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Abstract
This paper is concerned with the asymptotic stability of linear fractional-order neutral
delay differential–algebraic systems described by the Caputo–Fabrizio (CF) fractional
derivative. A novel characteristic equation is derived using the Laplace transform.
Based on an algebraic approach, stability criteria are established. The effect of the
index on such criteria is analyzed to ensure the asymptotic stability of the system. It is
shown that asymptotic stability is ensured for the index-1 problems provided that a
stability criterion holds for any delay parameter. Also, asymptotic stability is still valid
for higher-index problems under the conditions that the system matrices have
common eigenvectors and each pair of such matrices is simultaneously
triangularizable so that a stability criterion holds for any delay parameter. An example
is provided to demonstrate the effectiveness and applicability of the theoretical
results.
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1 Introduction
Fractional calculus is attracting more and more researchers in applied sciences and en-
gineering because of the many advantages of fractional derivatives which provide impor-
tant tools in mathematical modeling related to many interdisciplinary areas, see, e.g., [20–
28, 34, 40]. Any physical system can be represented more accurately through a fractional
system. Also it has been found that it is more appropriate to capture the real dynamical
behavior rather than classical calculus. It should be pointed out that fractional calculus has
gained the popularity due to its peculiar properties and recent progress of research in this
area. For more details, one can see [3, 5, 10, 12, 41]. There are different types of fractional
derivatives, those of Riemann–Liouville and Caputo are the most popular in the literature
[4, 19, 32, 37, 39].

In their recent work, Caputo and Fabrizio [7] introduced a new fractional-order deriva-
tive with a nonsingular kernel, hereinafter called the fractional Caputo–Fabrizio (CF)
derivative. This new fractional derivative is less affected by the past compared to the

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02980-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02980-8&domain=pdf
http://orcid.org/0000-0002-4453-5643
mailto:annsawoor@yahoo.com


Al Sawoor Advances in Difference Equations        (2020) 2020:531 Page 2 of 19

Caputo fractional derivative, which may exhibit slow stabilization [1, 33]. The proper-
ties and numerical aspects of the CF derivative and their corresponding fractional in-
tegrals been studied in [2, 6, 8, 11, 18, 30, 38]. In this paper, we are interested in lin-
ear fractional-order neutral delay differential–algebraic equations described by the CF
derivative. The presence of differential and difference operators as well as the algebraic
constraints makes the study of such equations more complicated than that for stan-
dard fractional delay differential equations or fractional delay algebraic equations. For
this reason, recently, a great attention has been paid to fractional delay differential–
algebraic systems. One of the most important research topics of the theory of such
systems is the stability analysis. However, in the literature cited above, there are only
few results (see, e.g., [16, 17, 35, 36]) on this topic. The stability of such systems has
some particular properties including regularity behavior and the index which is a very
important characteristic of fractional delay differential–algebraic equations but which
does not need to be considered in standard differential systems. Most of the consid-
ered fractional delay differential–algebraic systems, so far, are of index one (impulse-
free). However, if the index is other than one then classical results on stability fail for
fractional delay differential–algebraic equation. So this paper aims to make some con-
tribution to fill this research gap. In [29] the authors consider the asymptotic stability
of linear fractional-order ordinary differential equations described by the CF derivative,
whereas the authors of [31] consider the stability analysis of a linear fractional-order sys-
tem with time delay, establish a characteristic equation using the Laplace transform, and
provide some brief sufficient stability conditions. While being different, we extend the
analysis carried out in the above cited references. We apply a spectrum-based approach
to establish asymptotic stability criteria for fractional-order neutral delay differential–
algebraic equations, and the novelty of this work lies in the following aspects. Firstly,
the CF definition of the fractional derivative is applied to analyze linear fractional-order
differential–algebraic systems including neutral time delay and singular coefficient matri-
ces. Secondly, by using the Laplace transform, we establish a novel characteristic equa-
tion. Thirdly, we apply an algebraic approach to establish sufficient asymptotic stability
criteria ensuring that all the roots of characteristic equation lie in open left half of the
complex plane. Fourthly, we extend the asymptotic stability results to a broader class of
linear systems which are regular, not impulse-free, and with a non-commutative fam-
ily of matrices. We consider such systems with simultaneously triangularizable matrices,
where the condition on simultaneous triangularization of a pair of matrices can be ex-
tended so that the rank of their commutator is less than or equal to one. A nice con-
sequence is that these stability criteria avoid solving the characteristic (transcendental)
equation.

The rest of the paper is organized as follows: In Sect. 2 we formulate the problem and
introduce notation that will be used throughout the paper. In Sect. 3 we establish the
main results for the asymptotic stability criteria for fractional neutral delay differential–
algebraic equations. In Sect. 4 we provide an example to illustrate the effectiveness and
applicability of the proposed criteria. Finally, some concluding remarks are given in
Sect. 5.
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2 Problem formulation and notations
We consider the linear fractional-order neutral delay differential–algebraic equations
(FNDDAEs):

CFDα
[
Ey(t) – Cy(t – τ )

]
= Ay(t) + By(t – τ ), t ≥ 0, (1)

y(t) = ϕ(t), –τ ≤ t ≤ 0,

where 0 < α < 1, y(t) is a real vector of size n (the state vector); A, B, C, E are real constant
matrices of size n × n, and E is assumed to be singular with rank(E) = r < n; the positive
pareameter τ is the time delay and ϕ is a consistent initial function. The notation CFDαy(t)
stands for Caputo–Fabrizio fractional-order derivative of order α of y(t) defined by (see
[7])

CFDαy(t) =
dαy(t)

dtα
=

1
1 – α

∫ t

0
exp

(
–

α

1 – α
(t – τ )

)
ẏ(τ ) dτ , 0 < α < 1,

where ẏ(τ ) = dy(τ )
dt .

The following notations will be used throughout the paper. For a complex matrix X,
det[X], σ [X], ‖X‖, and ρ[X] denote respectively its determinant, spectrum, spectral norm,
and spectral radius. The open left half complex plane is denoted by C–. The symbol L
denotes the Laplace transform.

3 Main results
Applying the Laplace transform to (1), we obtain

L
{CFDα

[
Ey(t) – Cy(t – τ )

]}
= L

{
Ay(t)

}
+ L

{
By(t – τ )

}
. (2)

We have

L
{

e– α
1–α t} =

1
s + α

1–α

,

L
{

y(t)
}

=
∫ ∞

0
y(t)e–st dt = Y (s),

L
{

ẏ(τ )
}

= sY (s) – y(0),

L
{

y(t – τ )
}

=
∫ ∞

0
y(t – τ )e–st dt

=
∫ ∞

0
y
(
t′)e–s(t′+τ ) dt′ (

by changing of variables t′ = t – τ and dt′ = dt
)

= e–sτL
{

y(t)
}

= e–sτ Y (s),

L
{

ẏ(t – τ )
}

=
∫ ∞

0
ẏ(t – τ )e–st dt

=
∫ ∞

0
ẏ
(
t′)e–s(t′+τ ) dt′ (

by changing of variables t′ = t – τ and dt′ = dt
)

= e–sτL
{

ẏ(t)
}

= e–sτ [sY (s) – y(0)
]
,



Al Sawoor Advances in Difference Equations        (2020) 2020:531 Page 4 of 19

and

L
{

CF Dα
[
Ey(t) – Cy(t – τ )

]}
=

1
1 – α

{
1

s + α
1–α

[(
E – Ce–sτ )(sY (s) – y(0)

)]}
.

Then (2) leads to

1
1 – α

{
1

s + α
1–α

[(
E – Ce–sτ )(sY (s) – y(0)

)]}
= AY (s) + Be–sτ Y (s),

1
s(1 – α) + α

[
sY (s)

(
E – Ce–sτ ) – y(0)

(
E – Ce–sτ )] =

(
A + Be–sτ )Y (s),

[
s

s(1 – α) + α

(
E – Ce–sτ ) –

(
A + Be–sτ )

]
Y (s) =

1
s(1 – α) + α

(
E – Ce–sτ )y(0),

[
s
(
E – Ce–sτ ) –

(
s(1 – α) + α

)(
A + Be–sτ )]Y (s) =

(
E – Ce–sτ )y(0),

[
s
(
E – Ce–sτ ) – s(1 – α)

(
A + Be–sτ ) – α

(
A + Be–sτ )]Y (s) =

(
E – Ce–sτ )y(0)

and after rearrangement to

[
s
(
E – Ce–sτ – (1 – α)

(
A + Be–sτ )) – α

(
A + Be–sτ )]Y (s) =

(
E – Ce–sτ )y(0).

Setting y0(s) = (E – Ce–sτ )y(0), we get

P(s)Y (s) = y0(s), (3)

where

P(s) = s
(
E – Ce–sτ – (1 – α)

(
A + Be–sτ )) – α

(
A + Be–sτ ).

Since the distribution of eigenvalues of P(s) totally determines the stability of system (1),
the following definition is obvious.

Definition 3.1 The characteristic equation of system (1) is

Q(s, τ ) = det
[
P(s)

]
= 0,

where P(s) = s(E – Ce–sτ – (1 – α)(A + Be–sτ )) – α(A + Be–sτ ).

Definition 3.2 The zero solution y(t) = 0 of system (1) is called asymptotically stable if
for any consistent ϕ(·) ∈ C([–τ , 0], Rn) its analytic solution y(t) satisfies limt→+∞ y(t) = 0
for any delay paramerter τ > 0.

Now we establish several stability theorems. Multipling s on both sides of (3) gives
P(s)(sY (s)) = sy0(s).

Similar to that given in [42], if all roots of the transcendental equation det[P(s)] = 0 lie in
open left half of the complex plane, i.e., Re(s) < 0, then we consider this equation in Re(s) ≥
0. In this restricted area, it has a unique solution sY (s). So, we have lim s→0

Re(s)≥0
sY (s) = 0.
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From the assumption of all roots of the characteristic equation Q(s, τ ) = det[P(s)] = 0 and
the final-value theorem of the Laplace transform, and according to Definition 3.2 we get
limt→+∞ y(t) = lim s→0

Re(s)≥0
sY (s) = 0. It immediately follows the theorem below.

Theorem 3.1 System (1) is asymptotically stable if all the roots of characteristic equation
Q(s, τ ) = det[P(s)] = 0, where P(s) = s(E – Ce–sτ – (1 – α)(A + Be–sτ )) – α(A + Be–sτ ), lie in
open left half of the complex plane and are uniformly bounded away from the imaginary
axis.

3.1 Solvability analysis of linear FNDDAEs
There is one well-known fact in the theory of delay algebraic equations that not only the
stability of system (1) depends on spectral conditions but also the solvability is connected
to the regularity of the matrix pair (E, A). Consequently, the solvability of FNDDAEs (1) is
discussed under the regularity of the matrix pair (E, A).

Definition 3.3 Consider system (1) described by the CF derivative with the family of ma-
trices {E, A, B, C} in Rn×n

1. The pair (E, A) is known as regular if det(sE – A) is not identically zero, where s ∈ C,
and system (1) is known as regular if the pair (E, A) is regular.

2. The pair (E, A) is known as impulse-free if n1 = rank(E), where n1 = deg[det(sE – A)].
System (1) is known as impulse-free if the pair (E, A) is impulse-free.

Definition 3.4 An initial function ϕ is called consistent with system (1) if the associated
initial value problem IVP (1) has at least one solution. System (1) is called solvable (resp.
regular) if, for every consistent initial function ϕ, the associated IVP has a solution (resp.
has a unique solution).

Definition 3.5 ([13] (Quasi-Weierstrass form)) The matrix pencil (E, A) is regular if and
only if there exist matrices P, Q in Rn×n such that

PEQ =

[
Ir 0
0 N

]

and PAQ =

[
J 0
0 In–r

]

,

where N is a nilpotent with index of nilpotency v and J ∈ Rr×r is a matrix in Jordan canon-
ical form. If n – r > 0, we call v the index of the pencil (E, A) and write ind(E, A) = v. Oth-
erwise we set ind(E, A) = 0.

Remark 3.1 If n1 = r, then the pair (E, A) is of index one (impulse-free).

Remark 3.2 The regularity of the pair (E, A) ensures that system (1) with τ 	= 0 is regular,
and it further ensures the existence of a unique solution to system (1) on [0,∞).

Now, according to [9] and by applying the method of steps, we obtain the follow-
ing lemma which generalizes the results of fractional-order differential–algebraic system
without delay described by the CF derivative to fractional-order neutral delay differential–
algebraic system (1).
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Lemma 3.1 Assume that (E, A) is regular and ϕ(·) ∈ C1([τ , 0], Rn) is the consistent and
sufficiently smooth initial function, then system (1) is uniquely solvable on [0, +∞).

Proof For system (1), on the interval [–τ , 0], y(t) = ϕ(t).
Thus, when t ∈ [0, τ ], system (1) is given by

CFDα
[
Ey(t) – Cϕ(t – τ )

]
= Ay(t) + Bϕ(t – τ ),

that is,

ECFDαy(t) = Ay(t) + Bϕ(t – τ ) + CCFDα
[
ϕ(t – τ )

]
.

Since (E, A) is regular, and Bϕ(t – τ ) + CCFDα[ϕ(t – τ )] is continuous on [0, τ ], according
to [9], we obtain that y1(t) is a unique solution of system (1) on [0, τ ].

For t ∈ [τ , 2τ ], system (1) is given by

ECFDα
[
y(t) – Cy1(t – τ )

]
= Ay(t) + By1(t – τ ),

that is,

ECFDαy(t) = Ay(t) + By1(t – τ ) + CCFDα
[
y1(t – τ )

]
.

Since By1(t – τ ) + CCFDα[y1(t – τ )] is continuous on [τ , 2τ ], similarly, we obtain that y2(t)
is a unique solution of system (1) on [τ , 2τ ].

Assume that system (1) has a unique solution yk(t) on [(k – 1)τ , kτ ]. For t ∈ [kτ , (k + 1)τ ],
system (1) is given by

ECFDα
[
y(t) – Cyk(t – τ )

]
= Ay(t) + Byk(t – τ ),

that is,

ECFDαy(t) = Ay(t) + Byk(t – τ ) + CCFDα
[
yk(t – τ )

]
.

Since Byk(t – τ ) + CCFDα[yk(t – τ )] is continuous on [kτ , (k + 1)τ ], similarly, we obtain that
yk+1(t) is a unique solution of system (1) on [kτ , (k + 1)τ ].

According to the mathematical induction, we can conclude that system (1) has a unique
solution on [0, +∞). �

3.2 Algebraic analysis criteria for linear FNDDAEs
In this section, stability criteria are given based on an algebraic approach. In order to ob-
tain the main results, we introduce the equivalent form of system (1) by means of the non-
singular transform. Assume that (E, A) is regular, then according to Definition 3.5 there
exist two nonsingular matrices P, Q in Rn×n such that system (1) is equivalent to a canon-
ical system as follows:

CFDαy1(t) = Jy1(t) + B1y1(t – τ ) + B2y2(t – τ )

+ CFDα
[
C1y1(t – τ ) + C2y2(t – τ )

]
, t ≥ 0,

(4)
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NCFDαy2(t) = y2(t) + B3y1(t – τ ) + B4y2(t – τ )

+ CFDα
[
C3y1(t – τ ) + C4y2(t – τ )

]
, t ≥ 0,

y1(t) = ϕ1(t), –τ ≤ t ≤ 0,

y2(t) = ϕ2(t), –τ ≤ t ≤ 0,

where 0 < α < 1; y1(t) ∈ Rr ; y2(t) ∈ Rn–r ; N is nilpotent of index v and

PEQ =

[
Ir 0
0 N

]

; PAQ =

[
J 0
0 In–r

]

; PBQ =

[
B1 B2

B3 B4

]

;

PCQ =

[
C1 C2

C3 C4

]

; Q–1y(t) =

[
y1(t)
y2(t)

]

.

Remark 3.3 In particular, if N is a zero matrix, then v = 1, i.e., ind(E, A) = 1.

The stability of (1) and (4) is equivalent, so we might as well let

E = PEQ =

[
Ir 0
0 N

]

; A = PAQ =

[
J 0
0 In–r

]

;

B = PBQ =

[
B1 B2

B3 B4

]

; C = PCQ =

[
C1 C2

C3 C4

]

,

(5)

or in particular case (when ind(E, A) = 1)

E = PEQ =

[
Ir 0
0 0

]

; A = PAQ =

[
J 0
0 In–r

]

;

B = PBQ =

[
B1 B2

B3 B4

]

; C = PCQ =

[
C1 C2

C3 C4

]

,

(6)

in system (1).
Algebraic stability criteria are given in the following lemma.

Lemma 3.2 Consider system (1) described by CF derivative with the family of matrices
{E, A, B, C} defined in (5). If the following conditions are satisfied:

(C1) det
[
s
(
s(1 – α) + α

)–1(E – C) – (A + B)
] 	= 0, provided that s 	= –α

1 – α
,

(C2) sup
Re(s)≥0

ρ
[(

s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + s

(
s(1 – α) + α

)–1C
)]

<
1
2

.

Or

(C̃1) det
[
s
(
s(1 – α) + α

)–1E – A
] 	= 0, provided that s 	= –α

1 – α
,

(C̃2) sup
Re(s)≥0

ρ
[(

s
(
s(1 – α) + α

)–1E – A
)–1(B + s

(
s(1 – α) + α

)–1C
)]

< 1.
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Then, for all s ∈ C such that Re(s) ≥ 0, we have

(C3) Q(s, τ ) = det
[
s
(
E – Ce–sτ – (1 – α)

(
A + Be–sτ )) – α

(
A + Be–sτ )] 	= 0.

Proof To simplify the notation, let us denote

γ =
(
s(1 – α) + α

)–1, K =
(
sγ (E – C) – (A + B)

)–1(B + sγ C).

Condition (C2) can then be written supRe(s)≥0 ρ[K] < 1
2 .

We have

P(s) = s
(
E – Ce–sτ – (1 – α)

(
A + Be–sτ )) – α

(
A + Be–sτ )

= P–1[(sγ
(
PEQ – PCQe–sτ ) –

(
PAQ + PBQe–sτ ))γ –1]Q–1

= P–1[((sγ (PEQ – PCQ) – (PAQ + PBQ)
)

– (PBQ + sγ PCQ)
(
e–sτ – 1

))
γ –1]Q–1

= P–1[(sγ (PEQ – PCQ) – (PAQ + PBQ)
)

× (
I –

(
sγ (PEQ – PCQ) – (PAQ + PBQ)

)–1(PBQ + sγ PCQ)
(
e–sτ – 1

))
γ –1]Q–1

= P–1Q–1(sγ (E – C) – (A + B)
)

× (
I –

(
sγ (E – C) – (A + B)

)–1(B + sγ C)
(
e–sτ – 1

))
γ –1

= P–1Q–1(sγ (E – C) – (A + B)
)(

I – K
(
e–sτ – 1

))
γ –1.

Condition (C1) ensures that sγ (E – C) – (A + B) is nonsingular and condition (C2) ensures
that ρ[K(e–sτ – 1)] < 1 and hence I – K(e–sτ – 1) is nonsingular. Therefore, (C3) is satisfied.

Also, let us denote

γ =
(
s(1 – α) + α

)–1, L = (sγ E – A)–1(B + sγ C).

Condition (C̃2) can then be written supRe(s)≥0 ρ[L] < 1.
We have

P(s) = s
(
E – Ce–sτ – (1 – α)

(
A + Be–sτ )) – α

(
A + Be–sτ )

= P–1[((sγ PEQ – PAQ) – (PBQ + sγ PCQ)e–sτ )γ –1]Q–1

= P–1[(sγ PEQ – PAQ)
(
I – (sγ PEQ – PAQ)–1(PBQ + sγ PCQ)e–sτ )γ –1]Q–1

= P–1Q–1(sγ E – A)
(
I – (sγ E – A)–1(B + sγ C)e–sτ )γ –1

= P–1Q–1(sγ E – A)
(
I – Le–sτ )γ –1.

Condition (C̃1) ensures that sγ E – A is nonsingular and condition (C̃2) ensures that
ρ[Le–sτ ] < 1 and hence I – Le–sτ is nonsingular. Therefore, (C3) is satisfied. �

Remark 3.4 Note that condition (C3) in Lemma 3.2 is transcendental inequality, which is
difficult to use, and since condition (C2) implies that

(
C′

2
)
σ
[
G(s)

] ∈ C– where G(s) = K –
1
2

I,
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by applying the algebraic criteria (C′
2), one can avoid solving the roots of transcendental

equation, which is very convenient to check the stability of system (1).

Remark 3.5 Since the spectral radius of a matrix is always less than or equal to any induced
norm of the matrix, Lemma 3.2 remains valid under condition (C1) or (C̃1) and

(
C∗

2
)

sup
Re(s)≥0

∥∥(
s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + s

(
s(1 – α) + α

)–1C
)∥∥ <

1
2

,

or

(
C∗∗

2
)

sup
Re(s)≥0

∥∥(
s
(
s(1 – α) + α

)–1E – A
)–1(B + s

(
s(1 – α) + α

)–1C
)∥∥ < 1,

respectively.

3.3 Asymptotic stability of linear FNDDAEs when ind(E, A) ≥ 1
In this section, an attempt to analyze the effect of the index of (E, A) on the second criterion
(C2) or (C̃2) isgiven to ensure the asymptotic stability of system (1) for any delay parameter.

Under assumption (C1) or (C̃1), sometimes it is more convenient to check assumption
(C2) or (C̃2) by using an operator norm instead of spectral radius, i.e., using assumption
(C∗

2 ) or (C∗∗
2 ). For the sake of simplicity, if C = 0 and from this point of view, a somewhat

simpler condition can be given instead of (C̃2) or (C∗∗
2 ) for explaining the effect of the index

of (E, A) on the asymptotic stability of system (1).

Proposition 3.1 Under assumption (C̃1), if the family of system matrices {E, A, B, C} with
C = 0 satisfies the condition

(
C∗∗∗

2
) ‖B‖ <

(
sup

Re(s)=0

∥
∥(

s
(
s(1 – α) + α

)–1E – A
)–1∥∥)–1.

Then system (1) is asymptotically stable.

Proof (C∗∗∗
2 ) implies (C̃2). See also [15]. �

Unfortunately, if the index of (E, A) is greater than 1, then the right-hand side of (C∗∗∗
2 )

is simply zero, and the proposition does not apply. This once again confirms that for high-
index problems, the coefficient matrices C and B must be highly structured so that the
asymptotic stability would be preserved. So we first restrict the investigation of the alge-
braic criteria for the asymptotic stability to index-1 problems.

(a) The index-1 case (ind(E, A) = 1)
Sufficient conditions for asymptotic stability of system (1) are given in the following

theorem with special case when the index of (E, A) is 1.

Theorem 3.2 Consider system (1) described by CF derivative with the family of matrices
{E, A, B, C} defined in (6). If the following conditions are satisfied:

(C1) det
[
s
(
s(1 – α) + α

)–1(E – C) – (A + B)
] 	= 0, provided that s 	= –α

1 – α
,
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(C2) sup
Re(s)≥0

ρ
[(

s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + s

(
s(1 – α) + α

)–1C
)]

<
1
2

.

Or

(C̃1) det
[
s
(
s(1 – α) + α

)–1E – A
] 	= 0, provided that s 	= –α

1 – α
,

(C̃2) sup
Re(s)≥0

ρ
[(

s
(
s(1 – α) + α

)–1E – A
)–1(B + s

(
s(1 – α) + α

)–1C
)]

< 1.

Then system (1) is asymptotically stable for all values of the delay τ .

Proof By Lemma 3.2, if conditions (C1) and (C2) are satisfied, then condition (C3) holds.
This implies that Re(s) < 0 for any root of the characteristic equation Q(s, τ ). We need
to prove that the roots remain bound away from the imaginary axis. Suppose the con-
trary, then there exists a sequence of roots {sn} of the characteristic equation Q(s, τ ) whose
Re(sn) < 0 and Re(sn) → 0 as n → +∞.

Since any eigenvalue λj[(s(s(1 – α) + α)–1(E – C) – (A + B))–1(B + s(s(1 – α) + α)–1C)(e–sτ –
1)] is a continuous function of s for Re(s) ≥ 0.

Similar to [15] and from condition (C2), there exists ε > 0 such that

sup
Re(s)≥0

ρ
[(

s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + s

(
s(1 – α) + α

)–1C
)(

e–sτ – 1
)]

= sup
Re(s)≥0

max
0≤j≤n

∣∣λj
[(

s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1

× (
B + s

(
s(1 – α) + α

)–1C
)(

e–sτ – 1
)]∣∣

= 1 – ε.

Hence, we have

sup
Re(ω)=0

ρ
[(

ω
(
ω(1 – α) + α

)–1(E – C) – (A + B)
)–1

× (
B + ω

(
ω(1 – α) + α

)–1C
)(

e–ωτ – 1
)]

≤ 1 – ε.

(7)

When the positive integer n is large enough, there exists a positive constant ε∗ (0 < ε∗ < ε),
and a characteristic root sn s.t. |Re(sn)| is sufficiently small, Re(sn) < 0 and

∣
∣∣max
0≤j≤n

∣
∣∣λj

[(
sn

(
sn(1 – α) + α

)–1(E – C) – (A + B)
)–1

× (
B + sn

(
sn(1 – α) + α

)–1C
)(

e–snτ – 1
)]∣∣

∣

– sup
Re(ω)=0

ρ
[(

ω
(
ω(1 – α) + α

)–1(E – C) – (A + B)
)–1

× (
B + ω

(
ω(1 – α) + α

)–1C
)(

e–ωτ – 1
)]∣∣∣ < ε∗.

(8)
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For Re(ω) = 0, from (7) and (8), and for j = 1, 2, . . . , n, we have

∣∣λj
[(

sn
(
sn(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + sn

(
sn(1 – α) + α

)–1C
)(

e–snτ – 1
)]∣∣

≤ sup
Re(ω)=0

ρ
[(

ω
(
ω(1 – α) + α

)–1(E – C) – (A + B)
)–1

× (
B + ω

(
ω(1 – α) + α

)–1C
)(

e–ωτ – 1
)]

+ ε∗

≤ 1 – ε + ε∗ < 1.

Choosing n large enough yields

∣∣λj
[(

sn
(
sn(1 – α) + α

)–1(E – C) – (A + B)
)–1

× (
B + sn

(
sn(1 – α) + α

)–1C
)(

e–snτ – 1
)]∣∣ < 1,

j = 1, 2, . . . , n.

Therefore, for Re(sn) < 0 and Re(sn) → 0 as n → +∞, one can obtain

Q(sn, τ ) = det
[
sn

(
E – Ce–snτ – (1 – α)

(
A + Be–snτ

))
– α

(
A + Be–snτ

)] 	= 0,

which contradicts the assumption that {sn} is a sequence of roots of the characteristic equa-
tion.

Similarly, by Lemma 3.2, if conditions (C̃1) and (C̃2) are satisfied, then condition (C3)
holds. This implies that Re(s) < 0 for any root of the characteristic equation Q(s, τ ), and in
the same way we can prove that the roots remain bound away from the imaginary axis. �

Corollary 3.1 Suppose that assumption (C1) holds and

(
C∗

2
)

sup
Re(s)≥0

∥
∥(

s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + s

(
s(1 – α) + α

)–1C
)∥∥ <

1
2

,

then system (1) described by CF derivative with the family of matrices {E, A, B, C} defined
in (6) is asymptotically stable for all values of the delay τ .

Corollary 3.2 Suppose that assumption (C̃1) holds and

(
C∗∗

2
)

sup
Re(s)≥0

∥
∥(

s
(
s(1 – α) + α

)–1E – A
)–1(B + s

(
s(1 – α) + α

)–1C
)∥∥ < 1,

then system (1) described by the CF derivative with the family of matrices {E, A, B, C} de-
fined in (6) is asymptotically stable for all values of the delay τ .

(b) The higher-index case (ind(E, A) > 1)
Asymptotic stability of system (1) for the case that (E, A) is regular but is not impulse-

free, i.e., ind(E, A) = v, v > 1 is considered. In fact, this type of systems has achieved only
few results in special cases of the coefficient matrices (see, e.g., [13, 16]). It has been
shown that for some differential–algebraic equation, delay differential equation, and delay
differential–algebraic equation, the commutativity of such coefficient matrices implies the
asymptotic stability.
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In this paper we aim to make some contribution to fill this research gap. We extend the
case of the matrices where each pair of the matrices of the family {E, A, B, C} is simulta-
neously triangularizable, where E, A, B, and C are defined in (5). This class of system is
much broader than the class of commutative matrices.

Hypothesis (H1) The family of matrices {E, A, B, C} defined in (5) is simultaneously trian-
gularizable.

Definition 3.6 The family of matrices {E, A, B, C} defined in (5) is called commutative if
E, A, B, and C pairwise commute.

Definition 3.7 Every pair of matrices of the family {E, A, B, C} defined in (5) is called
simultaneously triangularizable if there exists a nonsingular matrix T ∈ Rn×n such that
T–1ET , T–1AT , T–1BT , and T–1CT are upper triangular matrices.

Lemma 3.3 ([14]) Let {E, A, B, C} defined in (5) be a commuting family of matrices in Rn×n.
Then there exists a common eienvector in Rn×n.

Lemma 3.4 ([14]) Let {E, A, B, C} defined in (5) be a commuting family. Then there ex-
ists a unitary matrix T ∈ Rn×n such that T–1ET , T–1AT , T–1BT , and T–1CT are upper
triangular matrices.

Lemma 3.4 means that a commuting family of matrices may be simultaneously upper-
triangularized. The following lemma gives another sufficient condition for simultaneous
triangularization.

Lemma 3.5 Let each pair of matrices of the family of matrices {E, A, B, C} defined in (5) be
satisfing the condition rank(EA–AE) ≤ 1, rank(EB–BE) ≤ 1, rank(EC –CE) ≤ 1, rank(BA–
AB) ≤ 1, rank(CA – AC) ≤ 1,and rank(BC – CB) ≤ 1,then respectively (E and A), (E and
B), (E and C), (B and A), (C and A), and (B and C) are simultaneously triangularizable.

Notes: Once Lemma 3.5 is established, then Lemma 3.4 can be considered as its special
case.

Hypothesis (H2) All the matrices E, A, B, C defined in (5) have k (1 ≤ k ≤ n) common
eigenvectors.

Now, under Hypothesis (H1) and Hypothesis (H2), the following theorem gives the
asymptotic stability of system (1), which is regular, is not impulse-free and with a non-
commutative pair of matrices of the family {E, A, B, C}, where E, A, B, and C are defined in
(5). According to Lemma 3.5, if the rank of their commutator is less than or equal to one,
we can obtain a broader criterion for non-commutative cases.

Theorem 3.3 Consider system (1) described by CF derivative. Under Hypothesis (H1), Hy-
pothesis (H2) and if the family of matrices {E, A, B, C} defined in (5) satisfies the following
conditions:

(C1) det
[
s
(
s(1 – α) + α

)–1(E – C) – (A + B)
] 	= 0, provided that s 	= –α

1 – α
,
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(C2) sup
Re(s)≥0

ρ
[(

s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + s

(
s(1 – α) + α

)–1C
)]

<
1
2

.

Or

(C̃1) det
[
s
(
s(1 – α) + α

)–1E – A
] 	= 0, provided that s 	= –α

1 – α
,

(C̃2) sup
Re(s)≥0

ρ
[(

s
(
s(1 – α) + α

)–1E – A
)–1(B + s

(
s(1 – α) + α

)–1C
)]

< 1.

Then system (1) is asymptotically stable for all values of the delay τ .

Proof According to Lemma 3.2, for all s ∈ C such that Re(s) ≥ 0,

Q(s, τ ) = det
[
s
(
E – Ce–sτ – (1 – α)

(
A + Be–sτ )) – α

(
A + Be–sτ )] 	= 0.

Since every pair of matrices of the family {E, A, B, C} defined in (5) is simultaneously trian-
gularizable and the matrices E, A, B, and C have k (1 ≤ k ≤ n) common eigenvector, then
there exists a nonsingular matrix T ∈ Rn×n such that T–1ET , T–1AT , T–1BT ,and T–1CT
are upper triangular matrices.

Q(s, τ ) = det
[
s
(
s(1 – α) + α

)–1(T–1ET – T–1CTe–sτ ) –
(
T–1AT + T–1BTe–sτ )] 	= 0.

Or equivalently,

Q(s, τ ) = det
[
s
(
s(1 – α) + α

)–1(T–1ET – T–1CT
)

–
(
T–1AT + T–1BT

)]

× det
[
I –

(
s
(
s(1 – α) + α

)–1(T–1ET – T–1CT
)

–
(
T–1AT + T–1BT

))–1

× (
T–1BT + s

(
s(1 – α) + α

)–1T–1CT
)(

e–sτ – 1
)] 	= 0

= det
(
T–1). det(T) det

[
s
(
s(1 – α) + α

)–1(E – C) – (A + B)
]

× det
[
I –

(
s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1

× (
B + s

(
s(1 – α) + α

)–1C
)(

e–sτ – 1
)] 	= 0.

According to condition (C1), we have det[s(s(1 – α) + α)–1(E – C) – (A + B)] 	= 0.
Therefore,

det

[
1

e–sτ – 1
I –

(
s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + s

(
s(1 – α) + α

)–1C
)] 	= 0.

Obviously, 1
e–sτ –1 is not an eigenvalue of the matrix (s(s(1 –α) +α)–1(E – C) – (A + B))–1(B +

s(s(1 – α) + α)–1C) and according to condition (C2), we have

Re
[
λ
{(

s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + s

(
s(1 – α) + α

)–1C
)}]

<
1
2

.

With the notation of the proof of Lemma 3.2, we get

σ

[
K –

1
2

I
]

∈ C–.



Al Sawoor Advances in Difference Equations        (2020) 2020:531 Page 14 of 19

Thus system (1) is asymptotically stable. In the same way, if (C̃1) and (C̃2) are satisfied,
then it is easy to show that system (1) is asymptotically stable for all values of the delay
τ . �

Corollary 3.3 Consider system (1) described by the CF derivative. If the family of matrices
{E, A, B, C} defined in (5) is commutative and satisfies the following conditions:

(C1) det
[
s
(
s(1 – α) + α

)–1(E – C) – (A + B)
] 	= 0, provided that s 	= –α

1 – α
,

(C2) sup
Re(s)≥0

ρ
[(

s
(
s(1 – α) + α

)–1(E – C) – (A + B)
)–1(B + s

(
s(1 – α) + α

)–1C
)]

<
1
2

.

Or

(C̃1) det
[
s
(
s(1 – α) + α

)–1E – A
] 	= 0, provided that s 	= –α

1 – α
,

(C̃2) sup
Re(s)≥0

ρ
[(

s
(
s(1 – α) + α

)–1E – A
)–1(B + s

(
s(1 – α) + α

)–1C
)]

< 1.

Then system (1) is asymptotically stable.

Proof Since the family of matrices {E, A, B, C} defined in (5) is commutative, then by us-
ing Lemma 3.3, there exists a common eigenvector. Also, by Lemma 3.4, there exists a
unitary matrix T ∈ Rn×n such that T–1ET , T–1AT , T–1BT ,and T–1CT are upper triangu-
lar matrices. So each pair of matrices of the family {E, A, B, C} which is defined in (5) is
simultaneously triangularizable. According to Theorem 3.3, system (1) is asymptotically
stable. �

4 Illustrative example
Consider the Caputo–Fabrizio fractional-order neutral delay differential–algebraic sys-
tem

CFDα
[
Ey(t) – Cy(t – τ )

]
= Ay(t) + By(t – τ ), t ≥ 0,α =

1
2

, (9)

with

E =

⎡

⎢⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥
⎥
⎦

, A =

⎡

⎢⎢
⎢
⎣

–1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎥
⎦

,

B =

⎡

⎢⎢
⎢
⎣

0 0 0 –2
0 –2 0 0
0 0 –2 0
0 0 0 –2

⎤

⎥⎥
⎥
⎦

, C =

⎡

⎢⎢
⎢
⎣

–1 0 0 0
0 –2 0 0
0 0 –2 0
0 0 0 –2

⎤

⎥⎥
⎥
⎦

.

Obviously, E is singular, det(sE – A) = –(s + 1) 	= 0 when s 	= –α
1–α

and rank(E) = 3. This
system is regular but is not impulse-free, so Theorem 3.2 could not be applied. Also, in
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this case the family of matrices {E, A, B, C} is non-commutative, i.e., EB 	= BE and BC 	= CB

EB =

⎡

⎢
⎢⎢
⎣

0 0 0 –2
0 0 –2 0
0 0 0 –2
0 0 0 0

⎤

⎥
⎥⎥
⎦

	=

⎡

⎢
⎢⎢
⎣

0 0 0 0
0 0 –2 0
0 0 0 –2
0 0 0 0

⎤

⎥
⎥⎥
⎦

= BE and

BC =

⎡

⎢
⎢⎢
⎣

0 0 0 4
0 4 0 0
0 0 4 0
0 0 0 4

⎤

⎥
⎥⎥
⎦

	=

⎡

⎢
⎢⎢
⎣

0 0 0 2
0 4 0 0
0 0 4 0
0 0 0 4

⎤

⎥
⎥⎥
⎦

= CB.

But since

rank(EB – BE) = rank

⎡

⎢⎢
⎢
⎣

0 0 0 –2
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎥
⎦

= 1

and

rank(BC – CB) = rank

⎡

⎢
⎢⎢
⎣

0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥⎥
⎦

= 1,

so by Lemma 3.5 we have E and A are simultaneously upper-triangularizable. Also, be-
cause of

rank(EA – AE) = rank(EC – CE) = rank(AB – BA) = rank(AC – CA) = 0,

each pair of the family of matrices {E, A, B, C} is simultaneously upper-triangularizable.
Let λi(F) represent ith eigenvalue of matrix F ∈ R4×4 for i = 1, 2, 3, and 4.

λ1(A) = –1; λ2(A) = λ3(A) = λ4(A) = 1,

λ1(E) = 1; λ2(E) = λ3(E) = λ4(E) = 0,

λ1(B) = 0; λ2(B) = λ3(B) = λ4(B) = –2,

λ1(C) = –1; λ2(C) = λ3(C) = λ4(C) = –2.

The common eigenvectors of E, A, B, and C corresponding to its eigenvalues are

⎡

⎢
⎢⎢
⎣

0
1
0
0

⎤

⎥
⎥⎥
⎦

and

⎡

⎢
⎢⎢
⎣

1
0
0
0

⎤

⎥
⎥⎥
⎦

.
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We can obtain nonsingular matrix T ∈ R4×4 whose first column is

⎡

⎢
⎢⎢
⎣

0
1
0
0

⎤

⎥
⎥⎥
⎦

and the second column is

⎡

⎢
⎢⎢
⎣

1
0
0
0

⎤

⎥
⎥⎥
⎦

and the third column and fourth column are the basis canonique of the space R4:

T =

⎡

⎢
⎢⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥⎥
⎦

and T–1 =

⎡

⎢
⎢⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥⎥
⎦

.

So we get

T–1ET =

⎡

⎢
⎢⎢
⎣

0 0 1 0
0 1 0 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥⎥
⎦

, T–1AT =

⎡

⎢
⎢⎢
⎣

1 0 0 0
0 –1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥⎥
⎦

,

T–1BT =

⎡

⎢
⎢⎢
⎣

–2 0 0 0
0 0 0 –2
0 0 –2 0
0 0 0 –2

⎤

⎥
⎥⎥
⎦

, T–1CT =

⎡

⎢
⎢⎢
⎣

–2 0 0 0
0 –1 0 0
0 0 –2 0
0 0 0 –2

⎤

⎥
⎥⎥
⎦

.

All the roots of the equation det[s(s(1 –α) +α)–1(T–1ET – T–1CT) – (T–1AT + T–1BT)] = 0
have negative real parts.

Also, for any s ∈ C, Re(s) ≥ 0, let

G(s) =
(
s
(
s(1 – α) + α

)–1(T–1ET – T–1CT
)

–
(
T–1AT + T–1BT

))–1

× (
T–1BT + s

(
s(1 – α) + α

)–1T–1CT
)

–
1
2

I,

G(s) =

⎛

⎜⎜⎜
⎝

(
s

1
2 s + 1

2

)

⎡

⎢⎢⎢
⎣

2 0 1 0
0 2 0 0
0 0 2 1
0 0 0 2

⎤

⎥⎥⎥
⎦

–

⎡

⎢⎢⎢
⎣

–1 0 0 0
0 –1 0 –2
0 0 –1 0
0 0 0 –1

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎠

–1

×

⎛

⎜⎜
⎜
⎝

⎡

⎢⎢
⎢
⎣

–2 0 0 0
0 0 0 –2
0 0 –2 0
0 0 0 –2

⎤

⎥⎥
⎥
⎦

+
(

s
1
2 s + 1

2

)

⎡

⎢⎢
⎢
⎣

–2 0 0 0
0 –1 0 0
0 0 –2 0
0 0 0 –2

⎤

⎥⎥
⎥
⎦

⎞

⎟⎟
⎟
⎠

–
1
2

I,

G(s) =

⎡

⎢⎢
⎢⎢
⎢
⎣

–(17s+5)
2(5s+1) 0 0 0

0 –(9s+1)
2(5s+1) 0 –(s+1)

(5s+1)
(4s)(3s+1)

(5s+1)2 0 –(17s+5)
2(5s+1) 0

–(2s)2(3s+1)(s+1)
(5s+1)3

–(4s)(s+1)
(5s+1)2

–2(3s+1)
2(5s+1)

–[8(s+1)2+4(3s+1)(5s+1)+(5s+1)2]
2(5s+1)2

⎤

⎥⎥
⎥⎥
⎥
⎦

.
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So det[λI – G(s)] = 0 ⇒
[
λ +

(17s + 5)
2(5s + 1)

]2{[
λ +

(9s + 1)
2(5s + 1)

]

×
[
λ +

(
8(s + 1)2 + 4(3s + 1)(5s + 1) + (5s + 1)2

2(5s + 1)2

)]
–

8s(s + 1)2

(5s + 1)3

}
= 0.

∀s ∈ C we have λ1 = λ2 = –
(17s + 5)
2(5s + 1)

and

λ3 and λ4 =
–1

2(5s + 1)2

(
69s2 + 36s + 7

)

∓ i
2

(5s + 1)2

√(
862.25s4 + 353.5s3 + 69s2 + 14s – 6.5

)
.

Therefore, ∀s ∈ C, Re{λj[G(s)]} < 0 for j = 1, 2, 3, and 4.
By Theorem 3.3 system (9) is asymptotically stable.

5 Conclusions
Asymptotic stability of linear fractional-order neutral delay differential–algebraic systems
described by the Caputo–Fabrizio (CF) fractional derivative has been investigated. Solv-
ability and uniqness on [0, +∞) of such a system have been considered (Lemma 3.1). Using
the Laplace transform, we have derived a new characteristic equation. This characteristic
equation involves a transcendental term, which makes it difficult to use in practice and
in particular to study the asymptotic stability of such a system. To overcome this diffi-
culty, some sufficient algebraic criteria have been given to ensure the asymptotic stability
(Lemma 3.2). We have successfully shown that under these algebraic criteria, asymptotic
stability holds when ind(E, A) = 1 (Theorem 3.2). Morevere, when ind(E, A) > 1, we have
shown that if all system matrices have k (1 ≤ k ≤ n) common eigenvectors and if every
pair of matrices is simultaneously triangularizable so that the algebraic criteria hold, then
this system is still asymptotically stable for any delay parameter (Theorem 3.3). The effec-
tiveness of the theoretical results has been illustrated by a numerical example.

Acknowledgements
The author is grateful to the anonymous referees for their constructive comments and helpful suggestions, improving
this paper greatly.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The author declares that he has no competing interests.

Authors’ contributions
The entire paper is finished by one author. The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 23 June 2020 Accepted: 16 September 2020



Al Sawoor Advances in Difference Equations        (2020) 2020:531 Page 18 of 19

References
1. Alshabanat, A., Jleli, M., Kumar, S., Samet, B.: Generalization of Caputo–Fabrizio fractional derivative and applications

to electrical circuits. Front. Phys. 8, 64 (2020)
2. Atanackovié, T.M., Pilipovié, S., Zorica, D.: Properties of the Caputo–Fabrizio fractional derivative and its distributional

settings. Fract. Calc. Appl. Anal. 21(1), 29–44 (2018)
3. Atangana, A.: Modelling the spread of Covid-19 with new fractal-fractional operators: can the lockdown save

mankind before vaccination? Chaos Solitons Fractals 136, 109860 (2020)
4. Atangana, A., Baleanu, D.: Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with

Caputo–Liouville derivative. Filomat 31(1), 2243–2248 (2017). https://doi.org/10.2298/FIL1708243A
5. Baleanu, D., Jleli, M., Kumar, S., Samet, B.: A fractional derivative with two singular kernels and application to a heat

conduction problem. Adv. Differ. Equ. 2020, 252 (2020). https://doi.org/10.1186/s13662-020-02684-z
6. Baleanu, D., Mousalou, A., Shahram, R.: The extended fractional Caputo–Fabrizio derivative of order 0 ≤ σ < 1 on

CR[0, 1] and the existence of solutions for two higher-order series-type ifferential equations. Adv. Differ. Equ. 2018,
255 (2018). https://doi.org/10.1186/s13662-018-1696-6

7. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2),
73–85 (2015)

8. Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog.
Fract. Differ. Appl. 2(1), 1–11 (2018)

9. Dassios, I., Baleanu, D.: Caputo and related fractional derivatives in singular systems. Appl. Math. Comput. 337,
591–606 (2018)

10. Eftekhari, L., Hosseinpour, S., Khalighi, M.: A comparison between Caputo and Caputo–Fabrizio fractional derivatives
for modelling Lotka–Voltera differential equations. Preprint, submitted to Elsevier, August 19, 2019

11. Evirgen, F., Yavuz, M.: An alternative approach for nonlinear optimization problem with Caputo–Fabrizio derivative. In:
ITM Web of Conferences, vol. 22, 01009, CMES (2018). https://doi.org/10.1051/itmconf/20182201009

12. Fatmawati, K.M.A., Odinsyah, H.P.: Fractional model of HIV transmission with awareness effect. Chaos Solitons Fractals
138, 109967 (2020)

13. Ha, P.: Spectral characterizations of solvability and stability for delay differential-algebraic equations. Cornell
University (2018) arXiv:1802.01148v1 [math.DS]

14. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
15. Hu, G., Hu, G., Cahlon, B.: Algebraic criteria for stability of linear neutral systems with a single delay. J. Comput. Appl.

Math. 135, 125–133 (2001)
16. Hu, G., Mitsui, T.: Stability of linear delay differential systems with matrices having common eigenvectors. Jpn. J. Ind.

Appl. Math. 13, 487–494 (1996)
17. Jarlebring, E., Damm, T.: The Lambert W function and the spectrum of some multidimensional time-delay systems.

Automatica 43, 2124–2128 (2007)
18. Kaczorek, T.: Reachability of fractional continuous-time linear systems using the Caputo–Fabrizio derivative. In:

Proceeding 30th European Conference on Modelling and Simulation (2015)
19. Kaslik, E., Sivasundaram, S.: Analytical and numerical methods for the stability analysis of linear fractional delay

differential equations. J. Comput. Appl. Math. 236(16), 4027–4041 (2012)
20. Khan, M.A.: The dynamics of a new chaotic system through the Caputo–Fabrizio and Atanagan–Baleanu fractional

operators. Adv. Mech. Eng. 11(7), 1687814019866540 (2019) 1-12
21. Khan, M.A., Atangana, A.: Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex.

Eng. J. 59(4), 2379–2389 (2020)
22. Kumar, R., Kumar, S., Singh, J., Al-Zhour, Z.: A comparative study for fractional chemical kinetics and carbon dioxide

CO2 absorbed into phenyl glycidyl ether problems. AIMS Math. 5(4), 3201–3222 (2020)
23. Kumar, S., Ahmadian, A., Kumar, R., Kumar, D., Singh, J., Baleanu, D., Salimi, M.: An efficient numerical method for

fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics 8(4), 558 (2020)
24. Kumar, S., Ghosh, S., Lotayif, M.S., Samet, B.: A model for describing the velocity of a particle in Brownian motion by

Robotnov function based fractional operator. Alex. Eng. J. 59(3), 1435–1449 (2020)
25. Kumar, S., Ghosh, S., Samet, B., Goufo, E.F.D.: An analysis for heat equations arises in diffusion process using new

Yang–Abdel-Aty–Cattani fractional operator. Math. Methods Appl. Sci. 43(9), 6062–6080 (2020)
26. Kumar, S., Kumar, A., Odibat, Z., Aldhaifallah, M., Nisar, K.S.: A comparison study of two modified analytical approach

for the solution of nonlinear fractional shallow water equations in fluid flow. AIMS Math. 5(4), 3035–3055 (2020)
27. Kumar, S., Kumar, R., Cattani, C., Samet, B.: Chaotic behaviour of fractional predator–prey dynamical system. Chaos

Solitons Fractals 135, 109811 (2020)
28. Lal, S., Bansal, M.K., Kumar, D., Kumar, S., Singh, J.: Fractional differential equation pertaining to an integral operator

involving incomplete H-function in the kernel. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6670
29. Li, H., Cheng, J., Li, H., Zhong, S.: Stability analysis of a fractional-order linear system described by the Caputo–Fabrizio

derivative. Mathematics 7, 200 (2019). https://doi.org/10.3390/math7020200
30. Li, H., Lu, S., Xu, T.: A fully discrete spectral method for fractional Cattaneo equation based on Caputo–Fabrizio

derivative. Numer. Methods Partial Differ. Equ. 35(3), 936–954 (2019)
31. Li, H., Zhong, S.-M., Cheng, J., Li, H.-B.: Stability analysis of a fractional-order linear system with time delay described by

the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2019, 86 (2019)
32. Li, H., Zhong, S.-M., Li, H.: Asymptotic stability analysis of a fractional-order neutral systems with time delay. Adv. Differ.

Equ. 2015, 325 (2015)
33. Liu, K., Feckan, M., Regan, D., Wang, J.: Hyers–Ulam stability and existence of solutions for differential equations with

Caputo–Fabrizio derivative. Mathematics 7, 333 (2019). https://doi.org/10.3390/math7040333
34. Moore, E., Sirisubtawee, S., Koonparasert, S.: A Caputo–Fabrizio fractional differential equation model for HIV/AIDS

with treatment compartment. Adv. Differ. Equ. 2019, 200 (2019)
35. Pang, D., Jiang, W.: Finite-time stability analysis of fractional singular time-delay systems. Adv. Differ. Equ. 2014, 259

(2014)
36. Phi, H.: On the stability analysis of delay differential-algebraic equations. VNU J. Sci. Math. Phys. 34(2), 52–64 (2018)

https://doi.org/10.2298/FIL1708243A
https://doi.org/10.1186/s13662-020-02684-z
https://doi.org/10.1186/s13662-018-1696-6
https://doi.org/10.1051/itmconf/20182201009
http://arxiv.org/abs/arXiv:1802.01148v1
https://doi.org/10.1002/mma.6670
https://doi.org/10.3390/math7020200
https://doi.org/10.3390/math7040333


Al Sawoor Advances in Difference Equations        (2020) 2020:531 Page 19 of 19

37. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Technical University
of Kosice, Kosice (1999)

38. Qureshi, S., Norodin, R., Baleanu, D.: New numerical aspects of Caputo–Fabrizio fractional derivative operator.
Mathematics 7, 374 (2019). https://doi.org/10.3390/math7040374

39. Shiri, B., Baleanu, D.: System of fractional differential algebraic equations with applications. Chaos Solitons Fractals
120, 203–212 (2019)

40. Singh, J., Kumar, D., Kumar, S.: An efficient computational method for local fractional transport equation occurring in
fractal porous media. Comput. Appl. Math. 39, 137 (2020)

41. Ullah, S., Khan, M.A.: Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus
with optimal control analysis with a case study. Chaos Solitons Fractals 139, 110075 (2020)

42. Weihua, D., Changpin, L., Jinhu, L.: Stability analysis of linear fractional differential system with multiple time delays.
Nonlinear Dyn. 48, 409–416 (2007)

https://doi.org/10.3390/math7040374

	Stability analysis of fractional-order linear neutral delay differential-algebraic system described by the Caputo-Fabrizio derivative
	Abstract
	Keywords

	Introduction
	Problem formulation and notations
	Main results
	Solvability analysis of linear FNDDAEs
	Algebraic analysis criteria for linear FNDDAEs
	Asymptotic stability of linear FNDDAEs when ind(E, A)>=1

	Illustrative example
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


