
1

�(μ)

� t

0
(t – s)μ–1f (s)ds, μ > 0. (3.4)

In [24], it is showed that the problem (3.1) and (3.2) can be written in the following integral
form:

ρ(t) =
1

�(μ)

� t

0
(t – s)μ–1f

�
s,ρ(s)

�
ds +

2t
�(μ)

� 1

0

� s

0
(s – r)μ–1f

�
r,ρ(r)

�
dr ds. (3.5)

Theorem 3.1 Assume that
1. f : [0, 1] ×R →R is continuous;
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2. for all ρ,ω ∈ X , we have

�
�f

�
s,ρ(s)

�
– f

�
s,ω(s)

� �� ≤ ε2

4
�(μ + 1)

�
�ρ(s) – ω(s)

�
� , (3.6)

for each s ∈ [0, 1], where ε ∈ [0, 1].
Then the problem 3.1 and 3.2 possesses a unique solution.

Proof Consider the functional

Tρ(t) =
1

�(μ)

� t

0
(t – s)μ–1f

�
s,ρ(s)

�
ds +

2t
�(μ)

� 1

0

� s

0
(s – r)μ–1f

�
r,ρ(r)

�
dr ds. (3.7)

Note that a solution of (3.5) is also a fixed point of T . We mention that T is well posed.
For all ρ,ω ∈ X and s ∈ [0, 1], we have

�
�Tρ(t) – T(ω(t)

�
�

=
�
�
�
�

1
�(μ)

� t

0
(t – s)μ–1f

�
s,ρ(s)

�
ds +

2t
�(μ)

� 1

0

� s

0
(s – r)μ–1f

�
r,ρ(r)

�
dr ds

–
1

�(μ)

� t

0
(t – s)μ–1f

�
s,ω(s)

�
ds –

2t
�(μ)

� 1

0

� s

0
(s – r)μ–1f

�
r,ω(r)

�
dr ds

�
�
�
�

≤
�
�
�
�

1
�(μ)

� t

0
(t – s)μ–1f

�
s,ρ(s)

�
ds –

1
�(μ)

� t

0
(t – s)μ–1f

�
s,ω(s)

�
ds

�
�
�
�

+
�
�
�
�

2t
�(μ)

� 1

0

� s

0
(s – r)μ–1f

�
r,ρ(r)

�
dr ds –

2t
�(μ)

� 1

0

� s

0
(s – r)μ–1f

�
r,ω(r)

�
dr ds

�
�
�
�

≤ 1
�(μ)

�
�
�
�

� t

0
(t – s)μ–1f

�
s,ρ(s)

�
ds –

� t

0
(t – s)μ–1f

�
s,ω(s)

�
ds

�
�
�
�

+
2

�(μ)

�
�
�
�

� 1

0

� s

0
(s – r)μ–1f

�
r,ρ(r)

�
dr ds –

� 1

0

� s

0
(s – r)μ–1f

�
r,ω(r)

�
dr ds

�
�
�
�

≤ ε2�(μ + 1)
4�(μ)

� t

0
(t – s)μ–1�

�ρ(s) – ω(s)
�
� ds

+
2ε2�(μ + 1)

4�(μ)

� 1

0

� s

0
(s – r)μ–1�

�ρ(r) – ω(r)
�
� dr ds

≤ ε2�(μ + 1)
4�(μ)

d(x, y)
� t

0
(t – s)μ–1 ds

+
2ε2�(μ + 1)

4�(μ)
d(x, y)

� 1

0

� s

0
(s – r)μ–1 dr ds

≤ ε2�(μ)�(μ + 1)
4�(μ)�(μ + 1)

d(ρ,ω)

+ 2ε2B(μ + 1, 1)
�(μ)�(μ + 1)

4�(μ)�(μ + 1)
d(ρ,ω)

≤ ε2

4
d(ρ,ω) +

ε2

2
d(ρ,ω)

≤ ε2d(ρ,ω),
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where B is the beta function. Consequently, one has

d(Tρ,Tω) ≤ ε2d(ρ,ω)

= εd(ρ,ω) – ε2d(ρ,ω) + 2ε2d(ρ,ω)

≤ (1 – ε)E(ρ,ω) + 2ε2d(ρ,ω)

≤ (1 – ε)E(ρ,ω) + 2ε2�
d(ρ, 0) + d(0,ω)

�

= (1 – ε)E(ρ,ω) + 2ε2�‖ρ‖ + ‖ω‖�

≤ (1 – ε)E(ρ,ω) + �ελψ(ε)
�
1 + ‖ρ‖ + ‖ω‖ + ‖Tρ‖ + ‖Tω‖� β ,

where ψ(ε) = ε, β = λ = 1 and � = 2. Applying Theorem 2.3, the functional T admits a
unique fixed point, that is, the problem (3.1) and (3.2) possesses a unique solution. �

4 Conclusion and remarks
Our results merged from and generalized several existing results in the related literature.
First of all, as underlined in Remark 2.2, the main result of [16] is a consequence of our
given theorem. On the other hand, by choosing the auxiliary functions in a proper way, we
may state a long list of corollaries. More precisely, by choosing the mapping α in a proper
way, we can get the analogue of our result in the setting of partially ordered metric spaces,
or in the set-up of cyclic mappings. Note that, if we take α(x, y) = 1 for all x, y, we get
the standard fixed point theorems in the context of complete metric spaces; see [25–29].
In addition, by choosing the appropriate simulation function, one can get several more
results; see [30–35].
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15. Kadelburg, Z., Radenović, S.: Fixed point and tripled fixed point theprems under Pata-type conditions in ordered

metric spaces. Int. J. Anal. Appl. 6(1), 113–122 (2014)
16. Jacob, G.K., Khan, M.S., Park, C., Yun, S.: On generalized Pata type contractions. Mathematics 6, 25 (2018)
17. Valliammal, N., Ravichandran, C., Nisar, K.S.: Solutions to fractional neutral delay differential nonlocal systems. Chaos

Solitons Fractals 138, 109912 (2020)
18. Aydi, H., Jleli, M., Samet, B.: On positive solutions for a fractional thermostat model with a convex–concave source

term via ψ -Caputo fractional derivative. Mediterr. J. Math. 17(1), 16 (2020)
19. Shaikh, A.S., Nisar, K.S.: Transmission dynamics of fractional order Typhoid fever model using Caputo–Fabrizio

operator. Chaos Solitons Fractals 128, 355–365 (2019)
20. Budhia, L., Aydi, H., Ansari, A.H., Gopal, D.: Some new fixed point results in rectangular metric spaces with an

application to fractional-order functional differential equations. Nonlinear Anal., Model. Control 25, 1–18 (2020)
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