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for all w, z ∈ S and ξ ∈ [0, 1]. It is generally known that if ψ : [ζ ,η]→R is convex, then

ψ

(
ζ + η

2

)
≤ 1

η – ζ

∫ η

ζ

ψ(r)dr ≤ ψ(ζ ) +ψ(η)
2

. (1)

Inequality (1) is today known as the Hermite–Hadamard inequality. It was named after
two French mathematicians, Charles Hermite and Jacques Hadamard. The former [17]
first established the result in 1883, and a decade later it was rediscovered by the latter
[16].
There are loads of articles in the literature on generalizations and extensions of (1) for

different kinds of convexities. Examples of such can be found in [1–5, 10, 11, 14, 15, 18–
26, 33, 34, 38] and the references cited therein. Recently, Toplu et al. [39] proposed and
defined an m-polynomial convex function as follows: a real-valued functionψ : S →R

+ :=
(0,∞) is m-polynomial convex (concave) if

ψ
(
ξw + (1 – ξ )z

) ≤ (≥)
1
m

m∑
p=1

[
1 – (1 – ξ )p

]
ψ(w) +

1
m

m∑
p=1

[
1 – ξp]ψ(z)

for allw, z ∈ S and ξ ∈ [0, 1]. In this paper, we shall denote the sets of allm-polynomial con-
vex and m-polynomial concave functions from S into R

+ by XPm(S,R+) and VPm(S,R+),
respectively. In the same paper, the authors established the following Hermite–Hadamard
type inequality for this class of functions.

Theorem 1 ([39]) Let ψ : [ζ ,η] → R
+ be an m-polynomial convex function. If ζ < η and

ψ is Lebesgue integrable on [ζ ,η], then

2–1m
m + 2–m – 1

ψ

(
ζ + η

2

)
≤ 1

η – ζ

∫ η

ζ

ψ(r)dr ≤ ψ(ζ ) +ψ(η)
m

m∑
p=1

p
p + 1

. (2)

Now, recall that the left- and right-sided ρ-Riemann–Liouville fractional integral opera-
tors ρJ ε

ζ+ and ρJ ε
η– of order ε > 0, for a real-valued continuous function ψ(w), are defined

as follows:

ρJ ε
ζ+ψ(w) =

1
ρ�ρ(ε)

∫ w

ζ

(w – ξ )
ε
ρ –1ψ(ξ )dξ , w > ζ , (3)

and

kJ ε
η–ψ(w) =

1
ρ�ρ(ε)

∫ η

w
(ξ – w)

ε
ρ –1ψ(ξ )dξ , w < η, (4)

where ρ > 0, and �ρ is the ρ-gamma function given by

�ρ(w) :=
∫ ∞

0
ξw–1e–

ξρ

ρ dξ , Re(w) > 0,

with the properties �ρ(w + ρ) = w�ρ(w) and �ρ(ρ) = 1. If ρ = 1, we simply write

1J ε
ζ+ψ(w) = J ε

ζ+ψ(w) and 1J ε
η–ψ(w) = J ε

η–ψ(w).
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The beta function B is defined by

B(u, v) =
∫ 1

0
ξu–1(1 – ξ )v–1 dξ for Re(u) > 0,Re(v) > 0. (5)

Using these fractional integral operators, Sarikaya et al. [37] established the following frac-
tional version of (1).

Theorem 2 ([37]) Let ψ : [ζ ,η] →R
+ be a convex function. If 0 ≤ ζ < η and ψ is Lebesgue

integrable on [ζ ,η], then the following double inequalities for the Riemann–Liouville frac-
tional integrals hold:

ψ

(
ζ + η

2

)
≤ �(ε + 1)

2(η – ζ )ε
[
J ε

ζ+ψ(η) +J ε
η–ψ(ζ )

] ≤ ψ(ζ ) +ψ(η)
2

, (6)

where ε > 0.

The theory of interval analysis [29] was initiated by the late American mathematician
Ramon E. Moore in 1966. Since its advent, this field has received ample amount of atten-
tion from different researchers in the mathematical community. Experts have found ap-
plications of interval analysis in global optimization and constraint solution algorithms.
It has since grown steadily in popularity over the past decades. Interval analysis has been
found to be valuable to engineers and scientists interested in scientific computation, es-
pecially in reliability, effects of round-off error, and automatic verification of results, see
[8, 9, 12, 13]. With the birth of interval analysis, mathematicians, those who work in the
field ofmathematical inequalities, want to know if the inequalities in the above-mentioned
results can be replaced with inclusions. In some cases, the answer to the question is in the
affirmative. In this light, Sadowska (see also [28]) established the following result for a
given interval-valued function.

Theorem 3 ([36]) Let � be a nonnegative continuous convex set-valued function on [ζ ,η].
Then

�

(
ζ + η

2

)
⊃ 1

η – ζ

∫ η

ζ

�(r)dr ⊃ �(ζ ) +�(η)
2

. (7)

Results related to (7), for different families of set-valued convex functions, have been
established. For example, see the papers [6, 8, 9, 12, 13, 27, 32, 35, 40, 41]. Recently, Budak
et al. [7] established the following interval counterpart of (6).

Theorem 4 ([7]) Let � be a convex interval-valued function defined on [ζ ,η] such that
� = [ψ–,ψ+]. If 0≤ ζ < η and ε > 0, then

�

(
ζ + η

2

)
⊇ �(ε + 1)

2(η – ζ )ε
[
J ε

ζ+�(η) +J ε
η–�(ζ )

] ⊇ �(ζ ) +�(η)
2

. (8)

This work is inspired by the above-mentioned articles. It is our purpose in this arti-
cle to propose a new class of interval-valued functions called the m-polynomial convex
functions and then obtain the interval-valued counterpart of (2). This result involves the
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ρ-Riemann–Liouville fractional integral operators and generalizes Theorem 4. In addi-
tion, we establish four more results in this direction. Our results complement and extend
known results in [7] and others in the literature. The paper is arranged as follows: in Sect. 2,
we present a quick overview of the theory of interval analysis. Section 3 contains ourmain
results with detailed justifications. Interesting corollaries are also pointed out. A brief in-
troduction follows thereafter.

2 Preliminaries
Interval analysis is roughly described as an analysis of interval-valued functions. It is an
annex of numerical analysis where instead of real numbers intervals are used as its op-
erating element. In this section, we collate some basic terms and essentials of the theory
of interval analysis from the books [29–31]. In the sequel, let Kc represent the class of all
bounded closed nonempty intervals in R, i.e.,

Kc :=
{[

ζ –, ζ +]|ζ –, ζ + ∈ R and ζ – ≤ ζ +}.

The numbers ζ – and ζ + are called the left and right endpoints of [ζ –, ζ +], respectively.
The interval [ζ –, ζ +] is called degenerated if ζ – = ζ +; positive if ζ – > 0; and negative if
ζ + < 0. We denote the sets of all negative intervals and positive intervals in R by K–

c and
K

+
c , respectively. That is,

K
–
c :=

{[
ζ –, ζ +] ∈Kc|ζ + < 0

}

and

K
+
c :=

{[
ζ –, ζ +] ∈Kc|ζ – > 0

}
.

Let A = [ζ –, ζ +], B = [η–,η+] ∈ Kc, and γ ∈ R. We say A ⊆ B (or B ⊇ A) if and only if
η– ≤ ζ – and ζ + ≤ η+. The following arithmetic operations are defined thus:

γ A =

⎧⎪⎪⎨
⎪⎪⎩

[γ ζ –,γ ζ +] if γ > 0,

{0} if γ = 0,

[γ ζ +,γ ζ –] if γ < 0;

A + B =
[
ζ –, ζ +] + [

η–,η+] := [
ζ – + η–, ζ + + η+];

A – B =
[
ζ –, ζ +] – [

η–,η+] := [
ζ – – η+, ζ + – η–];

A · B :=
[
min

{
ζ –η–, ζ –η+, ζ +η–, ζ +η+},max

{
ζ –η–, ζ –η+, ζ +η–, ζ +η+}];

A
B
:=

[
min

{
ζ –

η– ,
ζ –

η+ ,
ζ +

η– ,
ζ +

η+

}
,max

{
ζ –

η– ,
ζ –

η+ ,
ζ +

η– ,
ζ +

η+

}]
; 0 /∈ B.

Interval addition is commutative, associative and 0 = [0, 0] is the identity element. Ad-
ditive inverses do not exist, but the cancelation law holds. Also, interval multiplication is
commutative, associative and 1 = [1, 1] is the identity element. Multiplicative inverses do
not exist and the cancelation law does not hold either. The distributive rule is not valid
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in general. It is important to also note that the interval arithmetic is said to be inclusion
isotonic (see [31, p. 34]). By this, we mean that if A, B, C, and D are intervals such that

A ⊆ B and C ⊆ D,

then

A � C ⊆ B � D,

where � stands for interval addition, subtraction, multiplication, or division. It follows
therefore that if ζ ≤ η andC ⊆ D, thenwithA = [ζ , ζ ] andB = [η,η], we have that ζC ⊆ ηD.
The Pompeiu–Hausdorff distance dH :Kc ×Kc →R+ ∪ {0} is defined by

dH := max
{

max
ζ∈A

d(ζ ,B),max
η∈B

d(η,A)
}

with d(η,A) = min
ζ∈A

|η – ζ |.

It is generally known that (Kc,dH ) is a completemetric space. The concept of a convergent
sequence of intervals (An)n∈N, An ∈Kc is considered in the complete metric space Kc, en-
dowed with the dH distance: We say that limn→∞ An = A if and only if for any real number
ε > 0 there exists Nε ∈ N such that

dH (An,A) < ε for all n > Nε .

Next, we turn our attention to interval-valued functions.

Definition 5 An interval-valued function is defined to be any� : [ζ ,η]→Kc with�(w) =
[ψ–(w),ψ+(w)] ∈Kc and ψ–(w) ≤ ψ+(w) for all w ∈ [ζ ,η]. We say that � is Lebesgue inte-
grable on [ζ ,η] if the real-valued functions ψ– and ψ+ are Lebesgue integrable on [ζ ,η],
and then we write

∫ η

ζ

�(r)dr =
[∫ η

ζ

ψ–(r)dr,
∫ η

ζ

ψ+(r)dr
]
.

For an interval function �(w) = [ψ–(w),ψ+(w)], we define the ρ-Riemann–Liouville in-
tegral operators as follows:

ρJ ε
ζ+�(w) =

[
ρJ ε

ζ+ψ
–(w),ρ J ε

ζ+ψ
+(w)

]

and

ρJ ε
η–�(w) =

[
ρJ ε

η–ψ
–(w),ρ J ε

η–ψ
+(w)

]
.

3 Main results
We first introduce the notion of m-polynomial convex interval-valued function.

Definition 6 Let S be a convex set,� : S →K
+
c be an interval-valued function, andm ∈N.

We say that � is m-polynomial convex (concave) if and only if

1
m

m∑
p=1

[
1 – (1 – ξ )p

]
�(w) +

1
m

m∑
p=1

[
1 – ξp]�(z) ⊆ (⊇)�

(
ξw + (1 – ξ )z

)
(9)
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for all w, z ∈ S and ξ ∈ [0, 1]. In what follows, we shall denote the sets of all m-
polynomial convex and m-polynomial concave interval-valued functions from S into K

+
c

by XPm(S,K+
c ) and VPm(S,K+

c ), respectively.

Remark 7 If we take a particular value of m, then we get a corresponding set inclusion.
Take, for instance:

1. If m = 1, then we get the definition of a convex interval-valued function

�
(
ξw + (1 – ξ )z

) ⊇ ξ�(w) + (1 – ξ )�(z)

for all w, z ∈ S and ξ ∈ [0, 1];
2. For m = 2, we get the following inclusion for a 2-polynomial convex interval-valued

function:

�
(
ξw + (1 – ξ )z

) ⊇ 3ξ – ξ 2

2
�(w) +

2 – ξ – ξ 2

2
�(z)

for all w, z ∈ S and ξ ∈ [0, 1];
3. For m = 3, we deduce the succeeding relation for a 3-polynomial convex

interval-valued function:

�
(
ξw + (1 – ξ )z

) ⊇ 6ξ – 4ξ 2 + ξ 3

3
�(w) +

3 – ξ – ξ 2 – ξ 3

3
�(z)

for all w, z ∈ S and ξ ∈ [0, 1].

We now present a theorem that gives a link between a given interval-valued function �

and its component real-valued functions ψ– and ψ+.

Theorem 8 Let � : S → K
+
c be an interval-valued function such that �(w) = [ψ–(w),

ψ+(w)] ∈ Kc, and ψ–(w) ≤ ψ+(w) for all w ∈ [ζ ,η]. Then � ∈ XPm(S,K+
c ) if and only if

ψ– ∈ XPm(S,R+) and ψ+ ∈ VPm(S,R+).

Proof Let w, z ∈ S and ξ ∈ [0, 1]. Then

� ∈ XPm
(
S,K+

c
)

if and only if

1
m

m∑
p=1

[
1 – (1 – ξ )p

]
�(w) +

1
m

m∑
p=1

[
1 – ξp]�(z) ⊆ �

(
ξw + (1 – ξ )z

)

if and only if

[
1
m

m∑
p=1

[
1 – (1 – ξ )p

]
ψ–(w) +

1
m

m∑
p=1

[
1 – ξp]ψ–(z),

1
m

m∑
p=1

[
1 – (1 – ξ )p

]
ψ+(w) +

1
m

m∑
p=1

[
1 – ξp]ψ+(z)

]
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⊆ [
ψ–(ξw + (1 – ξ )z

)
,ψ+(ξw + (1 – ξ )z

)]

if and only if

1
m

m∑
p=1

[
1 – (1 – ξ )p

]
ψ–(w) +

1
m

m∑
p=1

[
1 – ξp]ψ–(z) ≥ ψ–(ξw + (1 – ξ )z

)
,

and

1
m

m∑
p=1

[
1 – (1 – ξ )p

]
ψ+(w) +

1
m

m∑
p=1

[
1 – ξp]ψ+(z) ≤ ψ+(ξw + (1 – ξ )z

)

if and only if

ψ– ∈ XPm
(
S,R+) and ψ+ ∈ VPm

(
S,R+).

That completes the proof in both directions. �

In a similar manner, one can prove the following result.

Theorem 9 Let � : S → K
+
c be an interval-valued function such that �(w) = [ψ–(w),

ψ+(w)] ∈ Kc and ψ–(w) ≤ ψ+(w) for all w ∈ [ζ ,η]. Then � ∈ VPm(S,K+
c ) if and only if

ψ– ∈ VPm(S,R+) and ψ+ ∈ XPm(S,R+).

For the remaining part of this article, we shall assume that � : S → K
+
c is always of the

form �(w) = [ψ–(w),ψ+(w)] ∈Kc and ψ–(w) ≤ ψ+(w) for all w ∈ [ζ ,η]. We are now ready
to formulate and prove some Hermite–Hadamard type results for m-polynomial convex
(concave) interval-valued functions.

Theorem 10 Let � : S → K
+
c be an interval-valued function with ζ < η and ζ ,η ∈ S, and

Lebesgue integrable on [ζ ,η]. If � ∈ XPm(S,K+
c ) and ρ, ε > 0, then

m
m + 2–m – 1

�

(
ζ + η

2

)
⊇ �ρ(ε + ρ)

(η – ζ )
ε
ρ

[
ρJ ε

ζ+�(η) +ρ J ε
η–�(ζ )

]

⊇ �(ζ ) +�(η)
m

m∑
p=1

Sp(ε;ρ), (10)

where

Sp(ε;ρ) = 2 –
ε

ε + ρp
–

ε

ρ
B

(
ε

ρ
,p + 1

)

and B is the beta function defined by (5). The inclusions are reversed if � ∈ VPm(S,K+
c ).

Proof Assuming � ∈ XPm(S,K+
c ), we get from (9) the following relation:

�

(
w + z
2

)
⊇ 1

m

m∑
p=1

[
1 –

1
2p

]
�(w) +

1
m

m∑
p=1

[
1 –

1
2p

]
�(z).
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This implies that, for all w, z ∈ S,

1
m

m∑
p=1

[
1 –

1
2p

](
�(w) +�(z)

) ⊆ �

(
w + z
2

)
. (11)

Now, let w = ξζ + (1 – ξ )η and z = ξη + (1 – ξ )ζ with ξ ∈ [0, 1]. Then (11) becomes

1
m

m∑
p=1

(
1 –

1
2p

){
�

(
ξζ + (1 – ξ )η

)
+�

(
ξη + (1 – ξ )ζ

)} ⊆ �

(
ζ + η

2

)
. (12)

Multiplying both sides of (12) by ξ
ε
ρ –1 and then integrating with respect to ξ over [0, 1],

we get

∫ 1

0
ξ

ε
ρ –1�

(
ζ + η

2

)
dξ

⊇ 1
m

m∑
p=1

(
1 –

1
2p

)∫ 1

0
ξ

ε
ρ –1

{
�

(
ξζ + (1 – ξ )η

)
+�

(
ξη + (1 – ξ )ζ

)}
dξ

=
1
m

m∑
p=1

(
1 –

1
2p

)[∫ 1

0
ξ

ε
ρ –1

{
ψ–(ξζ + (1 – ξ )η

)
+ψ–(ξη + (1 – ξ )ζ

)}
dξ ,

∫ 1

0
ξ

ε
ρ –1

{
ψ+(ξζ + (1 – ξ )η

)
+ψ+(ξη + (1 – ξ )ζ

)}
dξ

]
. (13)

Now,

∫ 1

0
ξ

ε
ρ –1

{
ψ–(ξζ + (1 – ξ )η

)
+ψ–(ξη + (1 – ξ )ζ

)}
dξ

=
1

(η – ζ )
ε
ρ

[∫ η

ζ

(η – r)
ε
ρ –1ψ–(r)dr +

∫ η

ζ

(r – ζ )
ε
ρ –1ψ–(r)dr

]

=
ρ�ρ(ε)
(η – ζ )

ε
ρ

[
1

ρ�ρ(ε)

∫ η

ζ

(η – r)
ε
ρ –1ψ–(r)dr +

1
ρ�ρ(ε)

∫ η

ζ

(r – ζ )
ε
ρ –1ψ–(r)dr

]

=
ρ�ρ(ε)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+ψ
–(η) +ρ J ε

η–ψ
–(ζ )

]
. (14)

Similarly, one obtains that

∫ 1

0
ξ

ε
ρ –1

{
ψ+(ξζ + (1 – ξ )η

)
+ψ+(ξη + (1 – ξ )ζ

)}
dξ

=
ρ�ρ(ε)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+ψ
+(η) +ρ J ε

η–ψ
+(ζ )

]
. (15)

On the other hand,

∫ 1

0
ξ

ε
ρ –1�

(
ζ + η

2

)
dξ =

[∫ 1

0
ξ

ε
ρ –1ψ–

(
ζ + η

2

)
dξ ,

∫ 1

0
ξ

ε
ρ –1ψ+

(
ζ + η

2

)
dξ

]

=
[

ρ

ε
ψ–

(
ζ + η

2

)
,
ρ

ε
ψ+

(
ζ + η

2

)]
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=
ρ

ε
�

(
ζ + η

2

)
. (16)

Using (14), (15), and (16) in (13), one gets

ρ

ε
�

(
ζ + η

2

)

⊇ m + 2–m – 1
m

ρ�ρ(ε)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+ψ
–(η) +ρ J ε

η–ψ
–(ζ ), ρJ ε

ζ+ψ
+(η) +ρ J ε

η–ψ
+(ζ )

]

=
m + 2–m – 1

m
ρ�ρ(ε)
(η – ζ )

ε
ρ

([
ρJ ε

ζ+ψ
–(η), ρJ ε

ζ+ψ
+(η)

]
+

[
ρJ ε

η–ψ
–(ζ ), ρJ ε

η–ψ
+(ζ )

])

=
m + 2–m – 1

m
ρ�ρ(ε)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+�(η) +ρ J ε
η–�(ζ )

]
.

This further implies that

m
m + 2–m – 1

�

(
ζ + η

2

)
⊇ �ρ(ε + ρ)

(η – ζ )
ε
ρ

[
ρJ ε

ζ+�(η) +ρ J ε
η–�(ζ )

]
. (17)

Next, we get from (9) the following inclusions:

�
(
ξζ + (1 – ξ )η

)

⊇ 1
m

m∑
p=1

[
1 – (1 – ξ )p

]
�(ζ ) +

1
m

m∑
p=1

[
1 – ξp]�(η) (18)

and

�
(
ξη + (1 – ξ )ζ

)

⊇ 1
m

m∑
p=1

[
1 – (1 – ξ )p

]
�(η) +

1
m

m∑
p=1

[
1 – ξp]�(ζ ). (19)

Adding (18) and (19) gives

�
(
ξζ + (1 – ξ )η

)
+�

(
ξη + (1 – ξ )ζ

)

⊇ 1
m

{ m∑
p=1

[
1 – (1 – ξ )p

]
+

m∑
p=1

[
1 – ξp]

}(
�(ζ ) +�(η)

)
. (20)

Multiplying (20) by ξ
ε
ρ –1 and integrating the resulting inclusion with respect to ξ over

[0, 1], we obtain

ρ�ρ(ε)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+�(η) +ρ J ε
η–�(ζ )

]

=
∫ 1

0
ξ

ε
ρ –1

[
�

(
ξζ + (1 – ξ )η

)
+�

(
ξη + (1 – ξ )ζ

)]
dξ

⊇ �(ζ ) +�(η)
m

∫ 1

0
ξ

ε
ρ –1

{ m∑
p=1

[
1 – (1 – ξ )p

]
+

m∑
p=1

[
1 – ξp]

}
dξ
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=
�(ζ ) +�(η)

m

m∑
p=1

[
2ρ
ε

–
ρ

ε + ρp
–B

(
ε

ρ
,p + 1

)]
. (21)

From (21), we obtain

�ρ(ε + ρ)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+�(η) +ρ J ε
η–�(ζ )

]

⊇ �(ζ ) +�(η)
m

m∑
p=1

[
2 –

ε

ε + ρp
–

ε

ρ
B

(
ε

ρ
,p + 1

)]
. (22)

We get the intended result by combining (17) and (22). �

Remark 11 Using Theorem 10, we obtain the following particular cases:
1. For m = 1, we deduce the result for convex interval-valued functions

�

(
ζ + η

2

)
⊇ �ρ(ε + ρ)

2(η – ζ )
ε
ρ

[
ρJ ε

ζ+�(η) +ρ J ε
η–�(ζ )

] ⊇ �(ζ ) +�(η)
2

. (23)

If, in addition, we set ρ = 1 in (23), then we recapture (8).
2. If m = 2, then we obtain the result for 2-polynomial convex interval-valued functions

1
5
�

(
ζ + η

2

)
⊇ �ρ(ε + ρ)

8(η – ζ )
ε
ρ

[
ρJ ε

ζ+�(η) +ρ J ε
η–�(ζ )

]

⊇ �(ζ ) +�(η)
8

[
1 +

ε

ε + ρ
–

ε

ε + 2ρ

]
.

Theorem 12 Let � ,G : S → K
+
c be two interval-valued functions with ζ < η and ζ ,η ∈ S,

and suppose that �G is Lebesgue integrable on [ζ ,η]. If ρ, ε > 0, � ∈ XPm1 (S,K+
c ), and

G ∈ XPm2 (S,K+
c ), then

�ρ(ε + ρ)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+�(η)G(η) +ρ J ε
η–�(ζ )G(ζ )

]

⊇ ε

ρ

{
P(ζ ,η)

∫ 1

0
ξ

ε
ρ –1

[
�1(ξ ) +�4(ξ )

]
dξ

+Q(ζ ,η)
∫ 1

0
ξ

ε
ρ –1

[
�2(ξ ) +�3(ξ )

]
dξ

}
,

where P(ζ ,η) = �(ζ )G(ζ ) +�(η)G(η),Q(ζ ,η) = �(ζ )G(η) +�(η)G(ζ ), and

�1(ξ ) :=
1

m1

1
m2

m1∑
p=1

[
1 – (1 – ξ )p

] m2∑
p=1

[
1 – (1 – ξ )p

]
;

�2(ξ ) :=
1

m1

1
m2

m1∑
p=1

[
1 – (1 – ξ )p

] m2∑
p=1

[
1 – ξp];

�3(ξ ) :=
1

m1

1
m2

m1∑
p=1

[
1 – ξp] m2∑

p=1

[
1 – (1 – ξ )p

]
;
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�4(ξ ) :=
1

m1

1
m2

m1∑
p=1

[
1 – ξp] m2∑

p=1

[
1 – ξp].

The inclusions are reversed if � ∈ VPm1 (S,K+
c ) and G ∈ VPm2 (S,K+

c ).

Proof Let � ∈ XPm1 (S,K+
c ) and G ∈ XPm2 (S,K+

c ). Then, for ξ ∈ [0, 1], we have

1
m1

m1∑
p=1

[
1 – (1 – ξ )p

]
�(ζ ) +

1
m1

m1∑
p=1

[
1 – ξp]�(η) ⊆ �

(
ξζ + (1 – ξ )η

)

and

1
m2

m2∑
p=1

[
1 – (1 – ξ )p

]
G(ζ ) +

1
m2

m2∑
p=1

[
1 – ξp]G(η)⊆ G

(
ξζ + (1 – ξ )η

)
.

So,

�
(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)

⊇ 1
m1

1
m2

m1∑
p=1

[
1 – (1 – ξ )p

] m2∑
p=1

[
1 – (1 – ξ )p

]
�(ζ )G(ζ )

+
1

m1

1
m2

m1∑
p=1

[
1 – (1 – ξ )p

] m2∑
p=1

[
1 – ξp]�(ζ )G(η)

+
1

m1

1
m2

m1∑
p=1

[
1 – ξp] m2∑

p=1

[
1 – (1 – ξ )p

]
�(η)G(ζ )

+
1

m1

1
m2

m1∑
p=1

[
1 – ξp] m2∑

p=1

[
1 – ξp]�(η)G(η)

:= �1(ξ )�(ζ )G(ζ ) +�2(ξ )�(ζ )G(η) +�3(ξ )�(η)G(ζ ) +�4(ξ )�(η)G(η).

This implies that

�
(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)

⊇ �1(ξ )�(ζ )G(ζ ) +�2(ξ )�(ζ )G(η) +�3(ξ )�(η)G(ζ ) +�4(ξ )�(η)G(η). (24)

Similarly,

�
(
ξη + (1 – ξ )ζ

)
G

(
ξη + (1 – ξ )ζ

)

⊇ �4(ξ )�(ζ )G(ζ ) +�3(ξ )�(ζ )G(η) +�2(ξ )�(η)G(ζ ) +�1(ξ )�(η)G(η). (25)

Adding (24) and (25) gives

�
(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)
+�

(
ξη + (1 – ξ )ζ

)
G

(
ξη + (1 – ξ )ζ

)

⊇ (
�(ζ )G(ζ ) +�(η)G(η)

)[
�1(ξ ) +�4(ξ )

]
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+
(
�(ζ )G(η) +�(η)G(ζ )

)[
�2(ξ ) +�3(ξ )

]

:=P(ζ ,η)
[
�1(ξ ) +�4(ξ )

]
+Q(ζ ,η)

[
�2(ξ ) +�3(ξ )

]
. (26)

Now, multiplying both sides of (26) by ξ
ε
ρ –1 and integrating the resultant with respect

to ξ over [0, 1] gives

ρ�ρ(ε)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+�(η)G(η) +ρ J ε
η–�(ζ )G(ζ )

]

=
∫ 1

0
ξ

ε
ρ –1�

(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)
dξ

+
∫ 1

0
ξ

ε
ρ –1�

(
ξη + (1 – ξ )ζ

)
G

(
ξη + (1 – ξ )ζ

)
dξ

⊇P(ζ ,η)
∫ 1

0
ξ

ε
ρ –1

[
�1(ξ ) +�4(ξ )

]
dξ +Q(ζ ,η)

∫ 1

0
ξ

ε
ρ –1

[
�2(ξ ) +�3(ξ )

]
dξ .

Hence, that completes the proof. �

Corollary 13 Let ρ, ε > 0. If � ,G : S → K
+
c are two convex interval-valued functions with

ζ < η, ζ ,η ∈ S and �G is Lebesgue integrable on [ζ ,η], then

�ρ(ε + ρ)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+�(η)G(η) +ρ J ε
η–�(ζ )G(ζ )

]

⊇P(ζ ,η)
[
1 –

(
2ε

ε + ρ
–

2ε
ε + 2ρ

)]
+Q(ζ ,η)

[
2ε

ε + ρ
–

2ε
ε + 2ρ

]
.

Proof Let m1 = m2 = 1. Then �1(ξ ) = ξ 2, �2(ξ ) = �1(ξ ) = ξ – ξ 2, and �4(ξ ) = 1 – 2ξ + ξ 2.
We get the desired inequality by applying Theorem 12. �

Remark 14 Corollary 13 boils down to [7, Theorem 3.5] if we set ρ = 1.

Theorem 15 Let � ,G : S → K
+
c be two interval-valued functions with ζ < η and ζ ,η ∈ S,

and suppose that �G is Lebesgue integrable on [ζ ,η]. If ρ, ε > 0, � ∈ XPm1 (S,K+
c ), and

G ∈ XPm2 (S,K+
c ), then

m1m2

(m1 + 2–m1 – 1)(m2 + 2–m2 – 1)
�

(
ζ + η

2

)
G

(
ζ + η

2

)

⊇ �ρ(ε + ρ)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+�(η)G(η) +ρ J ε
η–�(ζ )G(ζ )

]

+
ε

ρ

∫ 1

0
ξ

ε
ρ –1

{[
�m1 (ξ )�̃m2 (ξ ) + �̃m1 (ξ )�m2 (ξ )

]
P(ζ ,η)

+
[
�m1 (ξ )�m2 (ξ ) + �̃m1 (ξ )�̃m2 (ξ )

]
Q(ζ ,η)

}
dξ ,

where P(ζ ,η) and Q(ζ ,η) are as defined in Theorem 12, and for ξ ∈ [0, 1],

�m(ξ ) =
1
m

m∑
p=1

[
1 – (1 – ξ )p

]
,
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�̃m(ξ ) =
1
m

m∑
p=1

[
1 – ξp].

Proof First, we observe that from the definitions of �̃m and �m given above, we have

�̃m

(
1
2

)
= �m

(
1
2

)
:= Lm :=

m + 2–m – 1
m

.

Hence, from (12), one gets

Lm1

{
�

(
ξζ + (1 – ξ )η

)
+�

(
ξη + (1 – ξ )ζ

)} ⊆ �

(
ζ + η

2

)

and

Lm2

{
G

(
ξζ + (1 – ξ )η

)
+ G

(
ξη + (1 – ξ )ζ

)} ⊆ G
(

ζ + η

2

)
.

Now,

�

(
ζ + η

2

)
G

(
ζ + η

2

)

⊇ Lm1Lm2

[
�

(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)

+�
(
ξη + (1 – ξ )ζ

)
G

(
ξη + (1 – ξ )ζ

)]

+ Lm1Lm2

[
�

(
ξζ + (1 – ξ )η

)
G

(
ξη + (1 – ξ )ζ

)

+�
(
ξη + (1 – ξ )ζ

)
G

(
ξζ + (1 – ξ )η

)]

⊇ Lm1Lm2

[
�

(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)

+�
(
ξη + (1 – ξ )ζ

)
G

(
ξη + (1 – ξ )ζ

)]

+ Lm1Lm2

{[
�m1 (ξ )�(ζ ) + �̃m1 (ξ )�(η)

][
�m2 (ξ )G(η) + �̃m2 (ξ )G(ζ )

]

+
[
�m1 (ξ )�(η) + �̃m1 (ξ )�(ζ )

][
�m2 (ξ )G(ζ ) + �̃m2 (ξ )G(η)

]}

= Lm1Lm2

[
�

(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)

+�
(
ξη + (1 – ξ )ζ

)
G

(
ξη + (1 – ξ )ζ

)]

+ Lm1Lm2

{[
�m1 (ξ )�̃m2 (ξ ) + �̃m1 (ξ )�m2 (ξ )

](
�(ζ )G(ζ ) +�(η)G(η)

)

+
[
�m1 (ξ )�m2 (ξ ) + �̃m1 (ξ )�̃m2 (ξ )

](
�(ζ )G(η) +�(η)G(ζ )

)}

:= Lm1Lm2

[
�

(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)

+�
(
ξη + (1 – ξ )ζ

)
G

(
ξη + (1 – ξ )ζ

)]

+ Lm1Lm2

{[
�m1 (ξ )�̃m2 (ξ ) + �̃m1 (ξ )�m2 (ξ )

]
P(ζ ,η)

+
[
�m1 (ξ )�m2 (ξ ) + �̃m1 (ξ )�̃m2 (ξ )

]
Q(ζ ,η)

}
.

Thus, we get

�

(
ζ + η

2

)
G

(
ζ + η

2

)
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⊇ Lm1Lm2

[
�

(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)

+�
(
ξη + (1 – ξ )ζ

)
G

(
ξη + (1 – ξ )ζ

)]

+ Lm1Lm2

{[
�m1 (ξ )�̃m2 (ξ ) + �̃m1 (ξ )�m2 (ξ )

]
P(ζ ,η)

+
[
�m1 (ξ )�m2 (ξ ) + �̃m1 (ξ )�̃m2 (ξ )

]
Q(ζ ,η)

}
. (27)

Multiplying (27) by ξ
ε
ρ –1 and integrating with respect to ξ over [0, 1], we get the following

inclusion:

ρ

ε
�

(
ζ + η

2

)
G

(
ζ + η

2

)

=
∫ 1

0
ξ

ε
ρ –1�

(
ζ + η

2

)
G

(
ζ + η

2

)
dξ

⊇ Lm1Lm2

∫ 1

0
ξ

ε
ρ –1

[
�

(
ξζ + (1 – ξ )η

)
G

(
ξζ + (1 – ξ )η

)

+�
(
ξη + (1 – ξ )ζ

)
G

(
ξη + (1 – ξ )ζ

)]
dξ

+ Lm1Lm2

∫ 1

0
ξ

ε
ρ –1

{[
�m1 (ξ )�̃m2 (ξ ) + �̃m1 (ξ )�m2 (ξ )

]
P(ζ ,η)

+
[
�m1 (ξ )�m2 (ξ ) + �̃m1 (ξ )�̃m2 (ξ )

]
Q(ζ ,η)

}
dξ

= Lm1Lm2
ρ�ρ(ε)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+�(η)G(η) +ρ J ε
η–�(ζ )G(ζ )

]

+ Lm1Lm2

∫ 1

0
ξ

ε
ρ –1

{[
�m1 (ξ )�̃m2 (ξ ) + �̃m1 (ξ )�m2 (ξ )

]
P(ζ ,η)

+
[
�m1 (ξ )�m2 (ξ ) + �̃m1 (ξ )�̃m2 (ξ )

]
Q(ζ ,η)

}
dξ ,

from which the desired inequality is obtained. �

Corollary 16 Let ρ, ε > 0. If � ,G : S → K
+
c are two convex interval-valued functions with

ζ < η, ζ ,η ∈ S, and �G is Lebesgue integrable on [ζ ,η], then

�

(
ζ + η

2

)
G

(
ζ + η

2

)

⊇ �ρ(ε + ρ)
4(η – ζ )

ε
ρ

[
ρJ ε

ζ+�(η)G(η) +ρ J ε
η–�(ζ )G(ζ )

]

+
[

ε

2(ε + ρ)
–

ε

2(ε + 2ρ)

]
P(ζ ,η) +

[
1
4
–

(
ε

2(ε + ρ)
–

ε

2(ε + 2ρ)

)]
Q(ζ ,η).

Proof Let m1 = m2 = 1. Then �m1 (ξ ) = �m2 (ξ ) = ξ and �̃m1 (ξ ) = �̃m2 (ξ ) = 1 – ξ . Using
Theorem 12, we get the required result. �

Remark 17 If we take ρ = 1, then Corollary 16 becomes [7, Theorem 3.6].

4 Conclusion
Some new set inclusions of the Hermite–Hadamard types are established for the class
of m-polynomial convex interval-valued functions. A relationship between a given m-
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polynomial convex (concave) interval-valued function � = [ψ–,ψ+] and its component
real-valued functions ψ– and ψ+ is established. We pointed out some corollaries from
which loads of interesting results can be deduced. In addition to these corollaries, if we
take ψ– = ψ+ = ψ , then � = ψ and the inclusions in Theorems 10, 12, and 15 become the
following inequalities:

1.

m
m + 2–m – 1

ψ

(
ζ + η

2

)
≤ �ρ(ε + ρ)

(η – ζ )
ε
ρ

[
ρJ ε

ζ+ψ(η) +ρ J ε
η–ψ(ζ )

]

≤ ψ(ζ ) +ψ(η)
m

m∑
p=1

Sp(ε;ρ);

2.

�ρ(ε + ρ)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+ψ(η)g(η) +ρ J ε
η–ψ(ζ )g(ζ )

]

≤ εP(ζ ,η)
ρ

∫ 1

0
ξ

ε
ρ –1

[
�1(ξ ) +�4(ξ )

]
dξ

+
εQ(ζ ,η)

ρ

∫ 1

0
ξ

ε
ρ –1

[
�2(ξ ) +�3(ξ )

]
dξ ;

and
3.

m1m2

(m1 + 2–m1 – 1)(m2 + 2–m2 – 1)
ψ

(
ζ + η

2

)
g
(

ζ + η

2

)

≤ �ρ(ε + ρ)
(η – ζ )

ε
ρ

[
ρJ ε

ζ+ψ(η)g(η) +ρ J ε
η–ψ(ζ )g(ζ )

]

+
ε

ρ

∫ 1

0
ξ

ε
ρ –1

{[
�m1 (ξ )�̃m2 (ξ ) + �̃m1 (ξ )�m2 (ξ )

]
P(ζ ,η)

+
[
�m1 (ξ )�m2 (ξ ) + �̃m1 (ξ )�̃m2 (ξ )

]
Q(ζ ,η)

}
dξ ,

respectively.
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39. Toplu, T., Kadakal, M., Íşcan, Í.: On n-polynomial convexity and some related inequalities. AIMS Math. 5(2), 1304–1318
(2020)

40. Zhao, D., An, T., Ye, G., Liu, W.: New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued
functions. J. Inequal. Appl. 2018, 302 (2018)

41. Zhao, D., An, T., Ye, G., Torres, D.F.M.: On Hermite–Hadamard type inequalities for harmonical h-convex interval-valued
functions. Math. Inequal. Appl. 23(1), 95–105 (2020)


