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Abstract
This manuscript considers a nonlinear coupled system under nonsingular kernel type
derivative. The considered problem is investigated from two aspects including
existence theory and approximate analytical solution. For the concerned qualitative
theory, some fixed point results are used. While for approximate solution, the Laplace
transform coupled with Adomian method is applied. Finally, by a pertinent example
of prey–predator system, we support our results. Some graphical presentations are
given using Matlab.
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1 Introduction
In the last few decades significant interest has been shown in fractional calculus by re-
searchers of different disciplines of science and engineering. The concerned area has many
applications in modeling various real world problems, since fractional derivative is usu-
ally a definite integral including classical derivative as a special case. Also it geometrically
produces the whole spectrum or accumulation of a function. The aforesaid derivative has
been defined by a number of ways. In other words, various mathematicians have given
different definitions of fractional order derivative [1]. The most notable definitions were
given by Riemann–Liouville and Caputo, those definitions have been increasingly used
in applications in the last decades, for details, see [2–4]. In fact fractional order differ-
ential equations (FODEs) have many applications in mathematical modeling of chemical,
physical, and biological phenomena. The mentioned differential operator has the ability
to describe many features of hereditary and memory materials more explicitly than that
of classical order. Therefore significantly FODEs have been used in the last few decades in
modeling various processes and phenomena (see for applications [5–16]).

Mathematical models are strong material to investigate many phenomena. For instance,
occasionally in the previous time in many localities, unforeseen large potion in fish and
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animal takeover had been reported. This phenomenon gave birth to the well-known prey–
predator relationship. Therefore, in 1920, Lotka and Volterra introduced their famous
equations known as prey–predator model. Here we state that the concerned model given
in (1) deals with the relationship of prey and predator in an ecological system as follows:

⎧
⎪⎪⎨

⎪⎪⎩

u̇(t) = a1(t)u(t) – b1(t)v(t)u(t) = ϕ1(t, u(t), v(t)),

v̇(t) = a2(t)u(t)v(t) – b2(t)v(t) = ϕ1(t, u(t), v(t)),

u(0) = α, v(0) = β ,

(1)

where α,β ≥ 0. Further the nonlinear functions ϕi (i = 1, 2) : J ×R2 →R are continuous.
Here we remark that u(t), v(t) represent the prey and the predator populations at time
t respectively. Further a1 is the growth rate of species u, while b1 denotes the impact of
predation on u̇/u. Also b2 is the death rate of v and a2 is the growth rate (or immigration) of
the predator population in response to the size of the prey population. The coefficients are
linear continuous and bounded functions. So far the concerned model has been studied
for various purposes and from various directions; for details, we refer to [17–19]. Also,
model (1) has been investigated by using the homotopy perturbation method for ordinary
Caputo derivative in [20].

Here, we remark that the definitions of fractional derivative were further extended from
singular kernel to nonsingular kernel by Caputo and Fabrizio [21] in 2016. This definition
has got much attention in the last few years. Some valuable results were investigated in
[22, 23]. Further the aforesaid definition was generalized by replacing exponential kernel
with Mittag-Leffler kernel. In this regard lots of research articles have been published, we
refer to [24–26].

Motivated by the aforesaid work, in this work we undertake model (1) under CFFD as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

CF Dω
t u(t) = a1(t)u(t) – b1(t)u(t)v(t),

CF Dω
t v(t) = a2(t)u(t)v(t) – b2(t)v(t),

u(0) = α, v(0) = β ,

(2)

where α,β ≥ 0 and ω ∈ (0, 1].
In the last two decades, to handle FODEs for their exact or numerical solutions, vari-

ous techniques, methods, and theories were established. Because finding exact analytical
solutions for every differential equation of fractional order is quite a difficult job, the well-
known techniques including homotopy perturbation method, Adomian decomposition
method, and many other numerical methods were utilized for the required results (for
details, see [27]). As we know, the mentioned techniques were increasingly adopted for
ordinary FODEs, but there are very few articles which study decompositions techniques
coupled with integral transform for FODEs under CFFD, see [28–32].

Therefore, here, we construct existence theory of solution to the following semi-
analytical results to the coupled system with t ∈ J = [0, τ ] for the given prey–predator
system in (2).

First we establish some qualitative results as the existence and uniqueness of the solution
corresponding to the model we have considered. Fixed point theory is used to get these
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results about solution due to Krasnoselskii and Banach. Also some approximate analytical
results are established via the Laplace transform and Adomian decomposition tools. The
concerned approximate results are illustrated by graphs via Matlab.

We arrange our paper as follows: In Sect. 1, we give introduction to the problem. In
Sect. 2, we recall some preliminaries. In Sect. 3, we establish the existence results of the
main work. In Sect. 4, we present general procedure for approximate solution. Finally, in
Sect. 5, we give examples and brief conclusion.

2 Preliminaries
Definition 1 ([22, 23]) Let ϕ ∈ H1(0, τ ), τ > 0, ω ∈ (0, 1), then the CFFD is defined as
follows:

CFDω
t
(
ϕ(t)

)
=

M (ω)
1 – ω

∫ t

0
ϕ′(t) exp

[

–ω
t – ξ

1 – ω

]

dξ ,

M (ω) = 2ω
2–ω

is known as a normalization function and statistics M (1) = M (0) = 1. More-
over, if ϕ does not fall in H1(0, τ ), then the derivatives are given by

CFDω
t
(
ϕ(t)

)
=

M (ω)
1 – ω

∫ t

0

(
ϕ(t) – ϕ(ξ )

)
exp

[

–ω
z – ξ

1 – ω

]

dξ .

Definition 2 ([22]) For ϕ ∈H1(0, τ ), τ > 0, the integral in Caputo–Fabrizio form is given
as follows:

CFIω
t
[
ϕ(t)

]
=

(1 – ω)
M (ω)

ϕ(t) +
ω

M (ω)

∫ t

0
ϕ(ξ ) dξ , ω ∈ (0, 1].

Definition 3 ([22]) The Laplace transform of CFDω
t u(t) with M (ω) = 1 is given as follows:

L
[CFDω

t u(t)
]

=
sL [u(t)] – u(0)

s + ω(1 – s)
, s ≥ 0,ω ∈ (0, 1].

Note Corresponding to existence theory, let J = [0, τ ] and 0 ≤ t ≤ τ < ∞, we define the
space as Z = C([0, τ ] ×R2,R) equipped with the norm ‖(u, v)‖ = supt∈J [|u(t)| + |v(t)|].

Theorem 1 ([33]) Let B be a convex subset of Z, and we have two operators F, G with
1. Fw + Gw ∈ B for every w ∈ B;
2. F is a contraction;
3. G is continuous and compact.

Then the operator equation Fw + Gw = w has at least one solution.

3 Existence and uniqueness results of fractional order predator–prey
equations

In this part some results about existence and uniqueness are given about the solution of the
proposed model (2). Upon using integral operator CFIω

t on both sides of (2) and putting
the initial conditions, one has

⎧
⎨

⎩

u(t) = α + (1–ω)
M (ω)ϕ1(t, u, v) + ω

M (ω)�(ω)
∫ t

0 (t – ξ )ω–1ϕ1(ξ , u(ξ ), v(ξ )) dξ ,

β(t) = β + (1–ω)
M (ω)ϕ2(t, u, v) + ω

M (ω)�(ω)
∫ t

0 (t – ξ )ω–1ϕ2(ξ , u(ξ ), v(ξ )) dξ ,
(3)
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which further may be written as

W(t) = W0 + 	
(
t, W(t)

) (1 – ω)
M (ω)

+
ω

M (ω)

∫ t

0
	

(
ξ , W(ξ )

)
dξ , (4)

where

W(t) =

⎧
⎨

⎩

u(t),

v(t),
W0 =

⎧
⎨

⎩

α,

β ,
	

(
t, W(t)

)
=

⎧
⎨

⎩

ϕ1(t, u, v),

ϕ2(t, u, v).
(5)

Now, to derive our results, we define the following assumptions:
(A1) There exist constants L	 > 0 such that, for each W, W̄ ∈ Z,

∣
∣	

(
t, W(t)

)
– 	

(
t, W̄(t)

)∣
∣ ≤ L	

[|W – W̄|];

(A2) There exist constants C	 , C	 > 0 and M	 > 0 such that

∣
∣	

(
t, W(t)

)∣
∣ ≤ C	 |W| + M	 .

Using (4) and (5), the operators are defined as follows:

F(W) = W0(t) + 	
(
t, W(t)

) (1 – ω)
M (ω)

,

G(W) =
ω

M (ω)

∫ t

0
	

(
ξ , W(ξ )

)
dξ .

(6)

Theorem 2 With the help of (A1) and (A2), the integral system (4) has at least one solution
provided that L	

M (ω) < 1.

Proof Let B = {W ∈ Z : ‖W‖ ≤ ρ,ρ > 0} be a closed and convex subset of Z, we need to
prove that F : B → B is a contraction. Let W – W̄ ∈ B, we have

‖FW – FW̄‖ = sup
t∈J

∣
∣
∣
∣(	

(
t, W(t)

)
–

(
	

(
t, W̄(t)

)) (1 – ω)
M (ω)

∣
∣
∣
∣

≤ (1 – ω)
M (ω)

L	 sup
t∈J

∣
∣W(t) – W̄(t)

∣
∣

≤ L	

M (ω)
‖W – W̄‖.

Hence F is a contraction.
For G to be compact and continuous, let any W ∈ B, we have

∥
∥G(W)

∥
∥ = sup

t∈J

∣
∣
∣
∣

ω

M (ω)

∫ t

0
	

(
ξ , W(ξ )

)
dξ

∣
∣
∣
∣

≤ τ

M (ω)
[C	ρ + M	 ] := �. (7)

From (7) we conclude that G is bounded. Also 	 is continuous, so is G. Along the same
lines, we can prove that G is equicontinuous by taking t1 < t2 ∈ J . By using Arzelá–Ascoli
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theorem, the operator G is completely continuous operator and also uniformly bounded
as proved already. Hence G is relatively compact. By Krasnoselskii’s fixed point theorem,
problem (4) has at least one solution. Consequently, the considered system 2 has at least
one solution. �

Theorem 3 Under assumption (A1), integral system (4) has unique solution if (1+τ )L
M (ω) < 1.

Consequently, the system under consideration has unique solution.

Proof Let us define T : Z → Z by

T(W) = W0 + 	
(
t, W(t)

) (1 – ω)
M (ω)

+
ω

M (ω)

∫ t

0
	

(
ξ , W(ξ )

)
dξ .

Let W, W̄ ∈ Z, we have

∥
∥T(W) – T(W̄)

∥
∥ ≤ sup

t∈J
(1 – ω)
M (ω)

∣
∣	

(
t, W(t)

)
– 	

(
t, W̄(t)

)∣
∣

+
ω

M (ω)
sup
t∈J

∫ t

0

∣
∣	

(
ξ , W(ξ )

)
– 	

(
ξ , W̄(ξ )

)∣
∣dξ

≤ (1 + τ )L
M (ω)

‖W – W̄‖. (8)

Hence T is a contraction and the concerned problem (4) has unique solution, and so the
considered model (2) has unique solution. �

4 Approximate solutions to predator–prey equations (2)
To compute the required approximate solution, for easiness, take M (ω) = 1. Using the
Laplace transform on both sides of system (2), we have

⎧
⎨

⎩

L [u(t)] = u(0)
s + s+ω(1–s)

s L [a1u(t) – b1u(t)v(t)],

L [v(t)] = v(0)
s + s+ω(1–s)

s L [a2u(t)v(t) – b2v(t)].
(9)

Now assume the solution in the series form as follows:

u(t) =
∞∑

q=0

uq(t), v(t) =
∞∑

q=0

vq(t). (10)

Further expressing the nonlinear terms u(t)v(t) by using the decomposition method

u(t)v(t) =
∞∑

q=0

Aq(u, v), (11)

where the “Adomian polynomial” Aq(u, v) can be defined as

Aq(u, v) =
1
q!

dq

dλq

[ p∑

j=0

λjuj(t)
p∑

j=0

λjvj(t)

]∣
∣
∣
∣
∣
λ=0

.
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Hence in view of (10) and (11), system (9) becomes

⎧
⎨

⎩

L [
∑∞

q=0 uq(t)] = u(0)
s + s+ω(1–s)

s L [a1(t)
∑∞

q=0 uq(t) – b1(t)
∑∞

q=0 Aq(u, v)],

L [
∑∞

q=0 vq(t)] = v(0)
s + s+η(1–s)

s L [a2(t)
∑∞

q=0 Aq(u, v) – b2(t)
∑∞

q=0 vq].
(12)

From (12), we equate terms as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L [u0(t)] = u0
s , L [v0(t)] = v0

s ,

L [u1(t)] = s+ω(1–s)
s L [a1(t)u0 – b1(t)A0(u, v)],

L [v1(t)] = s+ω(1–s)
s L [a2(t)A0(u, v) – b2(t)v0],

L [u2(t)] = s+ω(1–s)
s L [a1(t)u1 – b1(t)A1(u, v)],

L [v2(t)] = s+ω(1–s)
s L [a2(t)A1(u, v) – b2(t)v1],

L [u3(t)] = s+ω(1–s)
s L [a1(t)u2 – b1(t)A2(u, v)],

L [v3(t)] = s+ω(1–s)
s L [a2(t)A2(u, v) – b2(t)v2],

...

L [uq+1(t)] = s+ω(1–s)
s L [a1(t)uq – b1(t)Aq(u, v)],

L [vq+1(t)] = s+ω(1–s)
s L [a2(t)Aq(u, v) – b2(t)vq], q ≥ 0.

(13)

Case I:
In the first case we take coefficients as constant functions a1(t) = a1, b1(t) = b1, c1(t) = c1,

d1(t) = d1 in (13). After performing simplification, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(t) = α, v0(t) = β ,

u1(t) = [a1α – b1αβ](1 + ω(t – 1)),

v1(t) = (1 + ω(t – 1))[a2αβ – b2β],

u2(t) = [(a1 – b1β)(a1α – b1αβ) – b1α(a2αβ – b2β)](1 + ω2(t – 1)),

v2(t) = [(αa2 – b2)(a2αβ – b2β) + a2β(a2αβ – b2β)](1 + ω2(t – 1)),

u3(t) = [(a1 – b1β)((a1 – b1β)(a1α – b1αβ) – b1α(a2αβ – b2β))

– b1α((αa2 – b2)) – b1(a1α – b1αβ)(a2αβ – b2β)](1 + ω3(t – 1)),

v3(t) = [(a2α – b2)((αa2 – b2)(a2αβ – b2β) + a2β(a2αβ – b2β))

– b1α(a2αβ – b2β)) + a2(a1α – b1αβ)(a2αβ – b2β)

+ a2β((a1 – b1β)(a1α – b1αβ)](1 + ω3(t – 1))

(14)

and so on. In this way the other terms are computed.

Case II:
Here, we take some coefficients as linear functions a1(t) = t, b2(t) = t and a2 and b1 are

constants. We obtain the resultant solution as follows:

⎧
⎪⎪⎨

⎪⎪⎩

u0(t) = α, v0(t) = β ,

u1(t) = α(t + ω( t2

2! – t)) – b1αβ(1 + ω(t – 1)),

v1(t) = (1 + ω(t – 1))a2αβ – β(t + ω( t2

2! – t)),

(15)
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and so on. The remaining terms may similarly be computed. The required solutions in
both cases will be written as

⎧
⎨

⎩

u(t) = u0 + u1(t) + u2(t) + u3(t) + · · · ,

v(t) = v0 + v1(t) + v2(t) + v3(t) + · · · .
(16)

5 Results and discussion
Here, by using Matlab, we present solutions (16) up to initial ten terms by graphs using the
numerical values for parameters as given in Table 1. The solutions are displayed against
various fractional orders in Figs. 1 and 2, respectively.

Further on using Matlab, we present solutions (16) up to initial ten terms by graphs
using the numerical values for parameters as given in Table 2 in Case II. The solutions are
displayed against various fractional orders in Figs. 3 and 4, respectively.

From Figs. 1, 3 we see that the population u is deceasing at different rate due to fractional
order. The smaller the order, the faster the decay process, and hence stability occurs at
smaller order first and then at greater one, as compared. In the same fashion the population
v grows in Figs. 2 and 4, respectively, at different rate due to fractional order. The solution
tends to the classical (integer) order solution when ω → 1. The solution obtained here for
CFFD is close to the solution obtained by using the homotopy method in [20] by using
Caputo ordinary derivatives. We have presented the solutions for both cases, i.e., Case I
and Case II, in the aforesaid figures. From the figures, we conclude that CFFD can also be
used as a powerful tool to investigate such systems.

Table 1 Values of parameters taken for Case I

Parameters Description of parameters Numerical value

a1 The growth rate of prey 0.009978
b1 The rate at which predators destroy prey 0.00342
a2 The death rate of predators 0.00342
b2 The growth rate of predators 0.000765
α The initial population of prey 18
β The initial population of predator 14

Figure 1 Graphical representation of the approximate solution u for different fractional order taking initial ten
terms of the series in Case I
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Figure 2 Graphical representation of the approximate solution v for different fractional order taking initial ten
terms of the series in Case I

Table 2 Values of parameters taken for Case II

Parameters Description of parameters Numerical value

a1(t) The growth rate of prey t
b1 The rate at which predators destroy prey 0.00342
a2 The death rate of predators 0.00342
b2(t) The growth rate of predators t
α The initial population of prey 18
β The initial population of predator 14

Figure 3 Graphical representation of the approximate solution u for different fractional order taking initial ten
terms of the series in Case II

6 Conclusion
Since predator–prey models are debatably the building blocks of the bio- and ecosystems
in which both the species depend on each other, we have taken two sets of parameter val-
ues in Tables 1 and 2. We have graphed the approximate solutions for different fractional
order in Figs. 1–4, respectively. We see that the population of predators increases as shown
in Figs. 2, 4, respectively. The growth rate is faster at smaller fractional order, and as the
order increases, the solution behavior coincides with the solution at integer order. Conse-
quently, the population of prey goes on deceasing as in Figs. 1 and 3. The decay rate is faster
on smaller fractional order, while slower on greater order. Hence, the dynamical system
addressing the relationship between prey and predator has been investigated under CFFD
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Figure 4 Graphical representation of the approximate solution v for different fractional order taking initial ten
terms of the series in Case II

from qualitative and analytical aspects. By using fixed point approach, the existence of the
model has been verified. Also, by combining the Laplace transform with the decomposi-
tion method, some approximate analytical results have been established under two cases.
In the first case for constant coefficients and in Case II the concerned results have been
obtained for variable coefficients. Hence we concluded that taking few terms of the series
solutions we can efficiently describe the model under investigation.
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