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Abstract
In this paper, we present a numerical simulation to study a fractional-order differential
system of a glioblastoma multiforme and immune system. This numerical simulation
is based on spectral collocation method for tackling the fractional-order differential
system of a glioblastoma multiforme and immune system. We introduce new shifted
fractional-order Legendre orthogonal functions outputted by Legendre polynomials.
Also, we state and derive some corollaries and theorems related to the new shifted
fractional order Legendre orthogonal functions. The shifted fractional-order
Legendre–Gauss–Radau collocation method is developed to approximate the
fractional-order differential system of a glioblastoma multiforme and immune system.
The basis of the shifted fractional-order Legendre orthogonal functions is adapted for
temporal discretization. The solution of such an equation is approximated as a
truncated series of shifted fractional-order Legendre orthogonal functions for
temporal variable, and then we evaluate the residuals of the mentioned problem at
the shifted fractionalorder Legendre–Gauss–Radau quadrature points. The accuracy
of the novel method is demonstrated with several test problems.
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1 Introduction
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most deadly cancer
that infects the brain. Cancer is one of the vicious killers in the world and the control of tu-
mor growth requires special attention [1]. The typical approach for treating GBM involves
surgical resection of as much of the tumor as possible, followed by radiation treatment and
chemotherapy [2]. Within a single tumor of monoclonal origin, this kind of tumor can de-
velop multiple sub-populations, each of which may be characterized by different growth
rates and treatment susceptibilities [3–5]. Works about modeling of multi sub-populations
can be shown in [1, 6]. Modeling the interaction between the tumor cell and the immune
system is interesting research, for a few of research works, see [1, 7, 8].
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A large amount of work on modeling biological systems has been restricted to fractional-
order ordinary differential equations [9–12]. In the last decades, fractional calculus the-
ory [13] has been developed rapidly. It has been applied in several scientific areas such as
engineering, viscoelasticity, physics, diffusion processes, rheology, etc. [14–17]. Actually,
fractional calculus theory is considered as a substitution model to classical calculus the-
ory. Fractional differential equations including those of fixed, variable, distributed, tem-
pered order have been used as perfect models for real world problems including earth-
quake analysis, viscoelasticity, bio-chemical, controller design, electric circuits, diffusion
processes, signal processing, etc. [18–20]. Therefore, the urgent necessity to find the ex-
act solutions or merely the approximate ones to these problems has emerged. Since the
finding of the exact solutions is not possible for most fractional differential equations
[21]; the numerical methods have been developed to obtain the approximate solutions
to them.

Some local numerical techniques have been introduced for solving fractional-order bi-
ological systems [22, 23], and this method may become computationally heavy due to the
nonlocal property of fractional differential operator. Moreover, the local methods listed
the approximate solution at specific points, while the global methods give the approxi-
mate solution in the whole mentioned interval. Hence, the global behavior of the solution
can be naturally taken into account. In many areas of science such as engineering, biology,
economics, physics, and others, several high-order numerical methods have been devel-
oped to deal with the related problems. Among these algoriths, spectral methods [24, 25]
have been rapidly developed in the last four decades. Spectral methods [26, 27] are widely
applied as powerful techniques in the construction of numerical solution for differential
and fractional differential equations.

The spectral collocation method, a global numerical technique [28–30], is a particular
kind of famous spectral methods that is widely applicable for almost all types of differ-
ential equations. The convergence speed is one of the major advantages of the spectral
method. Spectral methods have exponential convergence rates as well as high accuracy
level. Thus, the spectral collocation method is a more reliable, suitable, and accurate tech-
nique for treating such problems. In many areas of science, such as engineering, biology,
economics, physics, and others, several high-order numerical methods have been devel-
oped to deal with the related problems. Recently, spectral methods have been known as
efficient and highly accurate schemes. The spectral method is classified into four kinds,
namely collocation [28–30], Tau [31], Galerkin [32], and Petrov–Galerkin [33] methods.

Here, a shifted fractional-order Legendre–Gauss–Radau collocation (SFL-GR-C)
method is developed to approximate the fractional-order differential system of a glioblas-
toma multiforme and immune system (GBM-IS). In this paper, we want to numerically
solve the fractional-order differential system of GBM-IS [34–36]

DμS(t) = pS(t) + r1S(t)
(
k1 – β1S(t)

)
– γ S(t)R(t) – d1S(t) – τ1S(t)N(t),

S(0) = S0,

DμR(t) = r2R(t)
(
k2 – β2R(t)

)
+ γ S(t)R(t) – d2R(t) – τ2R(t)N(t),

R(0) = R0, (1)

DμN(t) = δN(t)Z(t) – εZ(t)N(t) – d3N(t), N(0) = N0,
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DμZ(t) = r3Z(t)
(
k3 – β3Z(t)

)
– δN(t)Z(t) + εZ(t)N(t) – d4Z(t),

Z(0) = Z0.

Here, the temporal derivative is taken in the Caputo sense with fractional order μ,
0 < μ < 1. Where the parameters β1, β2, β3, τ1, τ2, γ , δ, ε, p, d1, d2, d3, d4, k1, k2, k3,
r1, r2, and r3 are positive constants. S(t), R(t), N(t), and Z(t) are used for sensitive tumor
cell, resistant tumor cell, activated macrophages, and macrophages, respectively, where p
equals division rate of the sensitive tumor cell, k1 and k2 are the carrying capacities of the
sensitive (including necrotic part) and resistant cell, respectively. Parameters β1 and β2

are necessary to construct logistic differential equations. r1 and r2 are the growth rate of
the sensitive cell and the resistant cell, respectively. γ is the converting rate of the sensitive
tumor cell to the resistant tumor cell. Parameters d1 and d2 are their dead rate caused from
drugs, respectively. δ is the conversion rate of macrophages to active macrophages. d3 is
the natural death of active macrophages and d4 is the natural death of macrophages. r3 is
the growth rate of macrophages and the parameter β3 is selected in view of logistic differ-
ential equations. k3 gives the carrying capacity of macrophages. ε is the conversion rate
of the activated macrophages to macrophages. τ1 and τ2 are the destroying rate caused by
the activated macrophages.

The rest of this paper is organized as follows. In the next section, we introduce sev-
eral analytical and numerical prerequisites. In Sect. 3, we construct a spectral numerical
scheme. In Sect. 4, three numerical examples are presented to support our theoretical re-
sults and to demonstrate the significant gain in accuracy. Finally, we give a brief conclusion
in Sect. 5.

2 Legendre polynomials
We recall that the Legendre polynomials �k(t) (k = 0, 1, 2, . . . ) obey the Rodrigues formula,
namely

�k(t) =
(–1)k

2kk!
Dk((1 – t2)k). (2)

Accordingly, �(p)
k (t) (the pth derivative of �k(t)) is given by

�
(p)
k (t) =

k–p∑

i=0(τ+k=even)

Cp(k, τ )Pτ (t), (3)

where

Cp(k, τ ) =
2p–1(2τ + 1)�( p+k–τ

2 )�( p+k+τ+1
2 )

�(p)�( 2–p+k–τ

2 )�( 3–p+k+τ

2 )
.

Next, denote by χ and (χ , v) the norm and the inner product of space L2[–1, 1].
The set of �k(t) is a complete orthogonal system in L2[–1, 1]

(
�j(t),�k(t)

)
=

∫ 1

–1
�j(t)�k(t) = hkδjk , (4)
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where hi = 2
2i+1 and δjk is the Dirac function. Thus, for any v ∈ L2[–1, 1],

v(t) =
∞∑

i=0

ai�i(t), ai =
1
hi

∫ 1

–1
v(t)�i(t) dt. (5)

Let SN [–1, 1] be the set of all polynomials of degree at most N (N ≥ 0). Thus, for any
ϕ ∈ S2N–1[–1, 1], we have

∫ 1

–1
ϕ(t) dt =

N∑

i=0

�N ,iϕ(tN ,i), (6)

where tN ,k (0 ≤ k ≤ N ) and �N ,k (0 ≤ k ≤ N ) denote the nodes and the Christoffel num-
bers of Legendre–Gauss–Lobatto (L-GL) interpolation on the classical interval [–1, 1].

The norm and the discrete inner product are defined as follows:

χN = (χ , v)
1
2
N , (χ , v)N =

N∑

j=0

χ (tN ,j)v(tN ,j)�N ,j. (7)

3 Numerical simulations
The aim of this paper is devoted to the development of a new scheme based on spec-
tral collocation method for solving the fractional-order differential system of GBM-IS (1).
The accuracy of the proposed methods is proved by convergence analysis. According to
the rigorous mathematical proof provided by convergence analysis of fractional Legendre
spectral collocation method [37–40] for differential equations, we can expect the spec-
tral convergence rate for the fractional-order differential system of GBM-IS. Therefore,
we can achieve very high accuracy by merely using a small number of fractional Legendre
collocation nodes. We will discuss error analysis of our proposed methods to show that
spectral convergence is obtained for sufficiently smooth solution functions.

In this paper, shifted fractional-order Legendre orthogonal functions (SFOLOF) in the
interval [0,L] are outputted of the classical Legendre polynomial. Now, we define the
SFOLOF outputted Legendre polynomial. The SFOLOF is offered by

�
(ε)
L,j(t) = �j

(
2
(

x
L

)ε

– 1
)

, 0 < ε < 1, j = 0, 1, . . . , 0 ≤ t ≤L. (8)

Also, we list and derive some facts related to the SFOLOF like orthogonality, cor-
responding nodes, and Christoffel numbers of the shifted fractional-order Legendre–
Gauss–Radau interpolation. For W (ε)

L,f (t) = tε–1, the set of SFOLOF forms a complete
L2
W (ε)

L,f
[0,L]-orthogonal system

∫ L

0
�

(ε)
L,i(t)�(ε)

L,j(t)W (ε)
L,f (t) dx = δijh(ε)

L,k , (9)

where h(ε)
L,k = Lε

2(2k+1)ε .

Proof Based on the orthogonality property of Legendre polynomials, we have

∫ 1

–1
�r(ξ )�s(ξ ) dξ =

2
2r + 1

δrs. (10)
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Let ξ = 2( ζ

L )ε – 1, we get

∫ 1

–1
�r(ξ )�s(ξ ) dξ =

2ε

Lε

∫ L

0
ζ ε–1�r

(
2
(

ζ

L

)ε

– 1
)

�s

(
2
(

ζ

L

)ε

– 1
)

dζ

=
(

2
Lε

)∫ L

0
�

(ε)
L,r(ζ )�(ε)

L,s(ζ ) dζ

=
2

2r + 1
δrs.

(11)

Consequently, this yields

∫ L

0
�

(ε)
L,r(ζ )�(ε)

L,s(ζ ) dζ = δrs
Lε

2(2r + 1)ε
. (12)

Let �M = span{�(ε)
L,r : 0 ≤ r ≤ M} be the finite-dimensional fractional-polynomial

space. Owing to the orthogonal property (12), the function �(ξ ) ∈ L2
W (ε)

f
[0,L] may be ex-

tracted as follows:

�(ξ ) =
∞∑

r=0

�r�
(ε)
L,r(ξ ), �r =

1
h(ε)
L,r

∫ L

0
�

(ε)
L,i(ξ )�(ξ )W (ε)

L,f (ξ ) dξ .

The corresponding nodes and corresponding Christoffel numbers of the shifted frac-
tional Legendre–Gauss (Gauss–Radau or Gauss–Lobatto) interpolation in the interval
[0,L] can be given by

tL,ε
M,s = L

(
tK,s + 1

2

) 1
ε

, �
(ε)
L,K,s =

(Lε

2

)
�K,s, 0 ≤ s ≤M,

where xK,s, and �K,s, 0 ≤ s ≤ M, are the nodes and the Christoffel numbers of the
standard Legendre–Gauss (Gauss–Radau or Gauss–Lobatto) interpolation in the interval
[–1, 1]. �

Proof Using Legendre–Gauss quadrature property, we have

∫ L

0
W (ε)

L,f (ξ )φ(ξ ) dξ =
∫ L

0
ξε–1φ(ξ ) dξ

=
(Lε

2ε

)∫ 1

–1
φ

(
L

(
ζ + 1

2

) 1
ε
)

dζ

=
(Lε

2ε

) M∑

j=0

�M,jφ

(
L

(
ζM,j + 1

2

) 1
ε
)

=
M∑

j=0

�
(ε)
L,M,jφ

(
ξ

(ε)
L,M,j

)
.

(13)

The proof is completed. �
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The solution of Eq. (1) is approximated as follows:

SM,ε(t) =
M∑

j=0

ςj�
ε
L,j(t), RM,ε(t) =

M∑

j=0

ρj�
ε
L,j(t),

NM,ε(t) =
M∑

j=0

κj�
ε
L,j(t), ZM,ε(t) =

M∑

j=0

σj�
ε
L,j(t).

(14)

Moreover, the Caputo fractional derivative of any order μ of the shifted fractional-order
Legendre orthogonal function is derived. The Caputo fractional derivative of order μ is
defined as follows:

Dμχ (t) =
1

�(m – μ)

∫ t

0
(t – η)m–μ–1 dmχ (η)

dηm dη, m – 1 < μ ≤ m, t > 0, (15)

where m is the ceiling function of μ. The analytical form of �
(ε)
L,j(t) is given by

�
(ε)
L,j(t) =

j∑

k=0

E(ε,j)
k tεk ,

where

E(ε,j)
k =

(–1)j–k(�(j + k + 1))
(j – k)!(�(k + 1))2Lεk .

By means of Eq. (15), we find

Dμ
t
(
tεk) =

kε�(kε)tkε–μ

�(kε – μ + 1)
, ∀k, where kε > μ,

thus

Dμ
t
(
�

(ε)
L,j(t)

)
= �

(μ,ε)
j (t)

=
j∑

k=1

E(ε,j)
k

kε�(kε)tkε–μ

�(kε – μ + 1)
.

The Caputo fractional derivative of order μ of the approximate solution is then esti-
mated as follows:

DμSM,ε(t) =
M∑

j=0

ςj�
μ,ε
L,j (t), DμRM,ε(t) =

M∑

j=0

ρj�
μ,ε
L,j (t),

DμNM,ε(t) =
M∑

j=0

κj�
μ,ε
L,j (t), DμZM,ε(t) =

M∑

j=0

σj�
μ,ε
L,j (t).

(16)

Spectral collocation technique is addressed to solve the previous problem subject to the
initial conditions. Firstly, a collocation method based on fractional-order Legendre basis
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functions is introduced for the fractional-order differential system of GBM-IS with initial

conditions. Consequently, we obtain a system of algebraic equations. Based on the above

details, we obtain

M∑

j=0

ςj�
μ,ε
L,j (t)

= pS(t) + r1

M∑

j=0

ςj�
ε
L,j(t)

(

k1 – β1

M∑

j=0

ςj�
ε
L,j(t)

)

– γ

M∑

j=0

ςj�
ε
L,j(t)

M∑

j=0

ρj�
ε
L,j(t)

– d1

M∑

j=0

ςj�
ε
L,j(t) – τ1

M∑

j=0

ςj�
ε
L,j(t)

M∑

j=0

κj�
ε
L,j(t),

M∑

j=0

ρj�
μ,ε
L,j (t)

= r2

M∑

j=0

ρj�
ε
L,j(t)

(

k2 – β2

M∑

j=0

ρj�
ε
L,j(t)

)

+ γ

M∑

j=0

ςj�
ε
L,j(t)

M∑

j=0

ρj�
ε
L,j(t)

– d2

M∑

j=0

ρj�
ε
L,j(t) – τ2

M∑

j=0

ρj�
ε
L,j(t)

M∑

j=0

κj�
ε
L,j(t), (17)

M∑

j=0

κj�
μ,ε
L,j (t)

= δ

M∑

j=0

κj�
ε
L,j(t)

M∑

j=0

σj�
ε
L,j(t) – ε

M∑

j=0

σj�
ε
L,j(t)

M∑

j=0

κj�
ε
L,j(t) – d3

M∑

j=0

κj�
ε
L,j(t),

M∑

j=0

σj�
μ,ε
L,j (t)

= r3

M∑

j=0

σj�
ε
L,j(t)

(

k3 – β3

M∑

j=0

σj�
ε
L,j(t)

)

– δ

M∑

j=0

κj�
ε
L,j(t)

M∑

j=0

σj�
ε
L,j(t)

+ ε

M∑

j=0

σj�
ε
L,j(t)

M∑

j=0

κj�
ε
L,j(t) – d4

M∑

j=0

σj�
ε
L,j(t).

Using the initial conditions, we obtain

M∑

j=0

ςj�
ε
L,j(0) = S0,

M∑

j=0

ρj�
ε
L,j(0) = R0,

M∑

j=0

κj�
ε
L,j(0) = N0,

M∑

j=0

σj�
ε
L,j(0) = Z0.

(18)
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In the proposed method, the residual of (17) is set to zero at the M points

M∑

j=0

ςj�
μ,ε
L,j

(
tL,ε
M,s

)

= pS
(
tL,ε
M,s

)
+ r1

M∑

j=0

ςj�
ε
L,j

(
tL,ε
M,s

)
(

k1 – β1

M∑

j=0

ςj�
ε
L,j

(
tL,ε
M,s

)
)

– d1

M∑

j=0

ςj�
ε
L,j

(
tL,ε
M,s

)

– γ

M∑

j=0

ςj�
ε
L,j

(
tL,ε
M,s

) M∑

j=0

ρj�
ε
L,j

(
tL,ε
M,s

)
– τ1

M∑

j=0

ςj�
ε
L,j

(
tL,ε
M,s

) M∑

j=0

κj�
ε
L,j

(
tL,ε
M,s

)
,

M∑

j=0

ρj�
μ,ε
L,j

(
tL,ε
M,s

)

= r2

M∑

j=0

ρj�
ε
L,j

(
tL,ε
M,s

)
(

k2 – β2

M∑

j=0

ρj�
ε
L,j

(
tL,ε
M,s

)
)

– d2

M∑

j=0

ρj�
ε
L,j

(
tL,ε
M,s

)

+ γ

M∑

j=0

ςj�
ε
L,j

(
tL,ε
M,s

) M∑

j=0

ρj�
ε
L,j

(
tL,ε
M,s

)

– τ2

M∑

j=0

ρj�
ε
L,j

(
tL,ε
M,s

) M∑

j=0

κj�
ε
L,j

(
tL,ε
M,s

)
, (19)

M∑

j=0

κj�
μ,ε
L,j

(
tL,ε
M,s

)

= δ

M∑

j=0

κj�
ε
L,j

(
tL,ε
M,s

) M∑

j=0

σj�
ε
L,j

(
tL,ε
M,s

)
– ε

M∑

j=0

σj�
ε
L,j

(
tL,ε
M,s

) M∑

j=0

κj�
ε
L,j

(
tL,ε
M,s

)

– d3

M∑

j=0

κj�
ε
L,j

(
tL,ε
M,s

)
,

M∑

j=0

σj�
μ,ε
L,j

(
tL,ε
M,s

)

= r3

M∑

j=0

σj�
ε
L,j

(
tL,ε
M,s

)
(

k3 – β3

M∑

j=0

σj�
ε
L,j

(
tL,ε
M,s

)
)

– d4

M∑

j=0

σj�
ε
L,j

(
tL,ε
M,s

)

– δ

M∑

j=0

κj�
ε
L,j

(
tL,ε
M,s

) M∑

j=0

σj�
ε
L,j

(
tL,ε
M,s

)
+ ε

M∑

j=0

σj�
ε
L,j

(
tL,ε
M,s

) M∑

j=0

κj�
ε
L,j

(
tL,ε
M,s

)
.

Taking s = 1, 2, . . . ,M, we get a system of (4M + 4) algebraic equations which can be
solved for the unknown coefficients. The rigor of the novel method is demonstrated with
several test problems. We can indicate that our numerical method can also accommodate
other methods. For example, the spectral Tau approach for nonsmooth temporal solution
may be fallen apart. Employing fractional-order Legendre functions instead of the classical
Legendre functions stopped this deterioration. Suppose that DkεZ(t) ∈ C[0,L] for k =
0, 1, . . . ,M. If ZM,ε(t) is the best approximation to Z(t) from �M, then the error bound
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is presented as follows:

∥∥Z(t) – ZM,ε(t)
∥∥
W (ε)

L,f (t) ≤
√
Lε(2M+3)Eε

(�((M + 1)ε + 1))
. (20)

Proof. Since ZM,ε(t) is the best approximation to Z(t) from �M, then by the definition
of the best approximation, we have

∀VM(t) ∈ �M,
∥
∥Z(t) – ZM,ε(t)

∥
∥
W (ε)

L,f (t) ≤ ∥
∥Z(t) – VM(t)

∥
∥
W (ε)

L,f (t). (21)

Based on the generalized Taylors formula [41], we obtainVM(t) =
∑M

k=0
tkε

�(kε+1) DkεZ(0+).
Thus, an upper bound of the absolute error is

∣∣
∣∣
∣
Z(t) –

M∑

k=0

tkε

�(kε + 1)
DkεZ

(
0+)

∣∣
∣∣
∣
≤ Eε

t(M+1)ε

�((M + 1)ε + 1)
, (22)

where Eε = MAX{DkεZ(ξ ), ξ ∈ [0,L]}. Then we conclude that the following

∥∥Z(t) – ZM,ε(t)
∥∥2
W (ε)

L,f (t) ≤
∥∥
∥∥
∥
Z(t) –

M∑

k=0

tkε

�(kε + 1)
DkεZ

(
0+)

∥∥
∥∥
∥

2

W (ε)
L,f (t)

≤ E2
ε

(�((M + 1)ε + 1))2

∫ L

0
t2(M+1)εW (ε)

L,f (t) dx

≤ E2
ε

(�((M + 1)ε + 1))2

∫ L

0
t2(M+1)εtε–1 dx

≤ Lε(2M+3)E2
ε

(�((M + 1)ε + 1))2

∫ 1

0
ξ 2M+ε+1ξdξ

≤ Lε(2M+3)E2
ε

(�((M + 1)ε + 1))2

(23)

is obtained for the approximate solutions. The convergence of the proposed method de-
pends basically on the above error bound.

4 Numerical results
Using the algorithm presented in the previous section, we give in this section some numer-
ical results. We discuss the fractional-order differential system of a GBM-IS interaction.

Example 1 Let us consider the parameter values M = 20, L = 15, ε = 1, μ = 0.9, p = 0.192,
r1 = 0.5, k1 = 4.704, β1 = 0.75, γ = 1

102 , d1 = 0.6, τ1 = 0.3, r2 = 0.525, k2 = 1.232, β2 = 0.1,
d2 = 0.006, τ2 = 0.03, δ = 0.201, ε = 0.01, d3 = 0.07, r3 = 0.0146, k3 = 0.15, δ1 = 0.06, d4 =
0.07. For the given parameter values, we plot in Fig. 1 the numerical solution curves of
the fractional-order differential system of GBM-IS. Moreover, we obtain the numerical
solutions of the fractional-order differential system of GBM-IS as follows:

S20,1(t)

= 6.819 × 10–15t20 – 1.1283 × 10–12t19 + 8.606 × 10–11t18 – 4.017 × 10–9t17
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Figure 1 Numerical solution curves of the fractional-order differential system of GBM-IS

+ 1.285 × 10–7t16 – 2.988 × 10–6t15 + 0.0000522623t14 – 7.023 × 10–4t13

+ 7.338 × 10–3t12

– 5.998 × 10–2t11 + 0.384t10 – 1.914t9 + 7.379t8 – 21.687t7 + 47.604t6

– 75.792t5 + 83.923t4 – 60.721t3 + 25.996t2 – 5.493x + 0.35,

R20,1(t)

= 1.590 × 10–14t20 – 2.439 × 10–12t19 + 1.732 × 10–10t18 – 7.559 × 10–9t17

+ 2.268 × 10–7t16 – 4.961 × 10–6t15 + 8.188 × 10–5t14 – 1.041 × 10–3t13

+ 1.031 × 10–2t12

– 8.010 × 10–2t11 + 0.488t10 – 2.320t9 + 8.543t8 – 24.006t7 + 50.418t6

– 76.836t5 + 81.431t4 – 56.344t3 + 23.013t2 – 4.603t + 0.25,

N20,1(t)

= 1.288 × 10–20t20 – 2.142 × 10–18t19 + 1.660 × 10–16t18 – 7.956 × 10–15t17

+ 2.642 × 10–13t16 – 6.453 × 10–12t15 + 1.200 × 10–10t14 – 1.738 × 10–9t13

+ 1.984 × 10–8t12

– 1.801 × 10–7t11 + 1.302 × 10–6t10 – 7.496 × 10–6t9 + 3.418 × 10–5t8

– 1.224 × 10–4t7

+ 3.401 × 10–4t6 – 7.209 × 10–4t5 + 1.142 × 10–3t4 – 1.313 × 10–3t3

+ 1.007t2 – 4.162t + 0.15,
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Z20,1(t)

= 4.988 × 10–19t20 – 8.177 × 10–17t19 + 6.243 × 10–15t18 – 2.946 × 10–13t17

+ 9.627 × 10–12t16 – 2.311 × 10–10t15 + 4.222 × 10–9t14 – 5.997 × 10–8t13

+ 6.711 × 10–7t12

– 5.960 × 10–6t11 + 4.212 × 10–4t10 – 2.365 × 10–3t9 + 1.050 × 10–3t8

– 3.653 × 10–3t7

+ 9.833 × 10–3t6 – 2.014 × 10–2t5 + 3.080 × 10–2t4 – 3.464 × 10–2t3

+ 3.010 × 10–2t2 – 3.708 × 10–2t + 0.25.

Example 2 Let us consider the parameter values M = 20, L = 10, ε = 1, μ = 0.98, p =
0.192, r1 = 0.5, k1 = 4.704, β1 = 0.75, γ = 1

102 , d1 = 0.6, τ1 = 0.3, r2 = 0.525, k2 = 1.232, β2 =
0.1, d2 = 0.006, τ2 = 0.03, δ = 0.201, ε = 0.01, d3 = 0.07, r3 = 0.5, k3 = 1.17, δ1 = 0.06, d4 =
0.07. For the given parameter values, we plot in Fig. 2 the numerical solution curves of
the fractional-order differential system of GBM-IS. Moreover, we obtain the numerical
solutions of the fractional-order differential system of GBM-IS as follows:

S20,1(t)

= 0.35 – 7.095t + 49.049t2 – 171.419t3 + 358.134t4 – 491.938t5 + 472.1t6

– 329.862t7

+ 172.723t8 – 69.1681t9 + 21.479t10 – 5.217t11 + 0.995t12 – 0.149t13

+ 1.740 × 10–2t14

– 1.56649 × 10–3t15 + 1.065 × 10–4t16 – 5.286 × 10–6t17 + 1.805 × 10–7t18

– 3.789 × 10–9t19 + 3.686 × 10–11t20,

R20,1(t)

= 0.25 + 0.110t + 0.398012t2 – 1.24704t3 + 2.64061t4 – 3.61478t5 + 3.43703t6

– 2.36652t7

+ 1.2151t8 – 0.475t9 + 0.143t10 – 3.366 × 10–2t11 + 6.180 × 10–3t12

– 8.863 × 10–4t13

Figure 2 Curves of numerical solutions of the
fractional-order differential system of GBM-IS
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+ 9.869 × 10–5t14 – 8.430 × 10–6t15 + 5.408 × 10–7t16 – 2.517 × 10–8t17

+ 8.012 × 10–10t18

– 1.557 × 10–11t19 + 1.391 × 10–13t20,

N20,1(t)

= 0.15 – 4.389 × 10–3t + 9.869 × 10–3t2 – 2.554 × 10–2t3 + 5.355 × 10–2t4

– 7.46 × 10–2t5

+ 7.315 × 10–2t6 – 5.235 × 10–2t7 + 2.811 × 10–2t8 – 1.155 × 10–2t9

+ 3.684 × 10–3t10

– 9.191 × 10–4t11 + 1.801 × 10–4t12 – 2.769 × 10–5t13 + 3.3225 × 10–6t14

– 3.073 × 10–7t15

+ 2.146 × 10–8t16 – 1.093 × 10–9t17 + 3.828 × 10–11t19 – 8.234 × 10–13t18

+ 8.196 × 10–15t20,

Z20,1(t)

= 0.25 + 0.204t – 0.160t2 + 0.356t3 – 0.493t4 + 0.504t5 – 0.386t6 + 0.226t7

– 0.103t8

+ 3.669 × 10–2t9 – 1.039 × 10–2t10 + 2.345 × 10–3t11 – 4.217 × 10–4t12

+ 6.025 × 10–5t13

– 6.786 × 10–6t14 + 5.943 × 10–7t15 – 3.959 × 10–8t16 + 1.936 × 10–9t17

– 6.547 × 10–11t18 + 1.367 × 10–12t19 – 1.325 × 10–14t20.

Let us consider the parameter values M = 20, L = 10, ε = 1
2 , μ = 0.98, p = 0.192, r1 = 0.5,

k1 = 4.704, β1 = 0.75, γ = 1
102 , d1 = 0.6, τ1 = 0.3, r2 = 0.525, k2 = 1.232, β2 = 0.1, d2 = 0.006,

τ2 = 0.03, δ = 0.201, ε = 0.01, d3 = 0.07, r3 = 0.5, k3 = 1.17, δ1 = 0.06, d4 = 0.07. For the
given parameter values, we plot in Fig. 3 the numerical solution curves of the fractional-
order differential system of GBM-IS. Moreover, we obtain the numerical solutions of the

Figure 3 Curves of numerical solutions of the
fractional-order differential system of GBM-IS
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fractional-order differential system of GBM-IS as follows:

S20, 1
2

(t)

= –6483.74t
3
2 – 190,389t

5
2 – 1.27907 × 106t

7
2 – 2.64196 × 106t

9
2

– 1.93473 × 106t
11
2

– 529,435t
13
2 – 52,742.2t

15
2 – 1667.45t

17
2 – 11.083t

19
2 + 0.327t10 + 173.597t9

+ 10,992.5t8

+ 190,582t7 + 1.144 × 106t6 + 2.56069 × 106t5 + 2.10614 × 106t4 + 579,683t3

+ 43,460.8t2 + 573.892t – 25.329
√

t + 0.35,

R20, 1
2

(t)

= 270.081t
3
2 + 8184.07t

5
2 + 57,358.4t

7
2 + 124,777t

9
2 + 97,060.2t

11
2 + 28,435.1t

13
2

+ 3055.22t
15
2

+ 104.93t
17
2 + 0.763t

19
2 – 2.361 × 10–2t10 – 11.4167t9 – 663.094t8

– 10,620.7t7 – 59,337.8t6

– 124,517.t5 – 96,817.7t4 – 25,418.7t3 – 1836.34t2 – 23.4701t

+ 1.03656
√

t + 0.25,

N20, 1
2

(t)

= 15.8473t
3
2 + 478.632t

5
2 + 3331.99t

7
2 + 7166.34t

9
2 + 5479.89t

11
2

+ 1566.86t
13
2 + 162.772t

15
2

+ 5.336t
17
2 + 3.639 × 10–2t

19
2 – 1.081 × 10–3t10 – 0.564t9 – 34.580t8

– 576.23t7 – 3313.03t6

– 7096.13t5 – 5595.89t4 – 1482.34t3 – 107.607t2 – 1.39185t

+ 0.0607976
√

t + 0.15,

Z20, 1
2

(t)

= –13.434t
3
2 – 429.968t

5
2 – 3142.94t

7
2 – 7009.8t

9
2 – 5513.63t

11
2 – 1613.32t

13
2

– 170.966t
15
2

– 5.708t
17
2 – 3.961 × 10–2t

19
2 + 1.187 × 10–3t10 + 0.608t9 + 36.657t8

+ 599.43t7 + 3373.83t6

+ 7045.37t5 + 5381.88t4 + 1367.07t3 + 93.854t2 + 1.301t

– 2.709 × 10–2√t + 0.25,
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5 Conclusions
This paper adopted a fully fractional-order Legendre collocation method to study a
fractional-order version of the differential system of GBM-IS. The powerful numerical
scheme gave way to a number of impressive numerical results that prove high efficiency
of the algorithm. The results of the algorithm pave way to conduct further additional re-
search in this field to display additional results in the future. Also, we provided numerical
simulations exhibiting dynamical behavior and stability around equilibria of the system,
and on the basis of simulations and comparison with the experimental data, it is concluded
that the fractional-order version of the differential system of GBM-IS is a better represen-
tative of the system than its integer-order form. In fact, our approach has three advantages:
(i) lower computational cost, (ii) ease of implementation, and (iii) exponential accuracy.
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