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Abstract
The main purpose of this paper is to obtain an exact expression of the positive
periodic solution for a first-order differential equation with attractive and repulsive
singularities. Moreover, we prove the existence of at least one positive periodic
solution for this equation with an indefinite singularity by applications of topological
degree theorem, and give the upper and lower bounds of the positive periodic
solution.

MSC: 34B16; 34B18; 34C25

Keywords: First-order singular differential equation; Attractive and repulsive
singularities; Indefinite singularity; Positive periodic solution

1 Introduction
A variety of population dynamics and physiological processes can be described by the
following singular differential equation:

x′(t) + a(t)x(t) =
b(t)
xρ(t)

(1.1)

with periodic boundary value condition

x(0) = x(ω),

where a(t) and b(t) ∈ C(R,R) are ω-periodic functions, ρ and ω are positive constants. Ac-
cording to the literature [1–3], we say that Eq. (1.1) has an attractive singularity if b(t) < 0,
repulsive singularity if b(t) > 0 and indefinite singularity if b(t) may change sign. Moreover,
we say that Eq. (1.1) has a strong singularity if ρ ≥ 1 and a weak singularity if 0 < ρ < 1.

As is well known, singular equations have a wide range of applications in many fields,
and the existence of positive ω-periodic solutions to singular equations plays a significant
role in solving many practical problems. There is a good amount of work on periodic solu-
tions for singular equations (see [4–18] and the references cited therein). In 2003, Agarwal
and O’Regan [4] provided some results on positive ω-periodic solutions of Eq. (1.1), where
b(t) > 0 (i.e., repulsive singularity). After that, Chu and Nieto [10] in 2008 proved the ex-
istence of positive ω-periodic solutions for equation (1.1) with repulsive singularity and
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impulses by applications of Leray–Schauder alternative principle. Recently, Wang [15] and
Chen et al. [7] discussed the existence of positive ω-periodic solutions for the following
singular differential equation:

x′(t) + a1(t)x(t) = λb1(t)f
(
x(t)

)
, (1.2)

where a1(t) and b1(t) ∈ C(R, [0, +∞)) are ω-periodic functions with
∫ ω

0 a1(t) dt > 0 and
∫ ω

0 b1(t) dt > 0, the nonlinear term f has an attractive singularity or repulsive singular-
ity. Their proofs were based on Krasnoselskii’s fixed point theorem in a cone, the Leray–
Schauder degree and the upper and lower solutions method.

It is worth pointing out that the above results are only related to the existence of posi-
tive ω-periodic solutions of first-order differential equations with attractive singularity or
repulsive singularity, but the exact expression of ω-periodic solutions is not involved.

First, in this paper we give an exact expression of positive ω-periodic solution for
Eq. (1.1) with attractive and repulsive singularities.

Theorem 1.1 Assume that condition
∫ ω

0 a(t) dt ·b(t) > 0 holds. Then Eq. (1.1) has a unique
positive ω-periodic solution x(t), which can be written as

x(t) =
( (ρ + 1)

∫ t
0 e(ρ+1)

∫ s
t a(r) drb(s) ds

1 – e–(ρ+1)
∫ ω

0 a(r) dr
+

(ρ + 1)
∫ ω

t e(ρ+1)
∫ s

t a(r) drb(s) ds
e(ρ+1)

∫ ω
0 a(r) dr – 1

) 1
ρ+1

.

Second, from the condition
∫ ω

0 a(t) dt · b(t) > 0, it is easy to verify that the weight term
b(t) has a non-changing sign. A natural question is how Eq. (1.1) works on changing sign
of b(t) (i.e., indefinite singularity)? We also consider the existence of positive ω-periodic
solution for equation (1.1) with an indefinite singularity.

Theorem 1.2 Assume that ā := 1
ω

∫ ω

0 a(t) dt > 0 and b̄ := 1
ω

∫ ω

0 b(t) dt ≥ 0 hold. Further-
more, suppose the following conditions are satisfied:

(H1) 1 – ‖a‖ω(ρ+1)
2 > 0, here ‖a‖ := maxt∈[0,ω] |a(t)|;

(H2) b̄
a+

– ω(ρ+1)(‖a‖b++‖b‖ā)
ā(2–‖a‖ω(ρ+1)) > 0, here a+(t) := max{0, a(t)}.

Then Eq. (1.1) has at least one positive ω-periodic solution x(t) with

x(t) ∈
[(

b̄
a+

–
ω(ρ + 1)(‖a‖b+ + ‖b‖ā)

ā(2 – ‖a‖ω(ρ + 1))

) 1
ρ+1

,
(

b+

ā
+

ω(ρ + 1)(‖a‖b+ + ‖b‖ā)
ā(2 – ‖a‖ω(ρ + 1))

) 1
ρ+1

]
.

2 Proof of Theorem 1.1
In this section, an exact expression of solution for Eq. (1.1) with periodic boundary value
condition is given.

First, we change the variable x = uα , where α = 1
ρ+1 and 0 < α < 1. Then Eq. (1.1) is con-

verted into the following form:

u′(t) +
a(t)
α

u(t) =
b(t)
α

, (2.1)

with periodic boundary value condition

u(0) = u(ω).
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Proof of Theorem 1.1 Applying method of variation of constant, solution of Eq. (2.1) can
be written as the following form:

u(t) = C(t)e–
∫ t

0
a(r)
α dr , (2.2)

where C(t) ∈ C(R,R). Substituting Eq. (2.2) into Eq. (2.1), we arrive at

C′(t) =
b(t)
α

e
∫ t

0
a(r)
α dr .

Integrating the above equation over the interval [0, t], here t ∈ [0,ω], we get

C(t) = C(0) +
∫ t

0

b(s)
α

e
∫ s

0
a(r)
α dr ds. (2.3)

Furthermore, we give

C(ω) = C(0) +
∫ ω

0

b(s)
α

e
∫ s

0
a(r)
α dr ds. (2.4)

Since u(0) = u(ω), we obtain

C(0) = C(ω)e–
∫ ω

0
a(r)
α dr . (2.5)

Combining Eqs. (2.4) and (2.5), we have

C(0) =
∫ ω

0
b(s)
α

e
∫ s

0
a(r)
α dr ds

e
∫ ω

0
a(r)
α dr – 1

.

Then we get

C(t) =
∫ ω

0
b(s)
α

e
∫ s

0
a(r)
α dr ds

e
∫ ω

0
a(r)
α dr – 1

+
∫ t

0

b(s)
α

e
∫ s

0
a(r)
α dr ds.

Therefore, the solution of Eq. (2.1) is

u(t) =
(∫ ω

0
b(s)
α

e
∫ s

0
a(r)
α dr ds

e
∫ ω

0
a(r)
α dr – 1

+
∫ t

0

b(s)
α

e
∫ s

0
a(r)
α dr ds

)
e–

∫ t
0

a(r)
α dr

=
∫ t

0

e
∫ s

t
a(r)
α dr

1 – e–
∫ ω

0
a(r)
α dr

b(s)
α

ds +
∫ ω

t

e
∫ s

t
a(r)
α dr

e
∫ ω

0
a(r)
α dr – 1

b(s)
α

ds.

Because x(t) = uα(t) and α = 1
ρ+1 , the solution of Eq. (1.1) is

x(t) =
( (ρ + 1)

∫ t
0 e(ρ+1)

∫ s
t a(r) drb(s) ds

1 – e–(ρ+1)
∫ ω

0 a(r) dr
+

(ρ + 1)
∫ ω

t e(ρ+1)
∫ s

t a(r) drb(s) ds
e(ρ+1)

∫ ω
0 a(r) dr – 1

) 1
ρ+1

. (2.6)

From the condition
∫ ω

0 a(t) dt · b(t) > 0, it is easy to see that x(t) is positive for all t ∈ R.
The proof is completed. �
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Example 2.1 Consider the following first-order singular differential equation:

x′(t) + (sin t + 1)x(t) =
e3 cos t

x2(t)
. (2.7)

Comparing Eq. (2.7) with Eq. (1.1), we see that a(t) = sin t + 1, b(t) = e3 cos t , ρ = 2, ω = 2π .
Furthermore, the condition

∫ ω

0
a(t) dt · b(t) =

∫ π

0
(sin t + 1) dt · e3 cos t = 2πe3 cos t > 0

is satisfied. Using Eq. (2.6), we calculate the solution of Eq. (2.7) to be

x(t) = ecos t , (2.8)

and x(t) is 2π-periodic. Substituting Eq. (2.8) into Eq. (2.7), we conclude that ecos t is a
solution of Eq. (2.7).

3 Proof of Theorem 1.2
For convenience, we recall the topological degree theorem by Mawhin [19].

Lemma 3.1 (see [19, Theorem 2.4]) Let X, Z be real normed spaces and L : D(L) ⊂ X → Z
a linear Fredholm map of index zero. Assume that � ⊂ X is an open bounded set and
N : � → Z is an L-compact mapping. Furthermore, assume that the following conditions
are satisfied:

(i) Lx + λNx 	= 0, for each (x,λ) ∈ [(D(L) \ ker L) ∩ ∂�] × (0, 1);
(ii) Nx /∈ Im L, for each x ∈ ker L ∩ ∂�;

(iii) D0(QN |ker L,� ∩ ker L) 	= 0, where Q : Z → Z is a continuous projector such that
ker Q = Im L and D0 is the Brouwer degree.

Then the equation Lx + Nx = 0 has at least one solution in D(L) ∩ �.

Proof of Theorem 1.2 Define X := {x ∈ C(R,R), x(t + ω) ≡ x(t),∀t ∈ R} endowed with the
C1-norm, Z = L1([0,ω],R) with the L1-norm. Let D(L) = {x ∈ X : x′ is absolutely continu-
ous on R}, we define operators L : D(L) → Z and N : Z → Z by

(Lx)(t) = x′(t), (Nx)(t) = a(t)x(t) –
b(t)
xρ(t)

.

Form this, Eq. (1.1) can be converted to Lx + Nx = 0. Define projectors P : X → X and
Q : Z → Z by

Px =
1
ω

∫ ω

0
x(s) ds, Qz =

1
ω

∫ ω

0
z(s) ds. (3.1)

As literature [20, Theorem 1.1], it is easy to verify that L is a Fredholm linear mapping
with zero index and for any open bounded set � ⊂ X, N is L-compact on �.
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Consider the following homotopy family of Eq. (1.1):

x′(t) + λa(t)x(t) = λ
b(t)
xρ(t)

, λ ∈ (0, 1], (3.2)

which can be expressed as the abstract equation Lx + λNx = 0.
Multiplying both sides of Eq. (3.2) with xρ(t) and integrating over the interval [0,ω], we

get

∫ ω

0
a(t)xρ+1(t) dt =

∫ ω

0
b(t) dt = b̄ω,

which yields

∫ ω

0
a+(t)xρ+1(t) dt ≥ b̄ω.

Thus, there exists a point η ∈ [0,ω] such that

xρ+1(η)a+ω ≥ b̄ω.

Since b̄ ≥ 0, we obtain

x(η) ≥
(

b̄
a+

) 1
ρ+1

. (3.3)

Meanwhile, Eq. (3.2) together with the fact of x(t) > 0 gives

x′(t)
x(t)

+ λa(t) = λ
b(t)

xρ+1(t)
.

Integrating the above equation over the interval [0,ω], we get

āω =
∫ ω

0
a(t) dt =

∫ ω

0

b(t)
xρ+1(t)

dt,

which yields

āω ≤
∫ ω

0

b+(t)
xρ+1(t)

dt.

Thus, there exists a point ξ ∈ [0,ω] such that

āω ≤ b+ω

xρ+1(ξ )
.

Since ā > 0, we arrive at

x(ξ ) ≤
(

b+

ā

) 1
ρ+1

. (3.4)
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Let x = uα , where α = 1
ρ+1 , Eqs. (3.2), (3.3) and (3.4) can be turned into

u′(t) + λ
a(t)
α

u(t) = λ
b(t)
α

, (3.5)

u(η) = xρ+1(η) ≥ b̄
a+

, (3.6)

u(ξ ) = xρ+1(ξ ) ≤ b+

ā
. (3.7)

It follows from Eqs. (3.6) and (3.7) that

u(t) =
1
2
(
u(t) + u(t – ω)

)

=
1
2

(
u(η) +

∫ t

η

u′(s) ds + u(η) –
∫ η

t–ω

u′(s) ds
)

≥ u(η) –
1
2

(∫ η

t–ω

∣∣u′(s)
∣∣ds +

∫ t

η

∣∣u′(s)
∣∣ds

)

≥ b̄
a+

–
1
2

∫ ω

0

∣
∣u′(t)

∣
∣dt.

(3.8)

Similarly, we deduce

u(t) = u(ξ ) +
1
2

(∫ t

ξ

u′(s) ds –
∫ ξ

t–ω

u′(s) ds
)

≤ u(ξ ) +
1
2

(∫ t

ξ

∣∣u′(s)
∣∣ds +

∫ ξ

t–ω

∣∣u′(s)
∣∣ds

)

≤ b+

ā
+

1
2

∫ ω

0

∣
∣u′(t)

∣
∣dt.

(3.9)

Multiplying both sides of Eq. (3.5) with u′(t) and integrating it over the interval [0,ω], we
get

∫ ω

0

∣
∣u′(t)

∣
∣2 dt = –λ

∫ ω

0

a(t)
α

u(t)u′(t) dt + λ

∫ ω

0

b(t)
α

u′(t) dt

≤ ‖a‖
α

∫ ω

0

∣∣u(t)
∣∣∣∣u′(t)

∣∣dt +
‖b‖
α

∫ ω

0

∣∣u′(t)
∣∣dt.

From Eq. (3.9) and the Hölder inequality, the above equation implies

∫ ω

0

∣∣u′(t)
∣∣2 dt ≤

(
b+

ā
+

1
2

∫ ω

0

∣∣u′(t)
∣∣dt

)‖a‖
α

∫ ω

0

∣∣u′(t)
∣∣dt +

‖b‖
α

∫ ω

0

∣∣u′(t)
∣∣dt

=
‖a‖
2α

(∫ ω

0

∣∣u′(t)
∣∣dt

)2

+
(‖a‖b+

αā
+

‖b‖
α

)∫ ω

0

∣∣u′(t)
∣∣dt

≤ ‖a‖ω
2α

∫ ω

0

∣
∣u′(t)

∣
∣2 dt +

(‖a‖b+

αā
+

‖b‖
α

)
ω

1
2

(∫ ω

0

∣
∣u′(t)

∣
∣2 dt

) 1
2

.
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It follows from condition (H1) and the above inequality that

(∫ ω

0

∣∣u′(t)
∣∣2 dt

) 1
2 ≤ ( ‖a‖b+

αā + ‖b‖
α

)ω 1
2

1 – ‖a‖ω
2α

=
2ω

1
2 (‖a‖b+ + ‖b‖ā)
ā(2α – ‖a‖ω)

. (3.10)

Using Eqs. (3.8), (3.9) and (3.10), we obtain

u(t) ≥ b̄
a+

–
ω

1
2

2

(∫ ω

0

∣
∣u′(t)

∣
∣2 dt

) 1
2 ≥ b̄

a+
–

ω(‖a‖b+ + ‖b‖ā)
ā(2α – ‖a‖ω)

> 0

since condition (H2). Moreover,

u(t) ≤ b+

ā
+

ω
1
2

2

(∫ ω

0

∣
∣u′(t)

∣
∣2 dt

) 1
2 ≤ b+

ā
+

ω(‖a‖b+ + ‖b‖ā)
ā(2α – ‖a‖ω)

.

Therefore, we obtain

x(t) = u
1

ρ+1 (t) ≥
(

b̄
a+

–
ω(ρ + 1)(‖a‖b+ + ‖b‖ā)

ā(2 – ‖a‖ω(ρ + 1))

) 1
ρ+1

:= M1 > 0 (3.11)

and

x(t) = u
1

ρ+1 (t) ≤
(

b+

ā
+

ω(ρ + 1)(‖a‖b+ + ‖b‖ā)
ā(2 – ‖a‖ω(ρ + 1))

) 1
ρ+1

:= M2. (3.12)

Define

�1 :=
{

x ∈ X : E1 < x(t) < E2,∀t ∈R
}

,

where 0 < E1 < M1, E2 > M2. Then conditions (i) and (ii) of Lemma 3.1 are verified. For a
constant x ∈ ker L, x > 0, we have

QNx =
1
ω

∫ ω

0

(
a(t)x(t) –

b(t)
xρ(t)

)
dt.

It follows from Eqs. (3.3), (3.4), (3.11) and (3.12) that

∫ ω

0

(
a(t)E1 –

b(t)
Eρ

1

)
dt ·

∫ ω

0

(
a(t)E2 –

b(t)
Eρ

2

)
dt < 0.

Therefore, we obtain

D0(QN |ker L,�1 ∩ ker L) = 1.

Thus condition (iii) of Lemma 3.1 holds. Therefore, Lx + Nx = 0 has at least one solution
in �1, which means Eq. (1.1) has at least one positive ω-periodic solution x(t) with

x(t) ∈
[(

b̄
a+

–
ω(ρ + 1)(‖a‖b+ + ‖b‖ā)

ā(2 – ‖a‖ω(ρ + 1))

) 1
ρ+1

,
(

b+

ā
+

ω(ρ + 1)(‖a‖b+ + ‖b‖ā)
ā(2 – ‖a‖ω(ρ + 1))

) 1
ρ+1

]
. �
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Example 3.1 Consider the following first-order differential equation with an indefinite
singularity:

x′(t) +
(

1
16

cos(16t) +
1

32

)
x(t) =

1
32 sin(16t) +

√
3

64
x3(t)

. (3.13)

Comparing Eq. (3.13) with Eq. (1.1), we see that a(t) = 1
16 cos(16t) + 1

32 , b(t) = 1
32 sin(16t) +√

3
64 , ρ = 3, ω = π

8 . By calculating, we get

‖a‖ =
3

32
, ā =

1
32

, a+ =
6
√

3 + π

96π
,

‖b‖ =
2 +

√
3

64
, b̄ =

√
3

64
, b+ =

3 +
√

3π

96π
.

It can be verified that conditions (H1) and (H2) are satisfied. Using Theorem 1.2, we see
that Eq. (3.13) has at least one positive π

8 -periodic solution x(t) with

x(t) ∈
[(

3
√

3π

2(6
√

3 + π )
–

6 + 2π + 3
√

3π

2(128 – 3π )

) 1
4

,
(

3 +
√

3π

3π
+

6 + 2π + 3
√

3π

2(128 – 3π )

) 1
4
]

.

4 Conclusions
In this paper, applying method of variation of constant, we obtain an exact expression
of positive periodic solution for equation (1.1) with attractive and repulsive type. After
that, we prove the existence of at least one positive periodic solution for Eq. (1.1) with an
indefinite singularity by applications of topological degree theorem, and give the upper
and lower bound of the positive periodic solution.
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