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Abstract
In this study, the double Laplace Adomian decomposition method and the triple
Laplace Adomian decomposition method are employed to solve one- and
two-dimensional time-fractional Navier–Stokes problems, respectively. In order to
examine the applicability of these methods some examples are provided. The
presented results confirm that the proposed methods are very effective in the search
of exact and approximate solutions for the problems. Numerical simulation is used to
sketch the exact and approximate solution.

Keywords: Double and triple Laplace transform; Inverse double and triple; Laplace
transform; Fractional Navier–Stokes equation; Mittag-Leffler functions;
Decomposition methods; Single Laplace transform

1 Introduction
Fractional partial differential equations as generalizations of classical partial differential
equations, and they have been proposed and applied to many applications in various fields
of physical sciences and engineering such as electromagnetic, acoustics, visco-elasticity
and electro-chemistry. Recently, the solution of fractional partial differential equations
has been obtained through a double Laplace decomposition method by the authors
[1–3]. The natural transform decomposition method has been successfully used to han-
dle linear and nonlinear problems appearing in physical and engineering disciplines [4, 5].
The Navier–Stokes equations are the fluid dynamics identical to Newton’s second law,
force equals mass times acceleration, and they are of crucial significance in fluid dynamics.
Also the Navier–Stokes equations are vector equations. Recently, many powerful methods
have been used to obtain different type solution of time-fractional Navier–Stokes equa-
tion such as the Adomian decomposition method [6], the q-homotopy analysis transform
scheme [7], the modified Laplace decomposition method [8, 9], the natural homotopy
perturbation method [10] and a reliable algorithm based on the new homotopy pertur-
bation transform method [11]. The one-dimensional Navier–Stokes equation with time-
fractional derivative has been given in operator form [12]. The main objective of this work
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is to find the exact and approximate solution of time-fractional Navier–Stokes equations
by using the double and triple Laplace Adomian decomposition methods, respectively.

2 Basic definitions and preliminaries concepts
In this section, we give some essential definitions, properties and theorems of fractional
calculus and double Laplace transform, which should be used in the present study.

Definition 1 In [13] Let f be a function of three variables x, y and t, where x, y, t > 0. The
triple Laplace transform of f is defined by

LxLyLt
[
f (x, y, t)

]
= F(p, q, s) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
e–px–qy–stf (x, y, t) dt dy dx,

where p, q, s are complex variables, and further triple Laplace transforms of the partial
derivatives are shown by

LxLyLt
[
ux(x, y, t)

]
= pU(p, q, s) – U(0, q, s),

LxLyLt
[
ut(x, y, t)

]
= sU(p, q, s) – U(p, q, 0).

Likewise, the triple Laplace transform for the second partial derivative with respect to x,
y and t are defined by

LxLyLt
[
utt(x, y, t)

]
= p2U(p, q, s) – pU(0, q, s) –

∂U(0, q, s)
∂x

,

LxLyLt
[
uyy(x, y, t)

]
= q2U(p, q, s) – qU(p, 0, s) –

∂U(p, 0, s)
∂y

,

LxLyLt
[
utt(x, y, t)

]
= s2U(p, q, s) – sU(p, q, 0) –

∂U(p, q, 0)
∂t

.

The inverse triple Laplace transform L–1
p L–1

q L–1
s [F(p, q, s)] = f (x, y, t) is defined [13] as fol-

lows:

f (x, y, t) =
1

2π i

∫ e+i∞

e–i∞
epx dp

1
2π i

∫ c+i∞

c–i∞
eqy dq

1
2π i

∫ d+i∞

d–i∞
est ds.

Definition 2 ([14–16]) The Caputo time-fractional derivative operator of order α > 0 is
determined by

Dα
t u(r, t) =

⎧
⎨

⎩

1
�(m–α)

∫ t
0 (t – τ )m–α–1 ∂mu(r,τ )

∂τm dτ , m – 1 < α < m,
∂mu(r,t)

∂tm , for m = α ∈N.

In the next theorem, one can introduce the triple Laplace transform of the partial frac-
tional Caputo derivatives.

Theorem 1 ([17]) Let α,β ,γ > 0, n–1 < α ≤ n, m–1 < β ≤ m, r–1 < γ ≤ r and n, m, p ∈N,
so that f ∈ Cl(R+ ×R

+ ×R
+), l = max{n, m, p}, f (l) ∈ L1[(0, a)× (0, b)× (0, c)] for any a, b, c >
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0, |f (x, y, t)| ≤ wexτ1+yτ2+tτ3 , x > a > 0, y > b > 0 and t > c > 0 the triple Laplace transforms of
Caputo’s fractional derivatives Dα

t u(x, y, t), Dα
t u(x, y, t) and Dα

t u(x, y, t) are defined by

LxLyLt
[
Dα

t u(x, y, t)
]

= sαU(p, q, s) –
n–1∑

i=0

sα–1–iLyLt
[
Di

tu(x, y, 0)
]
, n – 1 < α < n, (2.1)

LxLyLt
[
Dβ

y u(x, y, t)
]

= qβU(p, q, s) –
m–1∑

j=0

qβ–1–jLyLt
[
Dj

yu(x, 0, t)
]
, m – 1 < β < m, (2.2)

and

LxLyLt
[
Dγ

x u(x, y, t)
]

= pγ U(p, q, s) –
r–1∑

k=0

pγ –1–kLyLt
[
Dk

xu(0, y, t)
]
, r – 1 < γ < r. (2.3)

In the following part, the relations between Mittag-Leffler function and Laplace trans-
form are considered, which are helpful in the in the current study. The Mittag-Leffler func-
tion is defined by the following series:

Eβ (z) =
∞∑

k=0

zk

�(βk + 1)
, z ∈C,�(β) > 0, (2.4)

the Mittag-Leffler function with two parameters is defined by

Eβ ,γ (z) =
∞∑

k=0

zk

�(βk + γ )
, z ∈C,�(α) > 0, (2.5)

see [18, 19]. If we put β = 1 in Eq. (2.5) we obtain Eq. (2.4). It follows from Eq. (2.5) that

E1,1(z) =
∞∑

k=0

zk

�(k + 1)
=

∞∑

k=0

zk

k!
= ez, (2.6)

E1,2(z) =
∞∑

k=0

zk

�(k + 2)
=

∞∑

k=0

zk

(k + 1)!
=

1
z

∞∑

k=0

zk+1

(k + 1)
=

ez – 1
z

, (2.7)

and

E1,3(z) =
∞∑

k=0

zk

�(k + 3)
=

∞∑

k=0

zk

(k + 2)!
=

1
z2

∞∑

k=0

zk+2

(k + 2)
=

ez – 1 – 1
z2 , (2.8)

in general

E1,m(z) =
1

zm–1

[

ez –
m–2∑

k=0

zk

k!

]

. (2.9)
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Triple Laplace transforms of some Mittag-Leffler functions are given by

LxLyLt
[
x2tαE1,α+1(t)

]
=

2!
p3qsα(s – 1)

,

LxLyLt
[
tαE1,α+1(t)

]
=

1
pqsα(s – 1)

,

LxLyLt
[
t2αE1,2α+1(t)

]
=

1
pqs2α(s – 1)

.

3 Analysis of the double Laplace decomposition method
In this secction, we give the essential idea of the double Laplace Adomian decomposition
method (DLADM) for the time-fractional Navier–Stokes equations. With a view to show-
ing the fundamental scheme of the double Laplace Adomian decomposition method, we
consider the following time-fractional Navier–Stokes equations:

Dα
t u(x, t) = D2

xu(x, t) +
1
x

Dxu(x, t) + f (x, t), x, t > 0,

n – 1 < α < n; (3.1)

subject to the condition

u(x, 0) = f (x),

where Dα
t = ∂α

∂tα is the fractional Caputo derivative, D2
x = ∂2

∂x2 , Dx = ∂
∂x and the right-hand-

side function f (x, t) is the source term. In order to apply the double Laplace Adomian
decomposition method, we multiply first Eq. (3.1) by x, we obtain

xDα
t u = xD2

xu + Dxu + xf (x, t), x, t > 0, (3.2)

implementing the double Laplace transform on both sides of Eq. (3.2), we have

LxLt
[
xDα

t u
]

= LxLt
[
xD2

xu + Dxu + xf (x, t)
]
, x, t > 0, (3.3)

by using Theorem 1, we get

–
d

dp
(
LxLt

[
Dα

t u
])

= LxLt
[
xD2

xu + Dxu + xf (x, t)
]
.

Immediately, implementing the differentiation property of the Laplace transform, we get

–
d

dp
[
sα

(
LxLt

[
u(x, t)

])
– sα–1u(p, 0)

]
= LxLt

[
xD2

xu + Dxu
]

–
d

dp
(
LxLt

[
f (x, t)

])
, (3.4)

after an algebraic manipulation, we obtain

d
dp

(
LxLt

[
u(x, t)

])
=

1
s

d
dp

F(p) –
1
sα

LxLt
[
xD2

xu + Dxu
]

+
1
sα

d
dp

(
LxLt

[
f (x, t)

])
. (3.5)
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By taking the integral for both sides of Eq. (3.5) from 0 to p with respect to p, we get

LxLt
[
u(x, t)

]
=

1
s

∫ p

0

(
d

dp
F(p)

)
dp –

1
sα

∫ p

0

(
LxLt

[
xD2

xu + Dxu
])

dp

+
1
sα

∫ p

0

(
d

dp
(
LxLt

[
f (x, t)

]))
dp, (3.6)

the double Laplace Adomian decomposition solution u(x, t) is defined by the following
infinite series:

u(x, t) =
∞∑

m=0

un(x, t), (3.7)

by substituting Eq. (3.7) into Eq. (3.6), we get

LxLt

[ ∞∑

m=0

um(x, t)

]

=
1
s

∫ p

0

(
d

dp
F(p)

)
dp +

1
sα

∫ p

0

(
d

dp
(
LxLt

[
f (x, t)

])
)

dp

–
1
sα

∫ p

0

(

LxLt

[

x

( ∞∑

m=0

um(x, t)

)

xx

+

( ∞∑

m=0

um(x, t)

)

x

])

dp, (3.8)

by using DLADM, we introduce the iterative relations

LxLt
[
u0(x, t)

]
=

1
s

∫ p

0

(
d

dp
F(p)

)
dp +

1
sα

∫ p

0

(
d

dp
(
LxLt

[
f (x, t)

]))
dp, (3.9)

and the remaining components can be written as

LxLt
[
um+1(x, t)

]
= –

1
sα

∫ p

0

(
LxLt

[
xD2

xum + Dxum
])

dp, m ≥ 1. (3.10)

Hence, u0(x, t) and um(x, t) can be obtained by applying the inverse double Laplace trans-
form to Eqs. (3.9) and (3.10), respectively, and we have

u0(x, t) = L–1
p L–1

s

(
1
s

∫ p

0

(
d

dp
F(p)

)
dp +

1
sα

∫ p

0

(
d

dp
(
LxLt

[
f (x, t)

]))
dp

)
(3.11)

and

um+1(x, t) = –L–1
p L–1

s

(
1
sα

∫ p

0

(
LxLt

[
xD2

xum + Dxum
])

dp
)

, m ≥ 1, (3.12)

where LxLt is the double Laplace transform with respect to x, t and the double inverse
Laplace transform denoted by L–1

p L–1
s is with respect to p, s. We supposed that the double

inverse Laplace transform exists for Eqs. (3.11) and (3.12).
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4 Analysis of the triple Laplace decomposition method
In this part of the paper, we give the fundamental idea of the triple Laplace Adomian de-
composition method (TLADM) for the two-dimensional time-fractional Navier–Stokes
equations. In order to show the fundamental plan of the triple Laplace Adomian decom-
position method, we consider the following system of two-dimensional time-fractional
Navier–Stokes equations:

Dα
t u + uux + vuy = ρ0(uxx + uyy) –

1
ρ

∂r
∂x

, x, y, t > 0,

Dα
t v + uvx + vvy = ρ0(vxx + vyy) –

1
ρ

∂r
∂y

, x, y, t > 0,

n – 1 < α < n; (4.1)

subject to

u(x, y, 0) = f1(x, y), v(x, y, 0) = g1(x, y),

where Dα
t = ∂α

∂tα is the fractional Caputo derivative, r is the pressure; in addition if r is
known, then h1 = 1

ρ
∂r
∂x and h2 = – 1

ρ
∂r
∂y . Applying the triple Laplace transform for Eq. (4.1),

we obtain

sαLxLyLt
[
u(x, y, t)

]
– sα–1U(p, q, 0)

= –LxLyLt(uux + vuy) + LxLyLt
(
ρ0(uxx + uyy) – h1

)
,

sαLxLyLt
[
v(x, y, t)

]
– sα–1U(p, q, 0)

= –LxLyLt(uvx + vvy) + LxLyLt
(
ρ0(vxx + vyy)

)
+ LxLyLt(h2).

(4.2)

On using the differentiation property of the Laplace transform, we get

LxLyLt
[
u(x, y, t)

]
=

1
s

F1(p, q) –
1
sα

LxLyLt(uux + vuy)

+
1
sα

LxLyLt
(
ρ0(uxx + uyy)

)
–

1
sα

LxLyLt(h1),

LxLyLt
[
v(x, y, t)

]
=

1
s

G1(p, q) –
1
sα

LxLyLt(uvx + vvy)

+
1
sα

LxLyLt
(
ρ0(vxx + vyy)

)
+

1
sα

LxLyLt(h2).

(4.3)

By applying the triple inverse Laplace transformation for Eq. (4.3), we get

u(x, y, t) = L–1
p L–1

q L–1
s

(
1
s

F1(p, q)
)

–
1
sα

LxLyLt(uux + vuy)

+
1
sα

LxLyLt
(
ρ0(uxx + uyy)

)
–

1
sα

LxLyLt(h1),

LxLyLt
[
v(x, y, t)

]
=

1
s

G1(p, q) –
1
sα

LxLyLt(uvx + vvy)

+
1
sα

LxLyLt
(
ρ0(vxx + vyy)

)
+

1
sα

LxLyLt(h2),

(4.4)
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the solutions u(x, y, t) and v(x, y, t) are defined by the following series:

u(x, y, t) =
∞∑

n=0

un(x, y, t), v(x, y, t) =
∞∑

n=0

vn(x, y, t); (4.5)

moreover, the nonlinear terms uux, vuy, uvx and vvy are determined by

uux =
∞∑

n=0

An, vuy =
∞∑

n=0

Bn, uvx =
∞∑

n=0

Cn, vvy =
∞∑

n=0

Dn, (4.6)

by substituting Eq. (4.5) into Eq. (4.3), we get

LxLyLt

[ ∞∑

n=0

un(x, y, t)

]

=
1
s

F1(p, q) –
1
sα

LxLyLt

( ∞∑

n=0

(An + Bn)

)

+
1
sα

LxLyLt

(

ρ0

( ∞∑

n=0

uxxn +
∞∑

n=0

uyyn

))

–
1
sα

LxLyLt(h1) (4.7)

and

LxLyLt

[ ∞∑

n=0

vn(x, y, t)

]

=
1
s

G1(p, q) –
1
sα

LxLyLt

( ∞∑

n=0

(Cn + Dn)

)

+
1
sα

LxLyLt

(

ρ0

( ∞∑

n=0

vxxn +
∞∑

n=0

vyyn

))

–
1
sα

LxLyLt(h2). (4.8)

Taking the inverse Laplace transformation to Eqs. (4.7) and (4.8) we have

∞∑

n=0

un(x, y, t) = L–1
p L–1

q L–1
s

(
1
s

F1(p, q)
)

– L–1
p L–1

q L–1
s

(
1
sα

LxLyLt

( ∞∑

n=0

(An + Bn)

))

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt

(

ρ0

( ∞∑

n=0

uxxn +
∞∑

n=0

uyyn – h1

)))

(4.9)

and

∞∑

n=0

vn(x, y, t) = L–1
p L–1

q L–1
s

(
1
s

G1(p, q)
)

– L–1
p L–1

q L–1
s

(
1
sα

LxLyLt

( ∞∑

n=0

(Cn + Dn)

))

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt

(

ρ0

( ∞∑

n=0

vxxn +
∞∑

n=0

vyyn – h2

)))

, (4.10)
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by using DLADM, we introduce the recursive relations

u0(x, y, t) = L–1
p L–1

q L–1
s

(
1
s

F1(p, q)
)

,

v0(x, y, t) = L–1
p L–1

q L–1
s

(
1
s

G1(p, q)
)

,
(4.11)

and the remaining components un+1 and vn+1, n ≥ 0 are given by

un+1(x, y, t) = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
(An + Bn)

)
)

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(unxx + unyy – h1)

)
)

(4.12)

and

vn+1(x, y, t) = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt(Cn + Dn)
)

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(vnxx + vnyy – h2)

)
)

, (4.13)

where LxLyLt is the triple Laplace transform with respect to x, y, t and triple inverse
Laplace transform denoted by L–1

p L–1
q L–1

s is with respect to p, q, s. We assume that the
triple inverse Laplace transform with respect to p, q and s exist for Eqs. (4.11), (4.12) and
(4.13).

5 Numerical examples
In this part of paper, we discuss the achievement of our present methods and examine its
accuracy by using the decomposition method with connection of the Laplace transform.
Three problems are given.

Problem 1 Consider the homogeneous one-dimensional motion of a viscous fluid in a
tube given by

Dα
t u = –

∂r
ρ∂z

+
1
x

∂

∂x
(xDxu), x, t > 0, (5.1)

subject to the initial condition

u(x, 0) = 1 – x2. (5.2)

One can write Eq. (5.1) in the form

Dα
t u = K +

1
x

∂

∂x
(xDxu)x, x, t > 0, (5.3)

where K = – ∂r
ρ∂z , multiplying the above equation with x, we have

xDα
t u = Kx +

∂

∂x
(xDxu), x, t > 0. (5.4)
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Implementing the double Laplace transform on both sides of Eq. (5.4), we get

LxLt
[
xDα

t u
]

= LxLt[Kx] + LxLt

[
∂

∂x
(xDxu)

]
, (5.5)

using the differentiation property of the Laplace transform and Theorem 1, we obtain

–
d

dp
[
sαU(p, s) – sα–1U(p, 0)

]
=

K
p2s

+ LxLt

[
∂

∂x
(xDxu)

]
, (5.6)

substituting the initial condition and arranging Eq. (5.6), we have

dU(p, s)
dp

=
1
s

d
dp

[
1
p

–
2!
p3

]
–

K
p2sα+1

–
1
sα

LxLt

[
∂

∂x
(xDxu)

]
, (5.7)

by integrating both sides of Eq. (5.7) from 0 to p with respect to p, we have

U(p, s) =
1
ps

–
2!

p3s
+

K
psα+1 –

1
sα

∫ p

0
LxLt

[
∂

∂x
(xDxu)

]
dp. (5.8)

The inverse double Laplace transform of Eq. (5.8) is denoted by

u(x, t) = 1 – x2 +
Ktα

�(α + 1)
– L–1

p L–1
s

[
1
sα

∫ p

0
LxLt

[
v

∂

∂x
(xDxu)

]
dp

]
, (5.9)

we assume an infinite series solution of the unknown function u(x, t) is given by

u(x, t) =
∞∑

m=0

um(x, t), (5.10)

substituting Eq. (5.10) into Eq. (5.9), we get

∞∑

m=0

um(x, t) = 1 – x2 +
Ktα

�(α + 1)

– L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[

v
∂

∂x

(

x
∂

∂x

∞∑

m=0

um(x, t)

)]

dp

]

. (5.11)

The zeroth component u0 is proposed by Adomian method, is constantly contains ini-
tial condition and the nonhomogeneous term, both of which are assumed to be known.
Accordingly, we put

u0 = 1 – x2 +
Ktα

�(α + 1)
.

The remaining components um+1, m ≥ 0 are given by using the relation

um+1(x, t) = –L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[
∂

∂x
(xDxum)

]
dp

]
, (5.12)
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by substituting m = 0, into Eq. (5.12), we get

u1(x, t) = –L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[
v

∂

∂x
(xDxu0)

]
dp

]

= –L–1
p L–1

s

[
1
sα

∫ p

0

[
–

4v
p2s

]
dp

]
= –L–1

p L–1
s

[
4v

psα+1

]
, (5.13)

u1(x, t) = –
4tα

�(α + 1)
,

similarly at m = 1,

u2(x, t) = –L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[
∂

∂x
(xDxu1)

]
dp

]

= –L–1
p L–1

s

[
1
sα

∫ p

0
[0] dp

]
= 0, (5.14)

at m = 2, we have

u3(x, t) = 0.

Hence, the solution of Eq. (5.1) can be can be found to be

u(x, t) = 1 – x2 +
(K – 4)tα

�(α + 1)
.

The result is the same as given by [6, 10].

Problem 2 The nonhomogeneous time-fractional Navier–Stokes equation

Dα
t u = D2

xu +
1
x

Dxu + x2et – 4et , x, t > 0, (5.15)

subject to the initial condition

u(x, 0) = x2. (5.16)

Applying the double Laplace transform on both sides of Eq. (5.15), subject to the initial
condition Eq. (5.16), we have

U(p, s) =
2!

p3s
+

2!
p3sα(s – 1)

–
4

psα(s – 1)
–

1
sα

∫ p

0
LxLt

[
∂

∂x
(xDxu)

]
dp. (5.17)

Working with the double Laplace inverse on both sides of Eq. (5.17) gives

u(x, t) = x2 + x2tαE1,α+1(t) – 4tαE1,α+1(t)

– L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[
∂

∂x
(xDxu)

]
dp

]
. (5.18)
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By using the above-mentioned method the solution of Eq. (3.7), is given by

∞∑

m=0

um(x, t) = x2 + x2tαE1,α+1(t) – 4tαE1,α+1(t)

– L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[
∂

∂x

(

x
∂

∂x

∞∑

m=0

um(x, t)

)]

dp

]

, (5.19)

the first few terms of the double Laplace decomposition series are given by

u0 = x2 + x2tαE1,α+1(t) – 4tαE1,α+1(t)

and

um+1(x, t) = –L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[
∂

∂x
(xDxum)

]
dp

]
.

Hence, at m = 0, we get

u1 = –L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[
∂

∂x
(xDxu0)

]
dp

]

= –L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[
4x + 4xtαE1,α+1(t)

]
dp

]

= L–1
p L–1

s

[
4

psα+1 +
4

ps2α(s – 1)

]
,

u1 =
4tα

�(α + 1)
+ 4t2αE1,2α+1(t).

In the same manner,

u2 = –L–1
p L–1

s

[
1
sα

∫ p

0
LxLt

[
∂

∂x
(xDxu1)

]
dp

]

– L–1
p L–1

s

[
1
sα

∫ p

0
LxLt[0] dp

]
,

u2 = 0,

and

u3 = 0, u4 = 0, . . . .

The series solution is therefore given by

u(x, t) = u0 + u1 + u2 + · · · ,

u(x, t) = x2 + x2tαE1,α+1(t) – 4tαE1,α+1(t) +
4tα

�(α + 1)
+ 4t2αE1,2α+1(t),
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where E denotes the Mittag-Leffler function. On setting α = 1 in Eq. (5.15), we get the
exact solution of the non-time-fractional Navier–Stokes equation

Dtu = D2
xu +

1
x

Dxu + x2et – 4et , x, t > 0,

under the same condition u(x, 0) = x2. The solution is given by

u(x, t) = x2et .

In the following problem, the suggested method is applied to the two-dimensional time-
fractional model of the Navier–Stokes equation, in Eq. (5.20). We let h1 = 1

ρ
∂r
∂x = –h2 =

– 1
ρ

∂r
∂y = h as follows.

Problem 3 Consider the time-fractional order two-dimensional Navier–Stokes equation
[9, 13]

Dα
t u + uux + vuy = ρ0(uxx + uyy) + h, x, y, t > 0,

Dα
t v + uvx + vvy = ρ0(vxx + vyy) – h, x, y, t > 0,

n – 1 < α < n; (5.20)

subject to the condition

u(x, y, 0) = – sin(x + y), v(x, y, 0) = sin(x + y),

by taking the triple Laplace transform for both sides of Eq. (5.20), we get

LxLyLt
[
Dα

t u + uux + vuy = ρ0(uxx + uyy) + h
]
,

LxLyLt
[
Dα

t v + uvx + vvy = ρ0(vxx + vyy) – h
]
,

on using the differentiation property of the Laplace transform, we have

LxLyLt
[
u(x, y, t)

]
=

1
s

LxLy
[
u(x, y, 0)

]
–

1
sα

LxLyLt(uux + vuy)

+
1
sα

LxLyLt
(
ρ0(uxx + uyy)

)
+

1
sα

LxLyLt(h),

LxLyLt
[
v(x, y, t)

]
=

1
s

LxLy
[
v(x, y, 0)

]
–

1
sα

LxLyLt(uvx + vvy)

+
1
sα

LxLyLt
(
ρ0(vxx + vyy)

)
–

1
sα

LxLyLt(h), (5.21)

substituting the initial condition and arranging Eq. (5.21), we have

LxLyLt
[
u(x, y, t)

]
= –

p + q
s(p2 + 1)(q2 + 1)

–
1
sα

LxLyLt(uux + vuy)

+
1
sα

LxLyLt
((

ρ0(uxx + uyy) + h
))

,



Eltayeb et al. Advances in Difference Equations        (2020) 2020:519 Page 13 of 19

LxLyLt
[
v(x, y, t)

]
=

p + q
s(p2 + 1)(q2 + 1)

–
1
sα

LxLyLt(uvx + vvy)

+
1
sα

LxLyLt
(
ρ0(vxx + vyy) – h

)
. (5.22)

Now, implementing the inverse triple Laplace transform for Eq. (5.22)

u(x, y, t) = – sin(x + y) – L–1
p L–1

q L–1
s

(
1
sα

LxLyLt(uux + vuy)
)

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(uxx + uyy) + h

)
)

,

v(x, y, t) = sin(x + y) – L–1
p L–1

q L–1
s

(
1
sα

LxLyLt(uvx + vvy)
)

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(vxx + vyy) – h

))
. (5.23)

The zeroth components u0 and v0 are found by the Adomian method. Always it contains
initial condition and the source term, both of which are assumed to be known. Accord-
ingly, we set

u0 = – sin(x + y), v0 = sin(x + y).

The remaining components un+1, un+1, n ≥ 0 are given by using the relations

un+1 = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
(An + Bn)

))

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(unxx + unyy) + h

))
(5.24)

and

vn+1 = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt(Cn + Dn)
)

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(vnxx + vnyy) – h

))
(5.25)

the first few terms of the Adomian polynomials An, Bn, Cn and Dn are given by

A0 = u0u0x, A1 = u0u1x + u1u0x,

A2 = u0u2x + u1u1x + u2u0x,

A3 = u0u3x + u1u2x + u2u1x + u3u0x, (5.26)

B0 = v0u0y, B1 = v0u1y + v1u0y,

B2 = v0u2y + v1u1y + v2u0y,

B3 = v0u3y + v1u2y + v2u1y + v3u0y, (5.27)

C0 = u0v0x, C1 = u0v1x + u1v0x,
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C2 = u0v2x + u1v1x + u2v0x,

C3 = u0v3x + u1v2x + u2v1x + u3v0x, (5.28)

D0 = v0v0y, D1 = v0v1y + v1v0y,

D2 = v0v2y + v1v1y + v2v0y,

D3 = v0v3y + v1v2y + v2v1y + v3v0y, (5.29)

by putting n = 0, into Eqs. (5.24) and (5.25), we get

u1 = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
(A0 + B0)

))

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(u0xx + u0yy) + h

))

= L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0

(
2 sin(x + y)

))
+ h

)

= L–1
p L–1

q L–1
s

(
ρ0

sα

p + q
(p2 + 1)(q2 + 1)

–
h
sα

)

= 2
ρ0tα

�(α + 1)
sin(x + y) +

htα

�(α + 1)
,

in the same way, we have

v1 = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt(C0 + D0)
)

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(v0xx + v0yy) – h

))

= –2
ρ0tα

�(α + 1)
sin(x + y) –

htα

�(α + 1)
,

similarly at n = 1,

u2 = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
(u0u1x + u1u0x + v0u1y + v1u0y)

)
)

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(u1xx + u1yy + q)

))

= L–1
p L–1

q L–1
s

(
1
sα

LxLyLt

(
–4ρ2

0 sin(x + y)tα

�(α + 1)

))

= –
(2ρ0)2 sin(x + y)t2α

�(3α + 1)

and

v2 = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt(u0v1x + u1v0x + v0v1y + v1v0y)
)

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(v1xx + v1yy – q)

))

=
(2ρ0)2 sin(x + y)t2α

�(3α + 1)
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at n = 2, we have

u3 = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
(u0u2x + u1u1x + u2u0x + v0u2y + v1u1y + v2u0y)

))

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(u2xx + u2yy) + h

)
)

=
–8ρ3

0 sin(x + y)t3α

�(3α + 1)
=

(2ρ0)3 sin(x + y)t3α

�(3α + 1)

and

v3 = –L–1
p L–1

q L–1
s

(
1
sα

LxLyLt(u0v2x + u1v1x + u2v0x + v0v2y + v1v1y + v2v0y)
)

+ L–1
p L–1

q L–1
s

(
1
sα

LxLyLt
(
ρ0(v2xx + v2yy) – h

)
)

= –
8ρ3

0 sin(x + y)t3α

�(3α + 1)
= –

(2ρ0)3 sin(x + y)t3α

�(3α + 1)
.

In the same manner, we have

un = –
(–2ρ0)n sin(x + y)tnα

�(nα + 1)
, vn =

(–2ρ0)n sin(x + y)tnα

�(nα + 1)
, ∀n ≥ 2.

The solution of Eq. (5.20) is given by

u(x, y, t) = u0 + u1 + u2 + · · · + un,

v(x, y, t) = v0 + v1 + v2 + · · · + vn,

u(x, y, t) = – sin(x + y)
∞∑

n=0

(–2ρ0)ntnα

�(nα + 1)
+

htα

�(α + 1)
,

v(x, y, t) = sin(x + y)
∞∑

n=0

(–2ρ0)ntnα

�(nα + 1)
–

htα

�(α + 1)
,

at α = 1 and h = 0, we obtain the exact solution of the classical Navier–Stokes equation for
the velocity:

u(x, y, t) = – sin(x + y)e–2ρ0t ,

v(x, y, t) = sin(x + y)e–2ρ0t .

6 Numerical result
In this section, we clarify the accuracy and efficiency of the double Laplace Adomian
decomposition method by numerical results of u(x, t) for the exact solution when α = 1
and approximate solutions with α using different fractional values for the time-fractional
Navier–Stokes equation. The solutions of Eqs. (5.1) and (5.15) are represented through
Figs. 1–4, respectively.

Figure 1 compares the approximate solutions of Eq. (5.1) at t = 1. It shows that besides
the approximate solution at α = 1 we get the exact solution, and the function u(x, t) de-
creases as the fractional derivative decreases at α = 0.75, 0.50, 0.25.
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Figure 1 Plot of u(r, t) vs. r, for problem (1), when k = v = t = 1 for different values of α

Figure 2 The surface shows the solution u(r, t) for problem (1), when k = v = 1. (a) α = 0.5; (b) α = 1

The three-dimensional surface in Fig. 2(a) shows the solution of Eqs. (5.1) at (α = 0.5)
and Fig. 2(b) shows the exact solution of the time-fractional Navier–Stokes equation with
α = 1 in normal form.

In the same manner, the exact solution and approximate solution of Eq. (5.15) were
demonstrated in Figs. 3 and 4. Figures 3 gives plots of the behavior of Eq. (5.15) when
t = 1 and α = 0.75, 0.50, 0.25, in this case the function u(x, t) increases quickly and gets far
from the exact solution.

The three-dimensional surface in Fig. 4(a) shows the solution of Eqs. (5.15) at (α = 0.5)
and Fig. 4(b) shows the exact solution of the time-fractional Navier–Stokes equation at
α = 1 in standard form equal to x2et .

It is clear from the solutions of Eqs. (5.1) and (5.15) that the double Laplace transform
decomposition method shows good agreement with the exact solutions of the problems.

Figure 5 consists of two graphs, namely Fig. 5(a) and Fig. 5(b). Figures 5(a) and 5(b)
represent the functions u(x, y, t) and u(x, y, t) of the Navier–Stokes equation, respectively,
of Eq. (5.20) when ρ = 0.5, α = 0.5 and t = 0.5.

Figure 6 consists of two graphs, namely Fig. 6(a) and Fig. 6(b). Figures 6(a) and 6(b)
represent the functions u(x, y, t) and u(x, y, t) of the Navier–Stokes equation, respectively,
of Eq. (5.20) when ρ = 0.5, α = 0.5 and t = 0.05.
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Figure 3 Plot of u(r, t) vs. r, for problem (2), when k = v = t = 1 for different values of α

Figure 4 The surface shows the solution u(r, t) for problem (2), when k = v = 1. (a) α = 0.5; (b) α = 1

Figure 5 The surface shows the solution for problem (3), when ρ = 0.5, α = 0.5 and t = 0.5

Conclusion 1 In this work, double and triple Laplace Adomian decomposition methods
are suggested for solving one- and two-dimensional time-fractional Navier–Stokes equa-
tions. These methods have been proved to be a powerful tool which enable us to manage
fractional order differential equations and allow one to reach the desired accuracy. All we
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Figure 6 The surface shows the solution for problem (3), when ρ = 0.5, α = 0.5 and t = 0.05

have to do is to increase the number of iterations. Therefore, it can be found that DLADM
and TLADM are very effective in the search of exact and numerical solutions for the frac-
tional Navier–Stokes equation.
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