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Abstract

In this paper, certain Hermite—Jensen—Mercer type inequalities are proved via
conformable integrals of arbitrary order. We establish some different and new
fractional Hermite—Hadamard—-Mercer type inequalities for a differentiable function f
whose derivatives in the absolute values are convex.
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1 Introduction

The concept of convex function differs from other function classes with its features such
as high application areas in mathematics, statistics, and many other applied sciences. This
is due to its special useful definition having geometric interpretation. Moreover, it is one
of the indispensable parts of inequality theory and has become the main motivation point
of many inequalities.

Although the concept of convex function has a useful place in many fields of mathe-
matical analysis and statistics, it has revealed its main importance and effectiveness in
the field of inequality theory with convex analysis. Many classical and analytical inequali-
ties, especially Hadamard’s inequality, Jensen’s inequality, and Steffensen’s inequality, have
been achieved with the help of this concept. Detailed information and effectiveness of this
function class can be found in [1-6].

LetO<p; <pg <---<puy andlet & = (&,&,,...,&,) be nonnegative weights such that
Y7, & = 1. The famous Jensen inequality (see [7]) in the literature states that if Y is a

convex function on the interval [a, b], then

(S s) = (L) (L)
i=1 i=1

forall u; € [#,%]and all & €[0,1] (i=1,2,...,n).

In 2003, Mercer gave a variant of Jensen’s inequality (see [8]) as follows.
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Theorem 1.1 IfY is a convex function on [0, V] , then

(049 =Y Em) < YO + Y(@) - Y &7 () (12)

i=1 i=1
Yu; €0, and all & € 0,1] (i=1,2,...,n).

Based on this useful inequality, several papers have been performed. One of them can
be stated in Matkovic et al. This study includes some new findings on Jensen’s inequality
of Mercer type for operators with applications [9]. Then, in 2009, Mercer’s result was ex-
panded to higher dimensions by Niezgoda’s paper in [10]. Recently, notable contributions
have been made on Jensen’s Mercer type inequality. In 2014, Kian gave a concept of Jensen’s
inequality for superquadratic functions [11]. Therefore, Anjidani proved some motivating
results on reverse Jensen—Mercer type operator inequalities and Jensen—Mercer operator
inequalities for superquadratic functions (see [12, 13]). Ali and Khan generalized integral
Mercer’s inequality and integral means in [14].

Another important inequality that characterizes convex functions is Hermite—
Hadamard inequality, that is, if a mapping Y :/ € % — 3 is a convex function on J and
0,9 €],6 <9, then

<—— | TMWdr<
5 () dxr =<

r 0+0 1 v Y(0)+ Y(9)
< )_0—9 [ 2

(see [15—18] for the fractional setting). Fractional calculus, one of the areas where inequal-
ity theory has benefited most in recent years, is an area that continues its development with
a high acceleration by defining new fractional derivative and integral operators. Operators’
applications in various fields, such as economics, applied mathematics, engineering, and
mathematical biology, add strength to fractional analysis (see [19-26]).

Now, we recall the definition of conformable integral of arbitrary order including the

higher order case, on which our proven inequalities will be based.

Definition 1.1 ([27]) Letwa € (n,n+1] and set 8 = « —n, then the left conformable operator
starting at € if order « is defined by

(1)) = [ = =00 000 di (13)

and right conformable fractional integral is defined by

U _ 1 ’ n -1
(hd)e) = f (1= k)" - )P () d, (1.4)

ifoa=n+1,then=a-n=n+1-n=1,wheren=0,1,2,3,dots, and hence (I°¢)(x) =
(]ﬁﬂ‘p)(’()'

Remark 1.1 Notice that the conformable derivatives of order # > 1 have memory effect

with kernel whose power law is integer.
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In this article, by using the Jensen—Mercer inequality, we prove Hermite—Hadamard
type inequalities for fractional integrals, and we establish some new conformable inte-
grals connected with the left and right sides of Hermite—Hadamard type inequalities for
differentiable mappings whose derivatives in absolute value are convex. Moreover, there
will be further equalities for differentiable functions using Holder inequality and power

mean inequality.

2 Hermite-Hadamard-Mercer type inequalities for conformable integrals
By using Jensen—Mercer inequality, Hermite—Hadamard type inequalities can be ex-

pressed via conformable integrals as follows.

Theorem 2.1 Let ¢ be a convex function. Then the following conformable integral inequal-
ities hold:

n+v IMNa+1)
o(0+9-"3") <5 ran

x {187 g0 + 0 — 1)+ L0 + 9 - v)}

<¢(0) + () - (M) (2.1)
and
w+v [(a+1) v
4,(9 o2 ) <06) + 9(0) — 5o S S 190) + L)
<6(0) + p(9) —¢><“; ”) (2.2)

Y, v € [0,9], a >0, and T'(-) is the gamma function.

Proof Using the convexity of ¢, we can write

T+w 0+ -1+0+0-w 1
¢><9+z9— > ):¢< 5 >§§(¢(9+ﬁ—r)+¢>(9+0—w))

for all 7,vw € [A,¥]. By changing the variables T =k + (1 —k)v and w = (1 — k)u + kv,
k € [0,1], we have

2¢<9+ﬁ—“;”

) <p(@+9—(kpu+1-x)))+d(0+9 — (1 -k +xv)).
Multiplying both sides by %K”(l —k)*""! and then integrating the resulting inequality

overk € [0,1]. Letx = (0 + 9 — (ke + (1 —k)v)), alsolet w= (0 + & — (1 — k) p + V), we
get

2 1
¢<9 +0 - MH))—/ K"(1 = )"V die
0

2 n!

1

<= Kn(l _ K)a—n—l
n! 0
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X (PO +9 - (kp+(1-k)))+9(0+0 — (A -x)p +kv)))dk
INa+1)

T [@+09-) _ O+9-p) _
=< 2(v—u)“F(Ot—n) {Ia ¢(9 + M) + " Ia¢(9 0 V)},

where fol kK"(1-k)*"Vdk =B(n+1,0—n) = %, and so the first inequality of (2.1)

is proved.
Now, to prove the second inequality of (2.1), we first remind that if ¢ is a convex function,
then for « € [0, 1] it gives

PO+ — (ki +(L—k)v)) <d0) + d(®) — [kp(w) + (1 - k)p(v)] (2.3)
and

PO +0 - ((L—r)+1v)) <d©) +¢(¥) - [(1 - 1)p(1) + kp(v)]. (2.4)

By adding the inequalities of (2.3) and (2.4), we have

p(0+9 - (kp+(1—k)))+9(0+9 — (1 -r)p +kv))
<2(¢(0) + ¢()) — (¢(1) + $(v)).

Multiplying both sides by %K”(l — k)*"1 and then integrating the resulting inequality
over k € [0, 1], we have

%Al K"(1 _K)a,n,l((p(g +9 — (K/L +(1 —K)v)) + d)(@ + 0 - ((1 — Kl +K\)))) dx

1
< {2060+ 50) - (000 + 90| [ w1

R o —Z()‘z;(i)— . IOV p(0 + 9 — 1) +0+01 [, (0 + 9 —v))
<{2(¢(6) + () = (p(w) + p(v)) }. (2.5)

Multiplying 3 to (2.5), we have

o +1)

S0 T 0+ 2 =) g0+ 0 - v)

o

P(u) + ¢(v)
< (¢(0) +9()) - —
After further simplification we get the required result. Now, in order to prove (2.2), we

employ Jensen—Mercer’s inequality as follows:

#(1) + (@)

5 (2.6)

¢<9+ﬁ—”7‘“) <6(0) + $(9) -

V1,0 € [0, ).

Page 4 of 24
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Now, by change of variables t =k + (1 —k)v and w = kv + (1 — k), Y, v € [a,b] and
k €[0,1] in (2.6), we have

dlep+(1—k)v) + Py + (1 - K)/A)'

¢(9+ﬁ—%)s¢(9)+¢w)— .

Multiplying both sides by %K"(l —k)*"! and then integrating the resulting inequality
over k € [0,1], we have

1 1
¢<9+ﬂ-’“”>—/ K1 = )1
2 n! 0

1
S%/O Kn(l_K)a_n_l[d’(e)+¢(z9)]d;(

~ S (L =)* Bl + (1= 1)v) + plew + (1= ic))) dic
2

w+v I +1) v
¢<9 + ¥ - T) < ¢(9) + ¢(l9) - m{ﬁ;q&(v) + Ia¢(:u’)}:

’

and so the first inequality of (2.2) is proved.
Now, for the proof of the second inequality of (2.2), we first note that if ¢ is a convex
function, then for « € [0, 1]

¢(M+v> :¢<K/,L+(1—K)U+KU+(1—K)/L)

2 2

_ P+ 1 -cv) + ¢y + (1 - x)u)
= 2 .

Multiplying both sides by Z«"(1 — x)*~"~! and then integrating the resulting inequality
over k € [0, 1], we have

[T, Mo +1)
* VI, .
0(15Y) = o 100+ o)
Multiplying by (-1), then adding ¢(0) + ¢(%) on both sides of the inequality, we get the
desired result. O

Remark 2.1 For @ = n+ 1 in Theorem 2.1, we get Theorem 3 proved in [28] in the integer
case order.

Theorem 2.2 Let 0 <6 < ¥, ¢ : [0,0] = N be a positive function and ¢ € L1[0,V]. Also,
suppose that ¢ is a convex function on [0,9], ¢’ on (0,9) and o € (0,1). Then the following
conformable integral inequalities hold:

w+v 2% 1N + 1)
o(000-"3") = e

ALY @0 +9 - ) + (7T L) (60 + 0 - v))

P(u) + ¢(V))

> (2.7)

<)+ o) - (

Yu,velb,9], a>0,and () is the gamma function.

Page 5 of 24
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Proof To prove the first part of the inequality, by using the Jensen—Mercer’s inequality and
by changing the variables 7 = £u + %*v and w = 21 + &v, k € [0,1], we can write the
following inequality for Vt,w € [0, ¥]:

2¢<9+ﬂ—“—+”) 5¢>(9+z9—(E;HZ_Kv>>+¢<9+ﬂ—<2iu+fu)>.
2 2HT 2 'y

Multiplying both sides by %K”(l — k)* 1 and then integrating the resulting inequality

over k € [0,1],let w= (6 + 9 — (5 + 2’T"v)) andx=(0 + 9 — 2%(“ + 5V)), we have

2 1
—¢>(9 s BT ”)/ K1 - 1) de
n! 2 0

x (¢(e+ﬁ—(§u+2;"u)>+¢<9+ﬂ—(2_TKu+gv)))d/<,

Za—lr(a + 1) 6+19—% g_*_,}_%
= oo e )@@ 2 =) (7T L)(#6 +9 -0},

and so the first inequality of (2.7) is proved.
Now, for the proof of the second inequality of the theorem, we first note that if ¢ is a
convex function, then for « € [0, 1] it gives

¢>(9 - <§u ¥ 2;Kv>) <p(0) + () - [gcb(m + 2;"¢(v>] (2.8)
and
2— 2—
¢>(9 - (TKM ¥ gv)) <p(0) +p(?) - [ 2K¢(u) ¥ gqs(v)]. (2.9)

By adding the inequalities of (2.8) and (2.9), we have

0409 K 2—kK 0409 22—k K
o0 (e 355)) ro(ovo- (50 )

<2(4(0) + 9(®)) = (P(10) + B(v)).

Multiplying both sides by Z«"(1 — x)*~"~! and then integrating the resulting inequality
over k € [0, 1], we have

1 1
- / Kn(l _K)a—n—l
n! 0

x (¢(9+19—<§M+Z_Kv))+¢(9+ﬁ—(2%ﬂ+gv>)>dx

1
< 200+ 6(0) - (600 + )}, /0 (1 - )" d,
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2¢T ()
(v—w)T(a-n)

< {2(0(6) +9(®)) - (¢(1) + ¢(v)) }.

(Y @@+ 0 — ) + (L) (00 + 0 —v))

Multiplying the above inequality by %, we obtain

2°7 1T (¢ + 1)
(v—w)T(a —n){(

5%
0+9-55

I “)@w+ﬁ—u»+fwj¥gxw9+ﬁ—wn

< (6(0) + () - M.

After further simplifications, we get the required inequality. O

Lemma 2.1 Let ¢ : [0,9] — N be a differentiable mapping on (8,0) with 6 < 9. If ¢’ €
L[6, 9], then the following equation holds:

PO+ — )+ @+ —v) n!
2 2(v - )

B(n+1,a—n)

) {87 ) (60 + 0 = ) + (T L) (66 + 9 - 1))}

1
Y ;M / [Be(n+1,0—n)—Bi_(n+1,a-n)]¢' (0 +O — (kpn + (1 —x)v)) di
0
(2.10)
Yu,v e [b,8],a >0,k €[0,1], and B(-) is the beta function.
Proof It suffices to note that
1= 25 - 1y, (2.11)
where
1
I = / Bi_(n+1,a- n)gb/(e +9 - (/c,u +(1 —K)v))d/c
0
1 1-«
=f (f M”(l—x)“"1)¢/(0+19—(/</L+(1—K)v))d/c
o \Jo
=B(n+1,a—n)_¢(9+ﬁ_v)+ 1
V- (v —p)et!
0+9—p 1
X / ((6 +19—v)—w)"(w—(9+z9—v))a7n7 o(w)dw
0+ —v
B+l 0PV {10760 + 0 - ) (2.12)

V- (v —p)ert

and

L=

S

Bc(n+1,a—nm)g (0 +0 — (kp + (1—k)v))di

1 K
= /0 (/(; w1 - u)"“”_l)zi)/(e +9 - (kp+ (1 -x)v))di

Page 7 of 24
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PO+ — ) 1

=B(n+ 1,0 — -
Ore L= V- (v —p)e!

0+0—v
x / (w=(6+0 - )" (6 +0 —v)—w)* " p(w) dw
0+0—p

¢(9+0—u)_ n!

V—u (V _ M)ourl {9+0_'u101¢)(9 +0 - V)} (213)

=B(n+ 1,0 —n)

By combining (2.12) and (2.13) with (2.11), we get (2.10). a
Remark 2.2 If we set 4 =a and v = b in Lemma 2.1, we will get Lemma 3.1 in [29].

Theorem 2.3 Suppose that ¢ : [0,9] — R is a differentiable mapping on (0,9) with 6 <
O and ¢ € L[0,0]. If |¢'| is a convex function on 0,9 ],then the following inequality for
conformable integrals holds:

G+ -u)+dpO+1-v) n!

B(n+1,oz—n)¢ 5 _2(v—u)0‘

<) 00+ 9 -10) + (1) (000 +0 - )

_-w 9" ()] + |9'(v)] ) }

-2

5 (2.14)

Bn+1,a- n){ l9'©@)| + |6’ ()] - (
where Vi, v € [0,9], a >0, « € [0,1], and B(-, -) is the Euler beta function.

Proof By using Lemma 2.1 and Jensen—Mercer’s inequality, we have

G+ -u)+dpO+0-v) n!
2 2y - p)

’B(Vl+ 1l,a —n)¢

) 00+ 9 -10) + (1) (000 +0 - )

-
- 2

1
[/ B.(n+1,a —n)|¢/(9 +9 - (/cu +(1 —/c)v))|d/<
0

_/131_,((;1 +1o-n)|¢' (0 +9 - (kp+(1 —")V))’d"}
0

V-

<
-2

[11 _12]’

where

1

I =fOZBK(n+1,a—n){|¢/(9)| 6O = (1) + A=) W)])

1
+fl Be(n+La-m{|¢/0) +]¢' @) - (k] (W] + (1 -x)|¢')])},

b= —/:Bl_K(n s La—m){[¢'0)] + |60 - (c|o' ()] + (1 - )¢ W)]))

1
—ﬁ Bictns La—m){|¢'0)] + |¢/®)] - (]¢'(0)] + 1 =) ¢ 0)])).

2
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On the other hand, using the property of incomplete beta function, we have
Bi_ (n+1l,0a—n)—B.(n+ 1,0 —n)
1-k K 1-k
= f W' = )" dp - / W= dp = / W@ -w)*" dp,
0 0 K
where 0 <k < %;
B(n+1l,0a—n)-Bi_(n+ 1,0 —n)

K 1-« K
= / W' (= p)* " dp - / w1 =p)* " dp = / w'(L—p)* " du,
0 0 1-«

where % <k <1;

( ~ ) ' a ! ’ 1 / (1_ ) ,
<5k UO « {|¢(9)|+|¢(19)!—( o) + 55 |¢(‘,)|)}dt

1 —
e [l ool - (S50 ] s 5 w0 ) fad
0

2
|9 ()] + I¢’(V)I)}

< (V;M)B(n+1,a—”){|¢/(9)|+|¢/(ﬁ)’_( 2

which completes the proof. g

Remark 2.3 If we choose i = 6 and v = ¢ in Theorem 2.3, we get Theorem 3.1 for the case
of s=11in [29].

Theorem 2.4 Suppose that ¢ : [0,9] — R is a differentiable mapping on (0,9) with 6 <
O and ¢ € L[6,9]. If |¢' is a convex function on [0, ],then the following inequality for
conformable integrals holds:

PO +0 — )+ @+ —v) n!
2 T 20— p)e

IB(n + 1,0 —n)

xKﬁm”ﬂ¢W+ﬁ—uD+€mwhﬂwé+ﬂ—WH’

¢ ()17 + |¢’(V)|q) }
2

<(V—u)
- 2

‘I“I’hff’/(@)v +|o' )" - ( (2.15)

for all w,v € [0,9], @ >0, « € [0,1], and B(-,-) is the Euler beta function and ¥ =
1
3 pl- e

2 Jo (fy " (L= )y,

Proof By using Lemma 2.1 and Jensen—Mercer’s inequality, we have

PO+ — )+ @+ —v) n!
2 20— p)e

B(n+1,0 —n)

) {(I877) (00 + 9 = ) + (L) (66 + 9 =)}

Page 9 of 24
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1
< (U;M) |:/0 |BK(n+1,a—n)—Bl_K(n+1,a—n)|

X ’(l)’(@ +9 = (kp+ (1 —K)v))’d/c]

1 i
< (V;M) [/0 |BK(n+ l,a—n)—Bi_ (n+ 1,0[—1’1)|p]

< [|0/(6 + 0 = (ke + (1—)v))|" k],

1
g :/ |BK(n +1l,a-n)-Bi_(n+1,« —n)|p
0

1

= /2 (Be(n+1,00 —n) = Bi_(n + La — n))’
0

1
+/1 (Bc(n+1l,a—n)-Bi_(n+1,« —n))p
3

— % o n _ a—n—l)p ! / _ _ q
_2/0 (/0 w1 - ) /O|¢(9+19 (K/L+(1 K)v))’ dk.

After simplifications, we get the required result. d

Remark 2.4 1f we select u = 6 and v = ¥ in Theorem 2.4, we get Theorem 3.2 for the case
of s=11in [29].

Lemma 2.2 Let ¢ : [0,9] — R be a differentiable mapping on (0,9) with 6 < 9. If ¢ €
L[6, V], then the following equality for conformable integrals holds:

201y

(v — )

_B(n+1,a—n)¢(9+z9—ﬂ;rv>

1
:v;u[/o B,((n+1,a—n)¢’((9+z?—(gu+2;Kv)>dic
1
—/ Bk(n+1,a—n)¢/(9+ﬁ—(fu+Z_KM))dK} (2.16)
0 2 2

witha € (m,n+ 1], n=0,1,2,3..., where B,.(a, b) is an incomplete beta function and I is

[If;w_%ﬂ((p(e +9 - )+ I(’;W_%)_(qb(e +9-v))]

the Euler gamma function.

Proof Integrating by parts and changing the variables with u =0 + 9 — (Fu + 2_7" V), we get

the following results via conformable integrals:

! , K 2-k
11=/ Bn+lLa-nm¢' |0+ - —u+ v |dx
o 2 2

2 +
:_B(n+1,a—n)¢/(9+ﬂ-“ ”)
V- 2

1
n a-n-1 K 2-«
x/(; k"(1—k) ¢><9+z9—<§,u,+ 5 v))d/c




Butt et al. Advances in Difference Equations (2020) 2020:501

B(n+1,a—n)¢/(9+l9—u+v)
V- U 2

2 o+l 9+19_% ; Lt oa-n-1
X(V—M) ./em—v [u—(9+z9—v)] [(9+19— 5 )—u:| ¢(u) du

mn+La—m¢(9+0—”;”)

V-
Qo+ 1
‘GTQFHMQMW%%JQ+ﬂ_”) (2.17)
Similarly,
L= Mn+La—m¢(9+0—M+v>
V—u 2

2a+1

+ WV[!(IF{Q_H?_%)_*(H + 10— /,L)) (218)

Adding equations (2.17), (2.18) and multiplying with *Z, the proof is completed. O
Remark 2.5 If we set u =6 and v = ¥ in Lemma 2.2, we get Lemma 2.1 in [30].

Theorem 2.5 Suppose that ¢ : [6,9] — R is a differentiable mapping on (6,9) with 6 < 9.
If1¢’|1 is a convex function on [0, V], then the following inequality for conformable integrals
holds:

2971yt

(v — )™

_B(n+1,a—n)¢<9+z9—ﬂ;rv)‘

[IE)(;H?—%H((#(@ +0 - ,LL)) +1E19+19—%)—(¢(9 +0 - 1)))]

< RO + g )] - g ()] - Tl )]

+ (M O)] + 11/ )" - T | ¢/ )] - o (w)|") 7}, (2.19)
where
M=[B(n+1La-n)-Bn+2,a-n),
Fh:i@M+La—M—BM+&a—ML
HZ:iBHm+La—M—&Mn+Za—M+BM+&a—nﬂ
with q > 1.

Proof Taking modulus in Lemma 2.2 and using the well-known power mean inequality
with convexity of |¢'|7 and Jensen—Mercer’s inequality, we have

201y

(v—p)

_B(n+1,oz—n)¢>(9+z9—ﬂ;rv>‘

[1?9+1?—“T”)+(¢(9 +0 - M)) +1§)+§_%)_(¢(9 +0 - V))]

Page 11 of 24



Butt et al. Advances in Difference Equations (2020) 2020:501

1
5(]);“)[/ B,((}’l+1,0l—l’l)¢/(9+ﬁ—<§,u+2;KU>)dK
0
! , K 2-«
+/OBK(H+1,OI—I’I)¢<9+?9—<§V+ 5 M))di(]
<(V )|:</IB(n+1 oz—n)dfc)ltl{
— 0 K ’

Bi(n+1,0 —n)

- K
4
! (o9 K 2-«
( #oro-(5r5))
1 1-1
+<f BK(n+1,a—n)d/c>
0
B La—mlg (040 - (o 22
x(/0 (n+1l,aa—n ¢>( + —<5v+ 2 ,u))

1 -1
< (V;M)K/o BK(n+1,oz—n)d/c>

1 1
X |:(‘¢’(0)‘qf Be(n+ 1,00 —n)dt + |¢/(19)’q/ B (n+ 1,0 —n)dx
0 0

1 1 1
_|¢’(M)|q/ BK(n+1,a—n)§dK—|¢/(v)|q/ B,((n+1,oz—n)2;KdK)q
0 0

1 1
+ <|¢’(6’)|qf B,((n+1,a—n)d/c+|¢/(l9)|q/ B.(n+ 1,00 —n)dx
0 0

2 —

1 1
_‘¢’(v)|q/0 B,{(n+1,a—n)gd/<— ’(b’(u)’q/(; B.(n+1,0 —n)

Integrating by parts, we get the following equalities:

1
l'[:/ B(n+1,0 —n)dk
0
=[B(n+1,a—n)—B(n+2,a—n)],
1 K
le/ B (n+ 1,0 —n)—dxk
0 2
1
:E[B(n+1,a—n)—B(n+3,ot—n)],

- K

di

1 2
1'[2:/ B(n+1,a—n)
0

1
= Z[SB(n+ l,a —n)-4B(n+2,a —n) + B(n+3,a —n)].

Thus, combining (2.21) to (2.23) in (2.20), the proof is completed.

K
2

V)

(2.20)

(2.21)

(2.22)

(2.23)

Remark 2.6 1f we choose 1 =60 and v = ¥ in Theorem 2.5, we get Theorem 2.1 in [30].

Page 12 of 24
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Theorem 2.6 Suppose that ¢ : [0,9] — R is a differentiable mapping on (0,9) with 6 < 9.
If|¢'|? is a convex function on [0, 9], then the following inequality for conformable integrals

holds:
27l
m[[(9+19 By (¢(9+19 /'L)) 9+9 u+v ( (9+l9—l)))]
—B(n+1,a-n)¢(9+ﬁ_“;”)‘
LN , 1, 3, i
=@ {(\¢ ‘+’¢(ﬂ)|q—1‘¢(ﬂ)‘q—ﬂ¢(u)}q)
/ q / q 1 / q 3 ’ q %
(ol o Lol - 2ewl)’ ) 02
where

1
Q:/O (Be(n+ 1,0 —n))’ di

withllg+%:1,q>1.

Proof Taking modulus in Lemma 2.2 and using the well-known Hoélder inequality with
convexity of |¢'|? and Jensen—Mercer’s inequality, we have

201yt
(v—pu)e

_B(n+1,a—n)¢<9+z9—ﬂgv>‘

§(U;M)|:/01Bk(n+1,a n) (8+19 (
le(n+1a—n)¢<0+z9 (Ev+2 ))dic
o ’ 2 2
< (U;M)[(/OI(BK(M+1,a—n))de)p

1 :
x(/o ¢’<9+ﬁ—<gu+2;{v>)qu>

1 1 _
+</0 (BK(n+1,a—n))de> <¢/<9+19—(§v+221<u))
5(U;M){(/OI(BK(H+1,a—n))de>p

1
x [(|¢>’(e>|"+ @) = |¢'(w)]” /0 * -

1550y, (90 49 =) + I, s, (90 +9 - v))]

)
)

+

B

KdK?é
o))

After some basic calculations, we get the required result. O

1
(Il e - g0 [ 5 ae-
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Remark 2.7 If we set u =6 and v = ¥ in Theorem 2.6, we get Theorem 2.2 in [30].

Lemma 2.3 Let ¢ : [0,0] — N be a twice differentiable mapping on (0,9) with 6 < 9. If
@’ € L[0,V], then the following equality for conformable integrals holds:

201y

(v—p)*

_B(n+1,oz—n)¢<9+19— ”;V)

[[fémf%n (40 +0 - ) + 1&07%)7 (@6 +9-v))]

2 1
_ (”‘T“)/O [kBc(n+ 1,0 —n) = Bc(n+2,a —n)]

wlo (050 (“us220 ) so (040 - (“vs22%0)) lac (@25
2 2 2"

witha € (n,n+1],n=0,1,2,3,..., where B,(0,9) is an incomplete beta function and I is

the Euler gamma function.

Proof Integrating by parts and changing the variables with u = 6 + 9 — (S + 2%‘ V), we get

the following results via conformable integrals:

1 " K 2-k
11:/ [«Bc(n+ 1,0 —n)—Bc(n+2,a—n)]p"6+09 - StV di
0

_ 2 [B(n+1,a—n)—B(n+2,oz—n)]¢/(9 +0— “;”)

V-
2
[B(n+1,a—n)¢><(9+19—'u+v>
V- 2 V—u

1
n a-n-1 K 2-«
—/0 k"(1-k) ¢<0+19—<§u+ 5 v))d/c

_ 2 [B(n+1,a—n)—B(n+2,(x—n)]¢>’((9+19— u;v)

V-

2 2
——[B(n+1,ot—n)¢<9+z?—'u+v>

V- 2 vV—u

2 G- L2V " a-n-1 2u
_ / ’ [4—(6+0-v)] I S ah i ¢(u)——du

V=W Josp—v 2 (U_/J')a
:L[B(n+1,a—n)—B(n+2,a—n)]¢/<9+19—'u;rv>

m+v 4

_B(n+1,a—n)¢<9+z§‘— 5 )(V—M)2

2a+2
+ mn!(]fé+ 29_%)_(9 +9 - )). (2.26)
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Similarly,
I, = - [B(n+1,a—n)—B(n+2,a—n)]¢’<9+l9—ﬂ>
V-l 2
n+v 4
-B l,a - 0+ —
n+1,a n)¢( + 5 >(V—M)2
2a+2
+ mn!( (0_*_0_%)_(0 + - U)) (2.27)

Adding equations (2.26), (2.27) and multiplying with %, we get the desired result. [J

Remark 2.8 1f we select =6 and v = ¥ in Lemma 2.3, we get Lemma 2.1 in [31].

Theorem 2.7 Suppose that ¢ : [0,0] — R is a twice differentiable mapping on (0, V) with

0 <. If |¢"|1 is a convex function on [0,V ], then the following inequality for conformable
integrals holds:

2041yt
(v —p)™
_B(n+1,a—n)¢<9+z9— M;U)‘

- (v-mw?
=8

+ (A[¢"O)]" + Alg" ()] = AL 0|7 = Asp"()|T)7), (2.28)

[ (00 + 9 =) + Ty, (60049 )]

AITE{(A[ @ + Al8 )] - M1]¢ (0" - Aafd" W]

where

—_

A= E[B(n+1,a—n)—28(n+2,a—n)+B(n+3,ot—n)],
1
A= E[ZB(n+l,oz—n)—3B(n+2,a—n)+B(n+4,a—n)],
1
Ay = 1—2[4B(n+ 1,a—n)—9B(n+2,a—n)+6B(n+3,a—n)—B(n+4,a—n)].

Proof Taking modulus in Lemma 2.3 and using the well-known power mean inequality
with convexity of |¢” |7 and Jensen—Mercer’s inequality, we have

2%l
ﬁ[lﬁ;+w%)+(¢(9 +9 - ) +139+07$)7(¢(9 +9 -v))]
_B(n+1,a-n)¢(9+ﬁ—”;")‘
- (v—M)2|: /1[KB (n+1,0 —n) = Be(n+2,a —n)]
— 8 0 K ’ K y

2_
><¢)”(9+19—<§,u+ 2Kv>>dic

1
/(; [€Bc(n+1,0 —n)—Bc(n+2,a —n)]¢”(9 +0— <%v + Z_K,u>)d/c

+
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1
I-3

2 1
E%[(/ [KBK(;/H-1,a—n)—BK(n+2,Ol—ﬂ)]dK>
0

1
X (/ [KBK(n+ l,a —n)-B(n+2,a —n)]
0

v (Cps 22X qd%
X @ +—2,u+2v K

1 1_%
+ (/ [KBK(I’I +1l,a-n)—B.(n+2,a —n)] d/()
0

1
X (/ [KBK(n+ l,a —n)-B(n+2,a —n)]
0

(oeo— (S0 225\ ae)
<o (oeo-(3eo50) @) ]

2 1
< (V_SM) {(/ [KBK(n+l,oz—n)—BK(n+2,a—n)]dK>
0

1
I-3

1
X |:(‘¢”((9)|q/ [KBK(PI+ l,a—n)—BK(n+2,a—n)]dK
0
1
+ |¢”(19)|qf [kBe(n+ 1,0 = 1) — Be(n + 2,0 —m) | dic
0

1
00" [ [eButr L) - B+ 2= ] e
0

! i
- ‘¢”(v)’q/ [€Bc(n+1L,a—n)—Bc(n+2,a —n)]Z_K d/c>
0 2
1
+ <|¢”(9)|q/ [KBK(}’I+1,0[—1’1)—3,((}’1+2,0l—1’l)]dk
0
1
+ |¢”(19)|q/ [kBc(n+ 1,0 —n) = Be(n+2,a —n)|dk
0

1
_ ‘¢//(v)|‘1/ [B(n+ 1,0 —n) - B(n+ 2, —n)]gd/c
0

_ ‘¢”(M)|q/1[KBK(n +lLa-n)-Bn+2,a- n)]z_K dx)q:| } (2.29)
0 2

By using Lemma 2.2 in [31], we get the following equalities:

1
A:/ [KBK(n+l,a—n)—BK(n+2,oz—n)]d/c
0
1
= i[B(n+ l,a—n)-2B(n+2,aa—n)+Bn+3,a —n)], (2.30)
1 K
A1:/ [KBK(n+l,a—n)—BK(n+2,a—n)]5d/<
0

1
12 [23(1’1 +La-n)-3Bn+2,0-n)+Bn+4a- n)], (2.31)
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! 2t
Ay =/ [kBc(n+1,a —n)—Be(n+2,a —I’l)]TdK
0

1
= [4B01+ 1,0~ ) = 9B(n + 2,0~ ) + 6B(n + 3, = 1)

—B(n+4,a -n)). (2.32)
Thus, by combining (2.30) to (2.32) in (2.29), the proof is completed. O

Remark 2.9 If we choose & =6 and v = ¢ in Theorem 2.7, we get Theorem 2.1 for the case
of m=1in [31].

Theorem 2.8 Suppose that ¢ : [0,0] — R is a twice differentiable mapping on (0, V) with
0 <. If |¢"|1 is a convex function on [0, V], then the following inequality for conformable
integrals holds:

2011

(v —p)™

_B(n+1,a—n)¢(9+ﬁ—ﬂgv>‘

[IE);W_%H((;&(@ +9 - 1)) +1§‘M_%)_(¢(9 +9 -v))]

1
q

_-pp?
=8

v (wor o feur-eor)

1
q

+ (|¢>”(e>|" FJo )7 - 11970 - Z|¢”(m|‘7) } (2.33)

where
1
\D:/ [KBK(n+1,ot—n)—BK(n+2,oz—n)]de
0

withp%+%1=1,q>l.

Proof Taking modulus in Lemma 2.3 and using the well-known Holder inequality with

convexity of |¢”|7 and Jensen—Mercer’s inequality, we have

20 1p!
m[lgm_,%m@w +9 =)+ Iém_%)_(qbw +9-v))]

_B(n+1,a—n)¢(9+z9—ﬂ;rv>‘
<M|:/1[KB (n+1,0 —n) = Be(n+2,0 —n)]
—_ 8 0 K ) K b

K 2—K

><¢”<9+L9—(§u+ 5 v))d/c

1
/ [KBK(I’I+ l,a —n)-B(n+2,a —n)]
0

><¢”(9+19—(§v+2;{u>>d/<]

+
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20/ p1 »
E%[(/ [KBK(I/I+l,Ol—n)—BK(l’l+2,Ol—l’l)]de>
0
1 0
([l 5
1 ’
+</ [KBK(n+l,ot—n)—BK(rl+2,Of—Vl)]de)
0
_ 7 \i
x( //(9+ﬁ—(§v+zzku)) dfc>:|

< (V_M)z{(fl[KBK(n+l,a—n)—BK(”‘rz»O‘_”)]de)
8 0

1 1o _ é
X |:(‘¢//(9)‘q + ’¢//(ﬂ)‘q _ ‘¢//(M)’4/0 gd’( _ ‘({b”(\))’q/o 2 2K d/()
1 1 1
" q ” q " q K ” q 2—k q
-{wwn+wwn—wwnﬂgw—wwnﬁ ZdQ]}

After computing the above integrals, we get the required result. 0

Remark 2.10 If we set i =0 and v = ¥ in Theorem 2.8, we get Theorem 2.2 for the case
of m=1in [31].

3 New inequalities via improved Holder's inequality

Theorem 3.1 Suppose that ¢ : [0,9] — R is a differentiable mapping on (0,9) with 6 <
O and ¢ € L[0,9]. If |¢'| is a convex function on [0, ],then the following inequality for
conformable integrals holds:

PO+ — )+ @+ —v) n!
2 2(v - )

‘B(n +1,a —n)

xK@Wﬁﬂ¢w+ﬂ_ﬂn+€”#@xae+ﬁ_wn‘

1

< {(/ 1- /()(B n+l,a—n)—Bi_ (n+1,a — n)) )p

W’|q|¢ N (1, 1, g
« (FOEEOE (Yool owl))

( B(n+1a n)—Bi_«(n+1,00— n)) )p

O+l (1, 1, 1
x(———{f————<g¢mW+gwowﬁ)}

forall p,v e[0,9], x>0,k €0,1], and B(-) is the Euler beta function.

Proof By using Lemma 2.1 with Jensen—Mercer’s inequality, the convexity of |¢'|? and

applying the Holder—Iscan integral inequality that is given in (Theorem 2.1, [32]), we can

Page 18 of 24
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write
‘B(n+1,a—n)¢(9+ﬁ_'u)+¢(6+ﬂ_v)— n!
2 2(v — )™
(1) 90+ 9 — ) + (T L) (0 + D ) }‘
< v M) {(/ (1- /c)( (n+1l,0—n)-Bi_(n+ 1, —n))pd/c>5
0
x(/ 1-x)|@' (0 +0 - (kp+(1-x)))|"d )q
+( k(Be(n+1l,0—n)—Bi_(n+1,0— n)) );
X (/ K{¢/(9+19—(KM+(1—K)U))|qu>q}
0
! 5
< v-n { (/ (1 —K)(BK(VI +lL,a-n)—Bi_(n+ 1,0 — n))pd/c>
2 0
1 ;
g (/0 (1-0)[¢'@|" + [ B - (xwmv+<1—K>!¢’<v>\q>]d”>
1 :
+ (/ K(BK(I’I +1l,a-n)-Bi_ (n+1,« —n))pd/c)
0
1 ;
x ( [l @l o) - el ool s —K>|¢/(v)|’f)]d:<) }
By making use of the computations, one can have the required result. g

Theorem 3.2 Suppose that ¢ : [6,0] — R is a differentiable mapping on (0,9) with 6 < 9.
If1¢’|1 is a convex function on [0, V], then the following inequality for conformable integrals
holds:

201yt
(v—p)®

_B(n+1,a—n)¢<9+19— M;V)

[[0;+19 22 (¢(9 +0 - lu)) +O— %)7((1)(9 +0 - V))]

[ (25 ooy

3|¢ |q+3|¢ (79)|q <1|¢/(M)|q+l}¢/(v)|q>>q

12

1

(
( fB(n+1a )’ d ),,
(T

PO+ [ 1 1 i
0)] +|¢ )| <12|¢/(M)|q+g|¢/(v)|q>> }

N

X
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+ {(/01<2_TK>(BK(;1 +1,a _n))pdk)%

PO +3POF (1, 0 7., i
« ( + - (g|¢ Oliar (u)r’))

4

1

1 p
+ (/(; %(Bt(n +la- n))pdt)

'O+ 1 (1, 1, 1
< (POELEE (Do glewl)) )]

Proof By using Lemma 2.2 with Jensen—Mercer’s inequality, the convexity of |¢’|7 and
applying the Holder—Iscan integral inequality that is given in (Theorem 2.1, [32]), we can
write

201yt

m[%m_%”>+(¢(9 +0 = 1)) + 1wy (60 +9 = v))]

_B(n+1,oz—n)qb(9+z9—ﬂ;rv>

([ ()t
L5 lere-(r250)

7 \7
dK)

2-k
(5°)
X (/1 g(BK(n+1,oz—n))pd/<)p

0

Ly (oo (¥ 2k qd @
(5l Gz )]
X T T

0

! 2- ’ ’ ’ 2- ’ %

([ (55)[lr s leor- (5wl + 2 o))

1 p
+ (/0 g(BK(n+ 1, —n))pd/c)

1 2_
< ([ 5[ oo - (5ol 23 o) |a)

Q=
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1

+(/(;1<2;K)(BK(1/1+l,a_n))PdK)P
([ () eor - (Swwr S o) )
+ (/:%(Bx(n+1,a—n))pd,<>é

1 9_ %
x ( /0 §[|¢'<9)|q+|¢’(z9)|‘f—(T"|¢'(m|q+§|¢’<v>|‘1)}dk> }

By making use of the computations, one can have the required result. O

Theorem 3.3 Suppose that ¢ : [0,0] — R is a differentiable mapping on (0,9) with 6 <.

If|¢"|1 is a convex function on [0, 9], then the following inequality for conformable integrals
holds:

201yt
(v—p)*

_B(n+1,a—n)¢(9+ﬁ-“;”)‘
s”_“[{(/01(2;")(KBK(M1,o¢—n)-BK(mz,oz-n))"’d/c>’i
(m¢ |q+3W”()| (é%ﬁTuﬂq+{%MW00V)>%
( ~(kBc(n+1,a0 —n)—B(n+2,a-n))d )é
(|¢>”(e)|q+ ¢ ()] (1_12|¢,,(M)’q+ éw(v)\q));}

1 ,
R -

1

37O + 316" (1, 0w T i
« ( i , (g|¢ )+ o (u)|q))

e gy (DO + 0 =)+ I s (66 + 0 = v))]

X

4

p

1
+ (f g(KBK(}’l+ 1,a—n)—BK(n+2,a—n))de>
0

9”@ +1p" )N (1, 1, @
(OO (L Lgolr))']]

Proof By using Lemma 2.3 with Jensen—Mercer’s inequality, the convexity of |¢”]|? and

applying the Holder—Iscan integral inequality that is given in (Theorem 2.1, [32]), we can

write

201y

(V _ M)a [1?9“? """” (¢(9 + 0 - M)) 1(9 9 u+v ((,b(e + 0 - V))]

_B(n+1,a—n)¢(9+z9—ﬂ;rv>‘
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Lio—k 11’
[(/( 5 )(KBK(YI+1,0[—11)—BK(1’1+2,OI—71))de)
0
Yroa—i\| ., 0ro_ (¥ 2k qd i
[ (ovn- (e 2550)) )

1 1
/ g(KBK(I’l +La—-n)-B(n+2,«a —n))pd/c)p

0
) K 2-k Y
¢"[ 6+ - §M+ 5 v dk

7 N\g
d/c)

1

[Cte-(5250)
0 2 2 2 #
1
/g(KBK(m1,a—n)—BK(n+2,a‘”))de)
0
" K 2_K ! %

¢<9+ﬁ—<EV+ 5 M)) d")]

Lrg_k ’
{(f (—2 )(KBK(I’I+l,Ol—ﬂ)—BK(I’l+2,(X—n))de>

0
, 1

- /7 7 7 2 - " 1
2“)[|¢ )"+ |¢"@)]" - (§|¢ ()| + TK|¢ (U)de)

IA
=
N
E
VN — N &

1

" " " 2 - " 1
g[y¢ O + |¢")]" - (g\qs W[+ 25 o (v)\q)]dx) }

1 p
/ (2;K)(KBK(n +1l,a—n)—B.(n+2,a —}’l))pdl(>

1 2 - " ” p 2 , L
[, (55 [leor oo - (Glsrwr 235 wr) o)

1 p
+ (/o g(KBK(n +La-n)-Bc(n+2,a- n))de)

! " ” 2- ” " %
<([5[e@r ool - (50w Soor) ] a) |

By making use of the simple computations for the above integrals, one can have the re-
quired result. d

4 Conclusion
Conformable integrals act as inverse operators for conformable derivatives, which are re-
lated to a class of local derivatives. Conformable integrals of order between 0 and 1 have

been used to generate nonlocal fractional integrals with kernel depending on a function
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Y(t) = % [33], so that certain sequential conformable integrals become special cases of
them. However, higher order conformable integrals, for which we have proved Hermite—
Jensen—Mercer type inequalities in this work, have a different structure and cannot be
considered as special cases of the nonlocal fractional ones. This observation, besides the
fact that the conformable integrals with order larger than 1 have kernels of integer power
law, adds more interest to the proven results in this article. In fact, this inequality work,

to the best of our knowledge, is one among few for such higher order extension.
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