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Abstract
An expectation for optimal integrated pest management is that the instantaneous
numbers of natural enemies released should depend on the densities of both pest
and natural enemy in the field. For this, a generalised predator–prey model with
nonlinear impulsive control tactics is proposed and its dynamics is investigated. The
threshold conditions for the global stability of the pest-free periodic solution are
obtained based on the Floquet theorem and analytic methods. Also, the sufficient
conditions for permanence are given. Additionally, the problem of finding a nontrivial
periodic solution is confirmed by showing the existence of a nontrivial fixed point of
the model’s stroboscopic map determined by a time snapshot equal to the common
impulsive period. In order to address the effects of nonlinear pulse control on the
dynamics and success of pest control, a predator–prey model incorporating the
Holling type II functional response function as an example is investigated. Finally,
numerical simulations show that the proposed model has very complex dynamical
behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis,
period-halving bifurcations and periodic windows. Moreover, there exists an
interesting phenomenon whereby period-doubling bifurcation and period-halving
bifurcation always coexist when nonlinear impulsive controls are adopted, which
makes the dynamical behaviour of the model more complicated, resulting in
difficulties when designing successful pest control strategies.

Keywords: Nonlinear impulsive; Threshold condition; Bifurcation; Nontrivial periodic
solution; Chaos

1 Introduction
In order to reduce losses due to insect pests, a wide range of pest control strategies are
available to farmers [1, 2]. Integrated pest management (IPM) is a long-term manage-
ment strategy involving a combination of biological, cultural and chemical tactics aiming
to minimise economic, health and environmental risks [3, 4].
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An important component of an IPM strategy is biological control, which is defined as
using natural enemies such as predators and parasites to suppress pest populations and
typically involves an active human role [2]. For example, one known approach of biolog-
ical control is augmentation, i.e. releasing beneficial natural enemies to control insects
to tolerable levels [5–7]. Chemical control is also an important method for IPM, being
very useful because it can kill a significant proportion of an insect population quickly, and
sometimes it provides the only feasible method for preventing economic loss. In practical
application, in order to avoid or delay the development of resistance, a variety of differ-
ent types of pesticides are used instead of a single one. Moreover, different pest control
techniques should function together rather than be antagonistic to each other. Experience
with use of IPM has shown it to be more effective than classical control methods such as
biological control or chemical control applied alone [2].

With the development of the theory and application of impulsive differential equations
[8, 9], mathematical models can assist in the design of IPM strategies and the study of
how to control pest populations at tolerable levels. Recently, many researchers have con-
structed impulsive differential equations to describe IPM strategies [10–15]. However, the
major assumption in previous studies is that a proportion of the pest population will be
killed instantly after spraying pesticide, while simultaneously releasing a constant number
of natural enemies [16–22]. In reality, every community or country has an appropriate or
limited capacity for agricultural resources such as pesticides, labour force, equipment and
excessive use of the pesticides will potentially cause damage to the environment. So, the
methods used for releasing natural enemies and the ratios of numbers of natural enemies
to be released to their current density in the field could be significantly affected by limi-
tations to agricultural resources. In order to understand how such a resource limitation
could affect an IPM strategy, some mathematical models incorporating saturation of the
limited resources have been proposed and analysed recently. These have mainly focused
on investigating the global dynamic and addressing how nonlinear impulsive control ac-
tions affect pest control tactics [23–26]. However, the nonlinear impulsive functions in
these papers only depend on the density of the natural enemy population. A more real-
istic case modelled in this paper is that the instantaneous number of natural enemies to
be released should depend on the densities of both pest and natural enemy densities in
the field, i.e. the density dependent releasing function is a saturation function of the pest
population. In this case, the lower the pest population in the field, the lower the number
of the predators that should be released and vice versa.

The main purpose of this paper is to construct a generalised predator–prey model with
nonlinear impulsive control to investigate the effect of limited predator releases on the out-
break of pest populations. Other generalised predator–prey models with linear or constant
pulse actions have already provided some analytical techniques to deal with the global sta-
bility of periodic solutions [27–29]. In Sect. 2, by using the Floquet theorem and analytical
techniques, we show that there exists a globally stable pest-free periodic solution when
the period of impulsive predator releases is less than some threshold, and the condition
for the permanence of the system is given in Sect. 3. Next, by employing an operator the-
oretic approach which reduces the existence of the nontrivial periodic solutions to a fixed
point and bifurcation problem [30–33], we show that a nontrivial periodic solution ap-
pears via a supercritical bifurcation once the pest-free periodic solution loses its stability.
In order to apply the main results, we chose a classic pest-natural enemy model with a
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Holling type II functional response function and nonlinear impulsive control to investi-
gate how the nonlinear pulse perturbations affect success or otherwise of the pest control,
which is presented in Sect. 5. Further, numerical simulations show that the model with
nonlinear impulsive actions has more complex and interesting dynamic behaviour than
models without them. Finally, related biological implications are discussed.

2 The predator–prey model with nonlinear pulse control
The generalised predator–prey model we consider in this paper is as follows:

⎧
⎨

⎩

dx(t)
dt = rx(t)(1 – x(t)

K )) – p(x(t))y(t),
dy(t)

dt = cp(x(t))y(t) – Dy(t),
(1)

where x(t), y(t) represent the densities of prey and predator populations, respectively. r
is the intrinsic growth rate of the prey, K denotes the carrying capacity of the prey, c
represents the efficiency rate for predator conversion of its prey, D is the death rate of
the predator. The function p(x) denotes the predator response function, and let F(x) =
rx(1 – x

K )/p(x). In order to use our main results for as many models as possible, we made
the following assumptions related to the function p(x). Let p(x) be locally Lipschitz func-
tions such that:

(i) The functional response function satisfies p(x) ∈ C2(0, +∞), p(0) = 0, p′(0) > 0 and
p′′(x) < 0 for all x > 0,

(ii) The function F(x) and p(x)
x is upper bounded for all x > 0.

The first condition indicates that the functional response function is positive and mono-
tonically increasing for small pest populations. The p(x) is bounded or linear, so p(x)

x is
upper bounded for all x > 0. The pest population cannot increase infinitely once the bio-
logical control is introduced, so F(x) is upper bounded. It is assumed that the IPM strategy
is applied at every time point nT . Moreover, the nonlinear saturation functions or density
dependent functions are employed, i.e. we choose

x
(
t+)

=
[

1 –
δx(t)

x(t) + h

]

x(t), y
(
t+)

= y(t) +
λ1x(t)

1 + θx(t)
+ λ2, t = nT ,

where 0 ≤ δ ≤ 1 and h ≥ 0 represent the maximal mortality rate and the half saturation
constant for the pest due to chemical control, respectively. We assume that the pesticide
is sprayed immediately before releases of natural enemies to minimise the chance of the
pesticide killing newly released predators. λ1 ≥ 0 is the number of the natural enemies
released, and θ ≥ 0 denotes the shape parameter. The pest and natural enemy popula-
tions are updated to (1 – δx(t)

x(t)+h )x(t) and y(t) + λ1x(t)
1+θx(t) + λ2 at every discrete time point nT

and n ∈N , respectively, which is a more realistic consideration compared with previous
studies [25, 26].

On the basis of the above assumptions and taking model (1) into account, the following
differential equation model was formulated:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = rx(t)(1 – x(t)

K ) – p(x(t))y(t),
dy(t)

dt = cp(x(t))y(t) – Dy(t),

⎫
⎬

⎭
t �= nT ,

x(t+) = [1 – δx(t)
x(t)+h ]x(t),

y(t+) = y(t) + λ1x(t)
1+θx(t) + λ2,

⎫
⎬

⎭
t = nT .

(2)
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Before our main results, we show the positivity and boundedness of solutions of model
(2), and we have the following.

Lemma 1 The solutions of model (2) are positive and bounded.

Proof It is easy to show that the positive initial conditions indicate the positivity of the
solutions, and x(t) < max{K , x(0+)} according to x(nT+) < x(nT).

For the boundedness of the y-component, we denote V (t) = cx(t)+y(t), then when t �= nT
we obtain

D+V (t) + DV (t) = c(r + D)x(t) –
crx2(t)

K
≤ M0

with M0 = cK (r+D)2

4r . When t = nT we have

V
(
nT+) ≤ cx(nT) + y(nT) +

λ1

θ
+ λ2

= V (nT) +
λ1

θ
+ λ2.

Therefore, for t ∈ (nT , (n + 1)T], we have

V (t) ≤ V (0) exp(–Dt) +
∫ t

0
M0 exp

(
–D(t – s)

)
ds

+
∑

0<kT<t

(λ1/θ + λ2) exp
(
–D(t – kT)

)

= V (0) exp(–Dt) +
M0(1 – exp(–Dt))

D

+ (λ1/θ + λ2)
exp(–D(t – T)) – exp(–D(t – (n + 1)T))

1 – exp(DT)

→ M0

D
+

(λ1/θ + λ2) exp(DT)
exp(DT) – 1

, (t → ∞).

Thus, V (t) is uniformly ultimately bounded. According to the definition of V (t), we can
see that y(t) is bounded. �

One of the main purposes of implementing IPM is to find suitable control measures to
eradicate the pest population, i.e. if there exists a critical value such that pest-free periodic
solution is globally stable when the period T is less than the critical value. The existence
and stability of the pest-free periodic solution are crucial for this point. Thus, we first
consider the following subsystem:

⎧
⎨

⎩

dy(t)
dt = –Dy(t), t �= nT ,

y(t+) = y(t) + λ2, t = nT .
(3)

Subsystem (3) is a simple linear growth model, so we can easily obtain the following
main result.
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Lemma 2 Model (3) exists with a globally stable positive periodic solution

yp(t) =
λ2

1 – exp(–DT)
exp

(
–D(t – nT)

)
, t ∈ (

nT , (n + 1)T
]
.

Therefore, we obtain the general expression of the unique pest-free periodic solution of
model (2), i.e.

(
xp(t), yp(t)

)
=

(
0, y∗ exp

(
–D(t – nT)

))
, t ∈ (

nT , (n + 1)T
]
,

where y∗ = λ2
1–exp(–DT) .

In the following, we show the sufficient condition for the global stability of pest-free
periodic solution (xp(t), yp(t)) of model (2) and the main results for model (2).

Theorem 1 The pest-free periodic solution (xp(t), yp(t)) is locally stable provided that

T <
λ2p′(0)

rD
(4)

and it is globally attractive if

T <
λ2

MsD
, (5)

where Ms = supx≥0 F(x).

Proof Firstly, we prove the local stability of the solution (xp(t), yp(t)) of model (2). Let �(t)
be the fundamental matrix of (2), and then �(t) satisfies

�(T) =

(
exp(

∫ T
0 (r – p′(0)yp(t)) dt) 0

∗ exp(
∫ T

0 –D dt)

)

,

where �(0) = I represents the identity matrix and the term ∗ is not calculated in the exact
form for the next analyses. The linearization of the third and fourth equation of model (2)
becomes

(
x̃(nT+)
ỹ(nT+)

)

=

(
1 0
λ1 1

)(
x̃(nT)
ỹ(nT)

)

= B(T)

(
x̃(nT)
ỹ(nT)

)

.

Therefore, the local stability of the solution (xp(t), yp(t)) of model (2) is determined by
the absolute values of both eigenvalues of the following matrix:

M = B(T)�(T)

=

(
exp(

∫ T
0 (r – p′(0)yp(t)) dt) 0

∗∗ exp(–DT)

)

.

The two Floquet multipliers are as follows:

|μ1| = exp

(∫ T

0

(
r – p′(0)yp(t)

)
dt

)

, |μ2| = exp(–DT) < 1.
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All these results confirm that the pest-free solution (xp(t), yp(t)) is locally stable if and only
if

rT – p′(0)
∫ T

0
yp(t) dt < 0.

Since
∫ T

0 yp(t) dt = λ2
D , consequently the periodic solution (xp(t), yp(t)) is locally stable

provided that

T <
λ2p′(0)

rD
.

In the following, we prove the global attractivity of the periodic solution (xp(t), yp(t)), for
which we only need to show that any solution (x(t), y(t)) of model (2) tends to (xp(t), yp(t))
as t goes to infinity. If T < λ2

MsD , then we can choose ε > 0 sufficiently small such that
∫ T

0 (Ms – (yp(s) – ε)) ds < 0. From model (2) we obtain

⎧
⎨

⎩

dy(t)
dt ≥ –Dy(t), t �= nT ,

y(t+) ≥ y(t) + λ2, t = nT .

According to the theory of differential equations, we have the following comparison equa-
tion:

y(t) ≥ yp(t) – ε (6)

for t large enough. Without loss of generality, we assume that y(t) ≥ yp(t) – ε holds true
for all t ≥ 0.

From the first equation of model (2), we get ẋ
p(x) = F(x) – y. Define G(x) =

∫ x
δ

1
p(s) ds for

δ > 0. Integrating any interval (nT , (n + 1)T], we have

G
(
x(n + 1)T+)

=
∫ x((n+1)T)

δ

1
p(s)

ds +
∫ x((n+1)T+)

x((n+1)T)

1
p(s)

ds

≤ G
(
x
(
nT+))

+
∫ (n+1)T

nT

(
F(s) –

(
yp(s) – ε

))
ds

≤ G
(
x
(
nT+))

+
∫ (n+1)T

nT

(
Ms –

(
yp(s) – ε

))
ds.

For any t ∈ (lT , (l + 1)T], l ∈ Z+, we get

G
(
x(t)

)
– G(x0) ≤

∫ t

0

(
Ms –

(
yp(s) – ε

))
ds

= l
∫ T

0

(
Ms –

(
yp(s) – ε

))
ds +

∫ t

lT

(
Ms –

(
yp(s) – ε

))
ds.

For the boundedness of the second term of the right-hand side, it is clear that G(x) → –∞
as t → ∞ when

∫ T
0 (Ms – (yp(s) – ε)) ds < 0, i.e. x(t) converges to 0 as t → ∞.
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Next, we prove that y(t) → yp(t) as t → ∞. Since x(t) goes to zero as t → ∞ and as-
sumption (i), there exists a finite time t1 such that p(x) < ε and λ1x(t)

1+θx(t) < ελ1 for all t > t1.
Therefore, for all t > t1, we deduce that

–Dy(t) ≤ dy
dt

≤ y(t)(cε – D).

Thus, we consider the following equation:

⎧
⎨

⎩

dz(t)
dt = (cε – D)z(t), t �= nT ,

z(t+) = z(t) + ελ1 + λ2, t = nT .
(7)

From the comparison theorem of impulsive differential equations, we have

yp(t) ≤ y(t) ≤ z(t),

and z(t) → zp(t), zp(t) → yp(t) as t → ∞. Therefore, there exists t2 for ε1 small enough
such that t2 ≥ t1 > 0 and

yp(t) – ε1 < y(t) < zp(t) + ε1

for t > t2. Let ε → 0, then yp(t) – ε1 < y(t) < yp(t) + ε1. Therefore, y(t) → yp(t) as t → ∞,
i.e. the pest-free periodic solution of model (2) is globally asymptotically stable. �

3 Permanence
Now, we investigate the permanence of model (2).

Theorem 2 Model (2) is permanent provided that T > λ2p′(0)
rD holds true.

Proof By Lemma 1, for simplicity, we may assume that x(t) < M, y(t) < M for t > 0, M >
r

p′(0) . From (6), we know that y(t) ≥ yp(t) – ε for t large enough and for some ε > 0, so we
have

y(t) ≥ λ2 exp(–DT)
1 – exp(–DT)

– ε � m2 (8)

for t large enough. Thus, we only need to find m1 such that x(t) ≥ m1 for t large enough.
We will do this in the following two steps.

1. Let m3 > 0, ε1 > 0 be small enough such that cM1m3 < D and η � (1 – δ
h m3) exp(rT –

rm3T
K – p′(0)( λ1m3+λ2

1–exp(–(D–cM1m3)) + ε1T)) > 1, where M1 = supx≥0
p(x)

x . Suppose that x(t) < m3

for all t > 0, then we have

dy(t)
dt

= y(t)
(

p(x)
x

· cx(t) – D
)

≤ (cM1m3 – D)y(t).

By Lemma 2, we have y(t) ≤ z(t) and z(t) → zp(t) as t → ∞, where z(t) is the solution of

⎧
⎨

⎩

dz(t)
dt = (cM1m3 – D)z(t), t �= nT ,

z(t+) = z(t) + λ1m3 + λ2, t = nT ,
(9)
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and zp(t) = λ1m3+λ2
1–exp(–(D–cM1m3)) exp(–(D – cM1m3)(t – nT)), t ∈ (nT , (n + 1)T]. Therefore, there

exists T1 > 0 such that y(t) ≤ z(t) < zp(t) + ε1.
According to assumption (i), we have p(x) < p′(0)x, further,

⎧
⎨

⎩

dx(t)
dt ≥ x(t)(r – rm3

K – p′(0)(zp(t) + ε1)), t �= nT ,

x(t+) ≥ (1 – δ
h m3)x(t), t = nT ,

(10)

for t > T1. Let N ∈ Z+ and NT > T1. Integrating equation (10) on (nT , (n + 1)T], n ≥ N , we
have

x
(
(n + 1)T

) ≥ x
(
nT+)

exp

(∫ (n+1)T

nT

(

r –
rm3

K
– p′(0)

(
zp(t) + ε1

)
)

dt
)

= x(nT)η.

Then x((N + n)T) > x(NT)ηn → ∞ as n → ∞, which contradicts the boundedness of x(t).
Hence there exists t1 > 0 such that x(t1) ≥ m3.

2. If x(t) ≥ m3 for all t ≥ t1, then our aim is obtained. Otherwise, let t∗ = inft>t1{x(t) < m3},
there are two possible cases for t∗.

Case (i) t∗ = n1T , n1 ∈ Z+. Then x(t) ≥ m3 for t ∈ [t1, t∗] and (1 – δM
h+M )m3 ≤ x(t∗+) =

(1 – δx(t∗)
h+x(t∗) )x(t∗) < m3. Choose n2, n3 ∈ Z+ such that

n2T > ln

(
ε1

M + λ2 + λ1m3

)

/(–D + cM1m3),

(

1 –
δM

h + M

)(

1 –
δ

h
m3

)n2

ηn3 exp
(
(n2 + 1)η1T

)
> 1,

where η1 = r – m3r
K – p′(0)M < 0. Let T ′ = n2T + n3T , we show that there must be t2 ∈

(t∗, t∗ + T ′] such that x(t2) ≥ m3. Otherwise, considering (9) with z(t∗+) = y(t∗+), we have

z(t) =
(

z
(
t∗+)

–
λ1m3 + λ2

1 – exp((–D + cM1m3)T)

)

exp
(
(–D + cm3M1)

(
t – t∗)) + zp(t)

for t ∈ (nT , (n + 1)T] and n1 ≤ n ≤ n1 + n2 + n3. Then

∣
∣z(t) – zp(t)

∣
∣ < (M + λ2 + λ1m3) exp

(
(–D + cm3M1)

(
t – t∗)) < ε1

for t∗ + n2T ≤ t ≤ t∗ + T ′, which implies that (10) holds for t∗ + n2T ≤ t ≤ t∗ + T ′. So, as
in step 1, we have

x
(
t∗ + T ′) ≥ x

(
t∗ + n2T

)
ηn3 .

Furthermore, we have

⎧
⎨

⎩

dx(t)
dt ≥ x(t)(r – m3r

K – p′(0)M), t �= nT ,

x(t+) ≥ (1 – δ
h m3)x(t), t = nT ,

(11)
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for t ∈ [t∗, t∗ + n2T]. Integrating (11) on t ∈ [t∗, t∗ + n2T], we have

x
(
t∗ + n2T

) ≥ x
(
t∗+)

(

1 –
δ

h
m3

)n2–1

exp(n2η1T).

Thus, we have

x
(
t∗ + T ′) ≥ m3

(

1 –
δM

h + M

)(

1 –
δ

h
m3

)n2–1

exp(n2η1T)ηn3 > m3,

which is a contradiction.
Now, let t̃ = inft>t∗{x(t) ≥ m3}, then for t ∈ (t∗, t̃), x(t) ≤ m3 and x(t̃) = m3 since x(t) is left

continuous and x(t+) ≤ x(t) when t = nT . For t ∈ (t∗, t̃), suppose t ∈ (t∗ + (k – 1)T , t∗ + kT],
k ∈ Z+ and k ≤ n2 + n3, from (11) we have

x(t) ≥ x
(
t∗+)

(

1 –
δ

h
m3

)k–1

exp
(
(k – 1)η1T

)
exp

(
η1

(
t –

(
t∗ + (k – 1)T

)))

≥ m3

(

1 –
δM

h + M

)(

1 –
δ

h
m3

)k

exp(kη1T)

≥ m3

(

1 –
δM

h + M

)(

1 –
δ

h
m3

)n2+n3

exp
(
(n2 + n3)η1T

)
.

Let m′
1 = m3(1 – δM

h+M )(1 – δ
h m3)n2+n3 exp((n2 + n3)η1T), so we have x(t) ≥ m′

1 for t ∈ (t∗, t̃).
For t > t̃, the same arguments can be continued since x(t̃) ≥ m3.

Case (ii) t∗ �= n1T , n1 ∈ Z+. Then x(t) ≥ m3 for t ∈ [t1, t∗) and x(t∗) = m3. Suppose t∗ ∈
(n′

1T , (n′
1 + 1)T), n′

1 ∈ Z+, there are two possible cases for t ∈ (t∗, (n′
1 + 1)T).

Case (iia) x(t) < m3 for t ∈ (t∗, (n′
1 + 1)T]. By a similar argument as in step case (i), we get

that there must exist t′
2 ∈ [(n′

1 + 1)T , (n′
1 + 1)T + T ′] such that x(t′

2) ≥ m3.
Let t̄ = inft>t∗{x(t) ≥ m3}, then x(t) < m3 for t ∈ (t∗, t̄) and x(t̄) = m3. For t ∈ (t∗, t̄), sup-

pose t ∈ (n′
1T + (k′ – 1)T , n′

1T + k′T], k ∈ Z+, k′ ≤ 1 + n2 + n3, we have

x(t) ≥ m3

(

1 –
δM

h + M

)(

1 –
δ

h
m3

)k′–1

exp
(
k′η1T

)

≥ m3

(

1 –
δM

h + M

)(

1 –
δ

h
m3

)n2+n3

exp
(
(n2 + n3 + 1)η1T

)
.

Let m1 = m3(1 – δM
h+M )(1 – δ

h m3)n2+n3 exp((n2 + n3 + 1)η1T) > m′
1, so x(t) ≥ m1 for t ∈ (t∗, t̄).

For t > t̄, the same arguments can be continued since x(t̄) ≥ m3.
Case (iib) There exists t ∈ (t∗, (n′

1 + 1)T) such that x(t) ≥ m3. Let ť = inft>t∗{x(t) > m3},
then x(t) < m3 for t ∈ (t∗, ť) and x(ť) = m3. For t ∈ (t∗, ť), (11) holds true, integrating on
[t∗, ť), we have

x(t) ≥ x
(
t∗) exp

(
η1

(
t – t∗)) ≥ m3

(

1 –
δM

h + M

)

exp(η1T) > m1.

Hence x(t) ≥ m1 for all t > t1. The proof is completed. �
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Remark Define T∗ = λ2p′(0)
rD , the pest-free periodic solution is unstable if T > T∗. There-

fore, T∗ plays a role in a bifurcation threshold value. The interesting question is how to
determine the dynamics of model (2) once the pest-free periodic solution loses its stability.

4 Threshold condition of bifurcation
In the following, we deal with problem of the bifurcation of a nontrivial periodic solu-
tion of model (2) near the pest-free periodic solution, i.e. (xp(t), yp(t)). We have used the
bifurcation theory in earlier publications [34, 35]. We denote � to be the solution of the
first two equations of model (2), and we have X(t) = �(t, X0) where X0 = X(0) = (y+

0 , 0) and
� = (�1,�2). We define the mapping �1,�2 : R2 → R2 by

�1(x, y) = x +
λ1y

1 + θy
+ λ2, �2(x, y) =

(

1 –
δy

y + h

)

y

and the mapping F1, F2 : R2 → R2 as follows:

F1(x, y) = cp(y)x – Dx, F2(x, y) = ry
(

1 –
y
K

)

– p(y)x.

Furthermore, let us define 	 : [0, +∞) × R2 → R2 by

	(T , X0) = �
(
�(T , X0)

)
;	(T , X0) =

(
	1(T , X0),	2(T , X0)

)
.

It is clear that 	 is the stroboscopic map associated with model (2), which is determined
by the values of solutions at impulsive points 0 and T , and T is the stroboscopic time
snapshot.

We reduce the problem of finding a periodic solution to a fixed problem. Hence, X =
(yp(t), 0) is a periodic solution of period T for model(2) if and only if its initial value X0 =
X(0) is a fixed point for map 	(T , ·). Consequently, in order to establish the existence of
nontrivial periodic solutions of model (2), we need to prove the existence of the nontrivial
fixed points of 	 .

To find a nontrivial periodic solution of period τ with initial value X(0), we need to solve
the fixed point problem X = 	(τ , u). Denoting τ = T + τ̃ , X = X0 + X̃,

X0 + X̃ = 	(T + τ̃ , X0 + X̃).

Let us define

N(τ̃ , X̃) =
(
N1(τ̃ , X̃), N2(τ̃ , X̃)

)
= X0 + X̃ – 	(T + τ̃ , X0 + X̃), (12)

if N(τ̃ , X̃) = 0, then X0 + X̃ is a fixed point of 	(T , ·).
According to the variational equations

d
dt

(
�(t, X0)

)
= F

(
�(t, X0)

)
,

which characterise the dynamics of the first two equations in model (2), we get

d
dt

(
DX

(
�(t, X0)

))
= DXF

(
�(t, X0)

)(
DX

(
�(t, X0)

))
. (13)



Li et al. Advances in Difference Equations        (2020) 2020:514 Page 11 of 23

Then we deduce that model (2) has the particular form

d
dt

(
∂�1
∂x

∂�1
∂y

∂�2
∂x

∂�2
∂y

)

(t, X0) =

(
∂F1(ζ (t))

∂x
∂F1(ζ (t))

∂y
∂F2(ζ (t))

∂x
∂F2(ζ (t))

∂y

)(
∂�1
∂x

∂�1
∂y

∂�2
∂x

∂�2
∂y

)

(t, X0)

=

(
–D cp′(0)yp(t)
0 r – p′(0)yp(t)

)(
∂�1
∂x

∂�1
∂y

∂�2
∂x

∂�2
∂y

)

(t, X0)

with initial value DX(�(0, X0)) = I2, which is the identity matrix.
According to the initial value, it follows that

∂�1(t, X0)
∂x

= exp(–Dt),

∂�1(t, X0)
∂y

= cp′(0)
∫ t

0
exp

(
–D(t – v)

)
yp(v)ρ(v)) dv,

∂�2(t, X0)
∂x

= 0,

∂�2(t, X0)
∂y

= ρ(t),

where ρ(t) = exp
∫ t

0 (r – p′(0)yp(v)) dv.
We denote the derivation of N at the fixed point (τ̃ , X̃) = (0, (0, 0)) as

DXN
(
0, (0, 0)

)
=

(
a′

0 b′
0

c′
0 d′

0

)

=

(
1 – ∂�1

∂x
∂�1
∂x – ∂�1

∂x
∂�1
∂y – ∂�1

∂y
∂�2
∂y

0 1 – ∂�2
∂y

∂�2
∂y

)

(T ,X0)

. (14)

So, we obtain

a′
0 = 1 – exp(–DT) > 0,

b′
0 = –cp′(0)

∫ T

0
yp(t)ρ(t) dt – λ1ρ(T) < 0,

c′
0 = 0

and

d′
0 = 1 – exp

(

rT – p′(0)
λ2

D

)

= 1 – ρ(T).

It is easy to see that the necessary condition for the bifurcation of the nontrivial solution
is

det
[
DXN

(
0, (0, 0)

)]
= 0, (15)

which can reduce to d′
0 = 0 because DXN(0, (0, 0)) is an upper triangular matrix with a′

0 > 0.
Further, we deduce that d′

0 = 0 is equivalent to T = T∗. Therefore, it remains to prove the
sufficient condition for the bifurcation of nontrivial solution. We have the following main
result.
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Theorem 3 Assume that T = T∗, the pest-free periodic solution of model (2) bifurcates to
a positive nontrivial periodic solution, which is supercritical if 2rDT + p′′(0)Kλ2 ≥ 0.

Proof According to the above notations, it is that dim(ker(DXN(0, (0, 0)))) = 1 and a basis
of ker(DXN(0, (0, 0))) is (– b′

0
a′

0
, 1). Then the equation N(τ̃ , X̃) = 0 is equivalent to

N1(τ̃ , aY0 + zE0) = 0, N2(τ̃ , aY0 + zE0) = 0,

where E0 = (1, 0), Y0 = (– b′
0

a′
0

, 1) and X̃ = aY0 + zE0 represents the direct summation of X̃ .
Let us define

f1(τ̃ , a, z) = N1(τ̃ , aY0 + zE0), f2(τ̃ , a, z) = N2(τ̃ , aY0 + zE0),

and have

∂f1

∂z
(0, 0, 0) =

∂N1

∂u
(
0, (0, 0)

)∂u
∂z

= a′
0 > 0.

By the implicit function theorem, we solve the equation f1(τ̃ , a, z) = 0 near (0, (0, 0)), which
confirms that there exists unique continuous z as a function of (τ̃ , a) such that z = z(τ̃ , a)
and z(0, 0) = 0. Moreover, we have

f1
(
τ̃ , a, z(τ̃ , a)

)
= N1

(
τ̃ , aY0 + z(τ̃ , a)E0

)
= 0

and

∂z
∂a

(0, 0) = –
(

∂N1(0, 0)
∂x

)–1
∂N1(0, 0)

∂y
+

b′
0

a′
0

= 0.

Thus, N(τ̃ , X̃) = 0 if and only if

f2(τ̃ , a) = N2
(
τ̃ , aY0 + z(τ̃ , a)E0

)
= 0, (16)

and the number of its solutions equals the number of periodic solutions of model (2).
For simplification, we denote

f (τ̃ , a) = f2(τ̃ , a)

with f (0, 0) = N2(0, (0, 0)) = 0. First, we compute the Taylor expansion of function f around
(0, 0). For this, we compute the first order partial derivatives ∂f

∂τ̃
(0, 0) and ∂f

∂a (0, 0).
Denote η(τ̃ ) = T + τ̃ , η1(τ̃ , a) = x0 – b′

0
a′

0
a + z(τ̃ , a) and η2(τ̃ , a) = a, then we obtain

∂f (τ̃ , a)
∂a

=
∂

∂a
(
η2 – �2

(
�(η,η1,η2)

))

= 1 –
∂�2

∂y

(
∂�2(η,η1,η2)

∂x

(

–
b′

0
a′

0
+

∂z(τ̃ , a)
∂a

)

+
∂�2(η,η1,η2)

∂y

)

= 1 –
∂�2(η,η1,η2)

∂y
.

So, we observe that d′
0 = 1 – ρ(T) = 0 indicates that ∂f

∂a (0, 0) = 0.
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Similarly, we know

∂f
∂τ̃

(τ̃ , a) =
∂

∂τ̃

(
η2 – �2

(
�(η,η1,η2)

))

= –
∂�2

∂y

(
∂�2(η,η1,η2)

∂τ̃
+

∂�2(η,η1,η2)
∂x

∂z
∂τ̃

)

.

Since ∂�2(η,η1,η2)
∂τ̃

= 0 at (τ̃ , a) = (0, 0), we have ∂f
∂τ̃

(0, 0) = 0.
Furthermore, we need to calculate the second-order partial derivatives. Let us denote

A = ∂2f (0,0)
∂τ̃2 , B = ∂2f (0,0)

∂τ̃ ∂a and C = ∂2f (0,0)
∂a2 , it is observed that

∂2f (τ̃ , a)
∂τ̃ 2 =

∂

∂τ̃

(

–
∂�2

∂y

(
∂�2(η,η1,η2)

∂τ̃
+

∂�2(η,η1,η2)
∂x

∂z
∂τ̃

))

= –
∂2�2

∂y2

(
∂�2(η,η1,η2)

∂τ̃
+

∂�2(η,η1,η2)
∂x

∂z
∂τ̃

)2

–
∂�2

∂y

(
∂2�2(η,η1,η2)

∂τ̃ 2 + 2
∂2�2(η,η1,η2)

∂x∂τ̃

∂z
∂τ̃

+
∂2�2(η,η1,η2)

∂x2

(
∂z
∂τ̃

)2

+
∂�2(η,η1,η2)

∂x
∂2z
∂τ̃ 2

)

.

We have

A =
∂2f (0, 0)

∂τ̃ 2 = –
∂2�2(T , X0)

∂τ̃ 2 = 0

according to ∂2�2(t,X0)
∂t2 = 0 for all 0 ≤ t ≤ T . By the same methods as shown above, we have

∂2�2(T , X0)
∂x∂y

= –p′(0)
∫ T

0
ρ(u) exp

(∫ T

u

(
r – p′(0)yps(v)

)
dv

)

du

= –p′(0)T < 0,

∂2�2(T , X0)
∂y2 = –

(
2rT
K

+
λ2p′′(0)

D

)

– cp′2(0)
∫ T

0

{

exp

(∫ T

v

(
r – p′(0)yp(ξ )

)
dξ

)}

·
{∫ v

0
exp

(
–D(v – θ )

)
yp(θ )ρ(θ )dθ

}

dv,

∂2�2(T , X0)
∂y∂τ̃

=
∂F2(ζ (t))

∂y
exp

(∫ T

0

∂F2(ζ (t))
∂y

dt
)

,

= r – p′(0)yp(T)

and

∂z(0, 0)
∂τ̃

= –
D
a′

0
yp(T).
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Therefore, we can deduce that

B = –
∂2�2(T , X0)

∂τ̃ ∂y
–

∂2�2(T , X0)
∂x∂y

∂z(0, 0)
∂τ̃

and

C =
2δ

h

(
∂�2(T , X0)

∂y

)2

+ 2
b′

0
a′

0

∂2�2(T , X0)
∂x∂y

–
∂2�2(T , X0)

∂y2 .

In order to determine the sign of B, let g(t) = r – p′(0)y∗ exp(–Dt), then g ′(t) = Dp′(0)y∗ ×
exp(–Dt) > 0, which means that g(t) is strictly increasing. Further, we have

∫ T

0
g(t) dt = rT –

αy∗(1 – exp(–DT))
D

= 0,

which indicates that g(T) = r – αy∗ exp(–DT) > 0, i.e. ∂2�2(t,X0)
∂y∂τ̃

> 0. Therefore, B < 0. If

2rDT + p′′(0)Kλ2 ≥ 0, then we have ∂2�2(t,X0)
∂y2 < 0, which means C > 0 holds true.

Since A = ∂2f (0,0)
∂τ̃2 , B = ∂2f (0,0)

∂τ̃ ∂a and C = ∂2f (0,0)
∂a2 , we obtain

f (τ̃ , a) = Baτ̃ + C
a2

2
+ o(τ̃ , a)

(
τ̃ 2 + a2).

Therefore, we deduce that equation (16) is equivalent to

2Bτ̃ + Ca +
1
a

o(τ̃ , a)
(
τ̃ 2 + a2) = 0.

Solving the above equation, we have a
τ̃

≈ – B
C > 0, which implies that there is a supercritical

bifurcation to a nontrivial periodic solution. �

In order to verify our main results, we choose the Holling type II functional response
function as an example in the coming section.

5 Application of the main results
In order to show the applications of the main results and discuss the biological impli-
cations of the threshold conditions, we choose the Holling type II functional response
function for p(x) = αx

1+ωx . Thus model (2) becomes the following special system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = rx(t)(1 – x(t)

K ) – αx(t)
1+ωx(t) y(t),

dy(t)
dt = cαx(t)

1+ωx(t) y(t) – Dy(t),

⎫
⎬

⎭
t �= nT ,

x(t+) = (1 – δx(t)
x(t)+h )x(t),

y(t+) = y(t) + λ1x(t)
1+θx(t) + λ2,

⎫
⎬

⎭
t = nT ,

(17)

where α and ω are positive constants, respectively.
It follows from Lemma 2 that we obtain the pest-free periodic solution of model (17) as

follows:

(
xp(t), yp(t)

)
=

(
0, y∗ exp

(
–D(t – nT)

))
, t ∈ (

nt, (n + 1T)
]
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with y∗ = λ2
1–exp(–DT) .

For the stability of the pest-free periodic solution, we employ the main results shown in
Theorem 1, so we have the following theorem.

Theorem 4 The pest-free periodic solution of model (17) is locally stable provided that

T <
αλ2

rD
= T∗

and is globally attractive if

T <
αλ2

rDMs
,

where Ms =
{ (Kω+1)2

4Kω
, Kω ≤ 1,

1, Kω > 1.

Based on the main results shown in Theorem 3, we can theoretically address the bifur-
cations for model (17), and we have the following main results.

Theorem 5 If T = T∗, then the pest-free periodic solution (xp(t), yp(t)) can bifurcate to
another periodic solution, which is supercritical if Kω ≤ 1.

Based on the above discussion, the dynamics of model (17) could be very complex when
T > T∗. To show this, we carry out a one-dimensional bifurcation analysis numerically. Fig-
ure 1 shows that if the impulsive period T exceeds some threshold levels, then both prey
and predator populations can oscillate periodically with quite different amplitudes. As
parameter T increases, the T-periodic solution loses its stability, then a period-doubling
bifurcation occurs at T ≈ 8. As T further increases, the period-doubling bifurcations lead
model (17) to chaos. After that, chaos disappears and period-halving bifurcations occur.

Figure 1 Bifurcation diagrams of model (17) with respect to bifurcation parameter T . Parameter values are:
r = 2.79, k = 10, α = 1.2, c = 0.37, ω = 0.25, D = 0.59, δ = 0.69, h = 0.27, λ1 = 1.25, λ2 = 5.2, θ = 12.5
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Figure 2 Two coexisting attractors of model (17) with T = 14.5. The other parameter values identical to those
in Fig. 1. The initial conditions are: (A – B)(x0, x0) = (3, 2.5); (C – D)(x0, x0) = (2, 3.5)

Figure 3 Basin of attraction of the two attractors of model (17) with the parameters are identical to those in
Fig. 1. The blue and green points are attracted to the attractors shown in Fig. 2 from top to bottom,
respectively

When T = 14.5, a non-unique attractor appears, i.e. two different types of T-periodic so-
lutions coexist (see Fig. 2). In addition, an interesting phenomenon is that 1-2-4-2-1 T-
periodic solutions occur periodically when T > 14.5, i.e. the dynamics of model (17) pe-
riodically recur as T increases, which means that only decreasing the period of predator
releases could bring the pest population down to small amplitudes of periodic solutions.
The above results reveal that the impulsive control period T plays a crucial role in dynam-
ics and consequently in pest control.

The results shown in Fig. 3 reveal the basins of attraction for two alternative attractors,
the blue and green areas are the two different types of T-periodic solutions, respectively.
These results clarify that the final stable states of model (17) depend on their initial den-
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Figure 4 Bifurcation diagrams of model (17) with respect to bifurcation parameter T . Parameter values are:
r = 0.69, k = 20, α = 0.65, C = 0.37, ω = 0.15, D = 0.62, δ = 0.4, h = 0.17, λ1 = 0.65, λ2 = 1.2, θ = 0.75

Figure 5 Two coexisting attractors of model (17) with T = 21.1. The other parameter values are identical to
those in Fig. 4. The initial conditions are: (A – C)(x0, x0) = (1, 0.5); (D – F)(x0, x0) = (2.5, 1.5)

sities. This reveals the initial sensitivity of the model and the initial value dependence on
the pest control. It also shows the importance of frequent monitoring of pest population
in the process of pest control.

To further investigate the effect of the impulsive period T on the dynamical behaviour
of system (17), consider the results shown in Fig. 4 which reveal that model (17) has
more complex and interesting dynamic behaviour including period-doubling bifurcation,
chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows with
increase of pulse period T . Meanwhile, bifurcation analyses also indicate that multiple
attractors can coexist for a wide range of parameters. For example, Fig. 5 shows that a
T-periodic solution coexists with a 6T-periodic solution when T = 21.1. If we choose dif-
ferent initial conditions (x0, y0) = (1, 0.5) and (x0, y0) = (2.5, 1.5), the stable attractors are
the T-periodic solution and 6T periodic solution, respectively. If we fix all other param-
eter values as those in Fig. 4 and Fig. 6, it further shows that the solutions with different
initial values will approach different amplitudes of attractors.
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Figure 6 Basin of attraction of the two attractors of model (17) with the parameters identical to those in Fig. 4.
The blue and green points are attracted to the attractors shown in Fig. 5 from top to bottom, respectively

Figure 7 Bifurcation diagrams of model (17) with respect to bifurcation parameters λ1 and λ2. Parameter
values are: r = 2.79, k = 10, α = 1.2, c = 0.37, ω = 0.25, D = 0.59, δ = 0.69, h = 0.27, θ = 1.65,
T = 21.(A – B)λ2 = 5.2; (C – D)λ1 = 1.25

In order to show how the nonlinear impulsive interventions affect the dynamics of model
(17), we choose λ1 as a bifurcation parameter and fix all other parameters as shown in
Fig. 7(A) and (B). A period-doubling bifurcation occurs when λ1 approaches 0.2, which
means that a T-periodic solution disappears suddenly and a 2T-periodic solution occurs
at this point. As λ1 further increases, the 2T-periodic solution becomes unstable and
the period-doubling bifurcations lead model (17) to chaotic dynamics. Following these,
period-halving bifurcations result in various periodic solutions with different periods as
λ1 increases. When λ1 > 5, there is a transition from periodicity to period-doubling bi-
furcation to a chaotic region with some narrow periodic windows. When λ1 ≈ 13.1, the
chaos bands disappear suddenly and a 2T-periodic solution occurs. With λ1 in the range
[13.1, 20], there are period-doubling bifurcation and period-halving bifurcations again.
Meanwhile, we choose λ2 as a bifurcation parameter as shown in Fig. 7(C) and (D). With
λ2 increasing, bifurcation analyses indicate that model (17) also exhibits very complex dy-
namics including period-doubling bifurcation, period-halving bifurcation, multi-stability
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Figure 8 Bifurcation diagrams of model (17) with respect to bifurcation parameter δ . Parameter values are:
r = 2.26, k = 13.6, α = 1.2, c = 0.37, ω = 0.25, D = 0.59, δ = 0.38, h = 7.8, λ1 = 1.25, λ2 = 5.5, θ = 1.65, T = 18. The
red results are generated from initial values (x0, y0) = (2.7, 2.5) and the blue results are generated from initial
values (x0, y0) = (2.5, 2.7)

and chaos. Numerical simulations show that the nonlinear impulsive interventions have a
substantial influence on the dynamics of model (17) and cause the pest and natural enemy
populations to oscillate periodically with different periods and amplitudes, which makes
it more difficult for pest management decisions.

The results shown in Fig. 8 reveal how the maximal mortality rate due to the pesti-
cide δ affects the dynamics of model (17). There exists a very interesting phenomenon of
multiple attractors with a chaotic attractor and a periodic attractor always coexisting as
parameter δ increases and in relation to changes of initial densities of pest and natural
enemy populations. The red branches are generated from initial values (x0, y0) = (2.7, 2.5),
with the parameter δ increasing, the model presents transitions from 2T-periodic solu-
tions to chaos by period-doubling bifurcation. However, the blue branches are generated
from initial values (x0, y0) = (2.5, 2.7), the model displays transitions from chaotic solu-
tions to 2T-periodic solutions by period-halving bifurcation as the parameter δ increases.
Note that period-doubling bifurcation and period-halving bifurcation occur in a dualism
as parameter δ increases. In particular, if we choose initial values (x0, y0) = (2.7, 2.5) and
(x0, y0) = (2.5, 2.7) respectively, 2T-periodic solutions via period-doubling bifurcation and
4T-periodic solutions via period-halving bifurcation coexist when δ = 0.31 (see Fig. 9).
Further, Fig. 8 reveals that the model could approach chaos or stable attractors with dif-
ferent initial values when parameter δ is fixed, which further proves that initial densities of
pest and natural enemy populations are crucial for pest control. Similarly, if we choose h as
a bifurcation parameter, Fig. 10 also shows that different amplitudes and period of attrac-
tors always coexist as parameter h increases and in relation to changes of initial densities
of pest and natural enemy populations. When we choose initial values (x0, y0) = (2.7, 2.5),
a series of period-halving bifurcation lead model to go from chaos to stable attractors as
parameter h increases. If we choose initial values (x0, y0) = (2.5, 2.7), model (17) under-
goes a series of period-doubling bifurcation ending in a chaotic attractor as parameter
h increases. We can see that period-doubling bifurcation and period-halving bifurcation
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Figure 9 Two coexisting attractors of model (17) with δ = 0.31. The other parameter values are identical to
those in Fig. 8. The initial conditions are: (A – B)(x0, x0) = (2.2, 2.9); (C – D)(x0, x0) = (2.7, 2.5)

Figure 10 Bifurcation diagrams of model (17) with respect to bifurcation parameter h. Parameter values are:
r = 2.26, k = 14, α = 1.2, c = 0.37, ω = 0.25, D = 0.59, δ = 0.31, λ1 = 1.25, λ2 = 5.2, θ = 1.65, T = 18. The red
results are generated from initial values (x0, y0) = (2.5, 2.7) and the blue results are generated from initial values
(x0, y0) = (2.7, 2.5)

occur in a dualism as parameter δ increases as well. Further, when fixing initial values
and varying insecticide dosages (the maximal mortality rate δ or half saturation constant
h), the model may have very complicated and interesting dynamic behaviour, such as the
same types of periodic solutions that coexist, different types of periodic solutions coexist-
ing, periodic solutions and chaotic attractors coexisting, which implies that the low initial
densities of natural enemy will lead pest populations to chaos or to pest outbreaks or to
small amplitude attractors with the parameters δ and h varying. Obviously, solutions with
small amplitudes are biologically desirable. All these results have shown that nonlinear im-
pulsive interventions have a substantial influence on the dynamics of model (17), which
implies that the dynamics of the model are not only dependent on the selection of the
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initial densities of pest and natural enemy populations, but are also closely related to the
system’s parameters. Choosing appropriate parameters and initial densities can help us to
design control strategies and to make appropriate management decisions.

6 Conclusion
The numbers of natural enemies to be released must be dependent on the densities of pest
populations in the field. To show this, we focus on a generalised predator–prey model with
a nonlinear impulsive control strategy. The existence and global stability of the pest-free
periodic solution were addressed in detail, and the condition for permanence of the sys-
tem was given. When T = T∗, the trivial periodic solution loses its stability and a stable
nontrivial periodic solution emerges via a supercritical bifurcation once a threshold con-
dition is reached. To verify the main results obtained and to study the effects of parameter
space on the threshold conditions, we further considered the Holling type II functional
response function as an example.

One of the main purposes of this paper is to understand how nonlinear impulsive control
affects the dynamics of the system, which will affect the success or failure of pest control
strategies. To achieve these aims, we chose the nonlinear impulsive control parameters as
bifurcation parameters, and our results indicated that nonlinear impulsive control makes
the dynamical behaviour of systems change more dramatically and become more com-
plicated. For example, bifurcation diagrams in Figs. 1 and 4 indicate that system (17) has
more complex and interesting dynamic behaviour, including period-doubling bifurcation,
chaotic solutions, chaos crisis, period-halving bifurcations, periodic windows and multi-
stability (see Figs. 2 and 5). In particular, bifurcation diagrams reveal that the dynamic
behaviour of the system depends on the initial densities of pest and natural enemy popu-
lations, which can help us to design strategies for controlling the pests by varying amounts
and frequencies of insecticide applications.

Furthermore, the bifurcation diagram with respect to the maximal mortality δ and half
saturation constant h reveals that the models with nonlinear impulsive interventions have
very complicated and interesting dynamic behaviour, such as period-doubling bifurcation
and period-halving bifurcation co-occurring, which implies that the model can be dramat-
ically affected by small changes in the initial values or in the value of a relevant control pa-
rameter. In particular, there exists an interesting phenomenon whereby period-doubling
bifurcation and period-halving bifurcation coexist as parameters δ and h increase, which
implies that it is a very difficult task to control a pest’s population as the pest population
could have outbreaks in a quite complex way. So it is crucial for pest control to choose ap-
propriate control parameters and initial values. Successful pest control depends not only
on the initial densities of the pest and natural enemy populations, but also on the param-
eters related to the nonlinear impulsive interventions.

Our model with nonlinear impulsive interventions has more interesting dynamics and is
more realistic than models with linear impulsive control, and nonlinear regulatory factors
should be taken into account when considering IPM. Furthermore, it is believed that the
methods developed in the generalised systems could be widely used to population dynam-
ics in relation to glucose–insulin monitor model, tumour-immune dynamic model and
epidemic model. However, it will also be more realistic if we consider delayed responses
and residual effects of pesticides when these are also used as part of IPM on nonlinear
impulsive control. Such future research will involve more complicated analyses of model
dynamics.
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