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1 Introduction
The theory of convexity played a significant role in the development of the theory of in-
equalities. Many famously known results in the theory of inequalities can be obtained by
using the convexity property of the functions. Hermite—Hadamard’s double inequality is
one of the most intensively studied results involving convex functions. This result pro-
vides us a necessary and sufficient condition for a function to be convex. It is also known
as a classical equation of Hermite—Hadamard inequality.

The Hermite—Hadamard inequality asserts that if a function ¢ : J C %t — N is convex
in J for a;,a, € J and a; < a,, then

w(ﬂl Mz) < [Tupay < KO, (1
ar Ja 2

2 _dz—

Interested readers can refer to [1-20].

Definition 1 ([21]) A function v : [0, +00) — N is said to be s-convex in the second sense
for a real number s € (0, 1], or ¥ belongs to the class of K2, if

V(xar+ (1= x)az) < x*¥(a1) + 1 - x)*¥(a2) (1.2)

holds Vay,a, € [0, +00) and x € [0,1].
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An s-convex function was introduced in Breckner’s article [21], and a number of prop-
erties and connections with s-convexity in the first sense are discussed in [5]. Usually,
convexity means s-convexity when s = 1. Dragomir et al. proved a variant of Hadamard’s
inequality in [3], which holds for s-convex functions in the second sense.

G. Toader introduced the class of m-convex functions in [10].

Definition 2 ([10]) A function v : [0,a3] — R, ay > 0, is said to be m-convex, where m €
(0,1], if

Y (x61 + m(1 - x)02) < x ¥ (61) + m(1 - x)¥ (62) (1.3)
holds V6,6, € [0,a;] and x € [0, 1]. Otherwise, V is m-concave if (=) is m-convex.

In a recent paper, Eftekhari [4] defined the class of (s, m)-convex functions in the second

sense as follows:

Definition 3 A function v : [0, +00) — N is said to be (s, m)-convex for some fixed real

numbers s, m € (0,1], if

Y (xar+m(1 - x)az) < x*v(ar) + m(1 - x)’¥(as) (1.4)
holds Vay,a, € [0, +00) and x € [0,1].

Motivated by the above results and literature, we will give first in Sect. 2 the concept of an
n-polynomial (s, m)-exponential-type convex function and we will study some of its alge-
braic properties. In Sect. 3, we will prove new generalization of Hermite—Hadamard-type
inequality for an n-polynomial (s, 71)-exponential-type convex function . In Sect. 4, we
will obtain some refinements of the Hermite—Hadamard inequality for functions whose
first derivatives in absolute value at certain power are n-polynomial (s, 71)-exponential-
type convex. In Sect. 5, some applications to special means and new error estimates for
the trapezoid formula are given. In Sect. 6, a brief conclusion will be provided as well.

2 Some algebraic properties of n-polynomial (s, m)-exponential-type convex
functions

In this section, we will give a new definition of an n-polynomial (s, 71)-exponential-type

convex function, and we will study some of its basic algebraic properties.

Definition 4 A nonnegative function v : J] — N is called (s, m)-exponential-type convex

for some fixed s, m € (0, 1], if
¥ (x61 + m(1 = X)) < (¢ = 1) (61) + m(e" 7 — 1)y (62) (2.1)
holds V6,0, € J and x € [0,1].

Remark 1 For m = s = 1, we get exponential-type convexity given by Kadakal and Iscan in

(6].
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Remark 2 The range of the (s, m)-exponential-type convex functions for some fixed m €
(0,1] and s € [In2,1] is [0, +00).

Proof Let 6 € ] be arbitrary for some fixed m € (0,1] and s € [In2,1]. Using Definition 4
for x = 1, we have

yO)<(€-1)yO) = (€-2)vO)=0 = (@) =0. 0

Definition 5 ([22]) A nonnegative function vy : /] — 3 is called an n-polynomial convex
function if for every 64,6, € J/, n € N, and x € (0,1], we have
n n

Y (x61+ (1= x)0,) < %Z[l -1 =Xl + % > - %1 @), (2.2)

s=1 s=1

We can give now a new definition of an n-polynomial (s, 7)-exponential-type convex
function as follows:

Definition 6 A nonnegative function ¢ : J — R is called n-polynomial (s, m)-exponential-

type convex function for some fixed s, m € (0,1] if
1« i I i
¥ (x61+m(1-x)62) <~ ;(e”‘ —1)yen+ ; m' (9% — 1)y (6,) (2.3)

holds for all 61,6, € J, n € N, and x € [0, 1].

We discuss some connections between the class of n-polynomial (s, #)-exponential-

type convex functions and other classes of generalized convex functions.

Lemma 1 For all x € [0,1] and for some fixed m € (0,1] and s € [In2,1], the inequalities
(X —1) > x* and (15 1) > (1 — x)* hold.

Proof The proof is evident. d

Proposition 1 Every nonnegative (s, m)-convex function is an n-polynomial (s, m)-expo-
nential-type convex function for some fixed m € (0,1] and s € [In2,1].

Proof By using Lemma 1, for some fixed m € (0,1] and s € [In2, 1], we have

Y (x61 +m(1 = x)0y) < x°¥(61) + m(1 - x)° ¥ (6s)

L TRERIIES TS
i=1

n*
i=1

Remark 3 1If we put n = 1 in Proposition 1, then we have

Y (x01+m(1 = x)02) < x*¥(61) + m(1 - x)*v(62)
< (e = 1)y (61) + m(e X — 1)y (6,).
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Theorem 1 Let v, ¢ : [ay,a;] — N. If ¥ and ¢ are n-polynomial (s, m)-exponential-type
convex functions for some fixed s, m € (0, 1], then
1. ¥ + ¢ is an n-polynomial (s, m)-exponential-type convex function;
2. For nonnegative real number c, cyy is an n-polynomial (s, m)-exponential-type convex
Sfunction.

Proof By Definition 6 for some fixed s, m € (0, 1], the proof is obvious. O

Theorem 2 Let v : [0,a;] — ] be an m-convex function for a; > 0 and some fixed m €
(0,1], and let ¢ : ] — N be nondecreasing and n-polynomial (s, m)-exponential-type convex
function for some fixed s € (0, 1]. Then for the same fixed numbers s, m € (0, 1], the function
¢ oy :[0,az] — N is n-polynomial (s, m)-exponential-type convex.

Proof For all 04,6, € [0,a;] and x € [0, 1], and for the some fixed numbers s, m € (0, 1], we
have

(@0 ¥)(x61 +m(1 - x)62)
= (¥ (x01 + m(1 - x)62)) < P (x W (61) + m(1 - x)¥(62))

n

=

X |-

(" -1) (g0 1/1)(91+—Zm 005 1) (¢ 0 ¥)(6). -

i=1 i=1

Remark 4 If we put n =1 in Theorem 2, then we get

(@0 ¥)(x61 +m(1 - x)62)
= (¥ (x01 + m(1 - x)02)) < d(x ¥ (6) + m(1 - x)¥(6:))
< (e =1)(¢ o ¥)(61) + m(e" 1 —1)(¢ 0 ¥)(6n).
Theorem 3 Let ), : [a1,a5] — N be an arbitrary family of n-polynomial (s, m)-expo-
nential-type convex functions for the same fixed s,m € (0,1] and let ¥ (0) = sup; ¥;(0). If

E={0 € lay,as) : ¥(0) < +o0} # W, then E is an interval and  is an n-polynomial (s, m)-
exponential-type convex function on E.

Proof Forall 61,0, € E and x € [0,1], and for the same fixed numbers s, m € (0, 1], we have

Y (x61 + m(1—)6)

= sup ¥;(x 61 + m(1 - x)62)

SSUP[% Y o(er=1) vl + —Zm e 1/fl('92):|

! i=1
= 12(63 - ) Sup‘ﬁl (61) + —Zm (1=30s )isqplpi(éz)

n-
i=1

=—Z 1/[(91)+—Zm (1% — 1)y (6y) < +o0.

i=1
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This shows simultaneously that E is an interval, since it contains every point between any
two of its points, and that  is an n-polynomial (s, 7)-exponential-type convex function
onE. g

Theorem 4 If the function V¥ : [ay,a;] — N is an n-polynomial (s, m)-exponential-type

convex for some fixed s,m € (0,1], then  is bounded on [a1, ma,].

Proof Let L = max{y(a;), w(%)} and x € [a3,a,] be an arbitrary point for some fixed m €
(0,1]. Then there exists x € [0,1] such that x = xa; + (1 — x)a,. Thus, since e* < ¢° and

e1=%s < ¢ for some fixed s € (0, 1], we have

n

Y () =¥ (xar + (1 - x)az) < % (e 1) yia) + % ;mi(e“‘x” - l)ixlf<a—2.)

mt
i=1

n

! i 1 ¢ if 8 i L i s i
S;Z(es—l)L+Zi=ZIm(e—l)L:;Z(m +1)(e-1) =M.

i=1 i=1

We have shown that ¢ is bounded above by a real number M. The interested reader can

also prove the fact that v is bounded below using the same idea as in Theorem 2.4 in [6]. [J

3 New generalization of Hermite-Hadamard-type inequality using
n-polynomial (s, m)-exponential-type convex functions
The aim of this section is to find new generalization of Hermite—Hadamard-type inequal-

ity for the n-polynomial (s, 71)-exponential-type convex function .

Theorem 5 Let v : [ay,may] — N be an n-polynomial (s, m)-exponential-type convex
function for some fixed s,m € (0,1] and a1 < may. If ¥ € L1([a1, may,)), then

1 " (al + ma2>
% Zzy'l=1(e% - 1) 2

1
= (may —a1)

{ " W(x)dx+m/:2 w(x)dx}

ai

< %;(es _SS_ 1) [w(al) +¥(az) + M(w(r;ziil) + w‘(ﬂz))]. (3.1)

Proof Denote

a
61 = xar +ml—x)ay,  b=(1- X)ZI +xas Yy elo1].
By using n-polynomial (s, m)-exponential-type convexity of ¥, we have

a; + may 01 + mb,
‘”( 2 )ZIﬂ( 2 )

_ w([xal +m(l = )a] + (1 - x)ar + mxaz]>

2

n

= %Z(e% - 1)i[W(Xﬂ1 +m(1 - x)az) + ¥ ((1- x)ay + mxaz)].

i=1
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Now, integrating on both sides in the last inequality with respect to x over [0, 1], we get

n

1 s i
() 215y

i=1

1 1
X[/o I/f(xa1+ri1(1—x)az)dx+/o w<(1—x)%+xaz)dx]

1 n %_ i mag as
= "le(—en{/ w(x)dx+mﬁZl w(x)dx},

(may — ay)

which proves the left-hand side inequality. For the right-hand side inequality, using n-

polynomial (s, 7m)-exponential-type convexity of i/, we obtain

1 may a
—_— a d.
(maz—al){/al Ve ’”m/% Ve x}

1 1 a
=/ 1/f(xa1+141(1—x)az)dx+/ W((l—x)—+xuz)dx
0 0 m

n

1 ) "o i
<[ [; Y ) v+ > el 1)‘vf<az>} dx

i=1

n

"1 i 1 ¢ i —x)s i

i1
1 (ef—s—1\' ; ai
= le(f) |:llf(6l1) +Y(az) + m (W(W) + W(az))],

which gives the right-hand side inequality and the proof is completed. O

Corollary 1 By choosing m =s=n=1 in Theorem 5, we get Theorem 3.1 of [6].

Remark 5 If we put n = 1 in Theorem 5, then we obtain

1 ay + may
(e2 —l)w( 2 )

< ;{ " 1/f(x)dx+m/:2 lp(x)dx}

(may —ay) | Ja,

< (5550 e wia em(w (2 ) +vian) | (32)

4 Refinements of Hermite-Hadamard-type inequality via n-polynomial
(s, m)-exponential-type convex functions

To obtain some refinements of the Hermite—Hadamard inequality for functions whose
first derivative in absolute value at certain power is an #-polynomial (s, m)-exponential-

type convex, we need some new useful lemmas.
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Lemma 2 Suppose 0 < k < 1 and consider a mapping ¥ : [a, 1 — R which is differen-
tiable on (a1, ) with 0 < ay < ay. If ¥’ € L1la1, ], then

V) +v(2) k[P
2 - a —kﬂl /;1 w(e)de
_k 1
= (“2 2,(‘“)[() (1—2X)w’<xa1+(1—x)a/—:>dx. (4.1)

Proof Using integration by parts, we have

_k 1
(az 2kal> fo 1 —2x)w/(xa1 +(1- x)%) dx

2(@;](/@1) (1—2x)1/f(Xﬂ1;(1—X)“72)1_ 1‘/’(X‘“*‘1;)‘172)(—2)0&}
k

ay— % 0 0 a —

(@ —kay \ [~V (a) - ¥ (F) 2k ! az
_( 2k > faze +kﬂ1—ﬂ2/o w(Xler(l_X)?)dX}

_(ay—kay \ [ k(¥ (a1) + ¥ (D)) 2k ! ap
_( 2k ) ay — ka; _ag—kalfo w(xa1+(1—t)?>dx}

:w(a1)+1/f(72)_ k Tw(e)de,
2 as —kay Jg,

which completes the proof. d
Lemma 3 Suppose 0 < k <1 and a mapping v : [kay, a;] — R is differentiable on (ka,, a;)
with 0 < ay < ap. If ' € Ly [kay, ay], then

Y(kay) +Y(ag) 1 “

2 a) — kﬂl

¥ (0)do

kay

= (a2 —ka1> /1(2X - DY/ (k(1 = x)ay + xaz) dx. (4.2)
2 0

Proof Using the integration by parts, we have

_k 1
(“2 g ”“) / (25 = D9 (KL = 1)y + xa2)

0

_ a) — kll1
- 2

N { 2x - DY k(1 - x)a, + xas)
(12—/((11

P k(= X)as + xao)
0 0 a; — ka,

(2)dyx

) (flz —kﬂ1>{1/f(ﬂz) sy(ka) 2

2 ay — kay ay — kay

1
/0 Y (k(1 = x)a1 + xaz) dx

(a2 —kar\ [ Y(a2) + ¥ (kay) 2 1

= ( 2 ){ ay — kay _ﬂz_kﬂlfo W(k(l—x)al+xa2)dx
_ V(kay) + ¥ (a) 1 a3

) 2 ay —kay /kﬂl v (©)db,

which completes the proof. d

Page 7 of 25
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Lemma 4 Suppose 0 < k <1 and a mapping v : [kay, a;] — R is differentiable on (ka, a;)
with 0 < ay < ap. If ' € L1[kay, ay], then

Y (kay) + ¥ (az) 2 a2

k+1 B (k + 1)(as — ka1) Jia, v (©)do

= ( kﬂl)/ 2x = DY/ (k(1 = x)a1 + xaz) dx. (4.3)

Proof Using the integration by parts, we have

—k 1
(“25) [ ex -0 - 0a s xao)

_ <ﬂ2 —kﬂ1>
T\ k+1
{ Q2x = DY (k(1 = x)ar + xa2) |!
ﬂz—kﬂl

Yy (k(1 - x)ar + xaz)
ﬂz—kﬂl

(2) dx}

_ <a2—kﬂ1>{1/f(ka1)+1/f(612) 3 2 / 1/[(/((1 X)ﬂl+Xﬂz)dX}

k+1 dz—k&ll dz—kﬂl 0
CYlkay) +ylar) 2 1
= el _k+1f0 Y (k(1 - )ay + xaz) dx
Y (kay) + Y (az) 2 “
= 0)do,
k+1 (k + 1)(az — ka1) Jia, ve)
which completes the proof. O

Lemma 5 Suppose 0 < k <1 and a mapping  : (a1, ] — N is differentiable on (a1, )
with 0 < ay < ay. If ' € Li[ay, 2], then

k W(G)dé 1/f<a1+a2>

ay — ktll

_ ﬂz—kﬂl
B k
! ’ a ! / a
x {/ X (xal +(1—x)?> ax-[ v <xa1 +(1—x)?)dx}. (8.4
0 2
Proof Using the integration by parts, we have
a) —kﬂl 1 , a) 1 ’ ay
( ) / xy (xa1+(1—x)—)dx—f w(xaw(l—x)—)dx

k 0 k 1 k

_ (ﬂg —k(ll

- k

{)u/f(xal +(1-02)|

}

Yy(xar+ (1 - x)“z)

az
0 0 ay— %

(ll—?

Y+ (- 0P|

az
('11—?

1
2

Page 8 of 25
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ay — ka, kyr(aq) k 1 az
:( k ){kal_az_kal_ﬂzfo Ip()(011+(1_)()?>dx
/ a) +ay
kﬂ —dy (w( 1)—'¢f< Y >)}
/ v (6)do - w(“l’f@),
ﬂz— kay

which completes the proof. O

Lemma 6 Suppose 0 < k <1 and a mapping  : [kai,a;] — R is differentiable on (ka, as)
with 0 < ay < ap. If ' € L1 [kay, ay], then

1

ay - ka; kay

" yo)do - w(k’“ ”2)

= (ay — kay)
1 1
x{ /0 ()W (K = x)ar + xaz) dy + f l/f/(k(l—X)tl1+thz)dX}- (4.5)

Proof Using the integration by parts, we have

1

1
2

1
(a2 —kal){/o —x ' (k(1= x)a1 + xa) dx +/ V' (k(1= x)a1 + xaz) dx}

Yy k(1 - x)ar + xas)
0 0 ay — kay

1
(- kul){ —x¥ (k1= x)a1 + xa2)|" (1) dy

a, — ka;

|

1ﬁ(k(l X)ai + xas)

tlz—k(ll
= (ay — kay)
- (@) 1 V(@) - Y (2)
% {ﬂz—k(ll * ﬂz—k&ll _/ W(k(l—X)ﬂ1+Xﬂ2)dX ﬂz—k&ll }

k
_ ) do - w( “1”2),
a; — ka, kay
which completes the proof. g

Theorem 6 Suppose 0 < k <1 and a mapping ¥ : (0, 721 — N is differentiable on (0, 7%
with 0 < ay < ay. If |Y'|? is an n-polynomial (s, m)- exponentml type convexfunctzon on

(0,2 for g>1and ' + p~" = 1, then for some fixed s,m € (0,1], the following inequality
holds:

V(a1) + () k 3
‘ 2 - a) —kﬂl /a‘ W(Q)de‘
- a, — kay 1 ’
<(*%*)(7)
" e —s—1\'(1, , i
AR Gver s

)7
)} . (4.6)

Page 9 of 25
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Proof From Lemma 2, Holder’s inequality, and n-polynomial (s, 71)-exponential-type con-
vexity of |'|7, we have

Yla) +y(F)
‘ 5 p— /w(e)de‘

L (2ka /1|1 2P d %/1
= 2k ; X X A
a, —ka 1 zl’
2 — kay
1-2y/?

5( T )(/OI x| dx>
(e

Nt
dx}

1/f’<xa1 +(1- x)%)

n

WU

. a i
>lw<a>l"+—2m - '*”’<,Z?k)udx}

1
1

(5 () () G- 2o ()

which completes the proof. d

Remark 6 If we take n = 1 in Theorem 6, we have

‘I/I(al)+¢(“72)_ k /Tw(e)de‘
ﬂz—kﬂl a

ay — kay 1 %7 e —s—1 , p [ a q %
(G e @) o

Theorem 7 Suppose 0 < k <1 and a mapping  : (0, 221 — N is differentiable on (0, %)

with 0 < ay < ay. If |Y'|? is an n-polynomial (s, m)- exponentml—type convex function on
(0, 22] for q > 1, then for some fixed s,m € (0, 1], the following inequality holds:

Vi) + (%)
| ], o

- ay —kar\ (1 -3 i 2(s—2)e’ +8e2 —52 — 25— 4"
SAUETIVAY) - 25

x(l ( “?)q)} . (4.8)
n mik

Proof From Lemma 2, power mean inequality, and n-polynomial (s, m1)-exponential-type

QU

convexity of |¢’'|7, we have

va)+y (P k[
! / Vo

E(az—kfh){ (Xa1+(1 X)—)‘d)(}
— _5 !
(ﬂz kﬂl)(/ - 2X|dX> {/0 |1—2X|’1/’/(X611+(1—X)%>

73
d)(}

Page 10 of 25
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1 n )
{ 0 '1‘2)"[3 PG ACHE

i=1

(a2 —kay 11_5
- 2k 2

2 (2As—2)e +8er —s*—2s—4\' (1, m| L a \|* g
AR G S )]

which completes the proof. O

Remark 7 If we take n = 1 in Theorem 7, we get

ya)ey(® k(¥
’ 5 - /ﬂl I//(Q)d@‘

as — ka;

< ﬂz—kﬂl 1 17%
“(*%")C)

2As—2)ef +8ed —s2—25—4\ (|, / INE
s e ()

Theorem 8 Suppose 0 < k <1 and a mapping ¥ : (0, 2] — N is differentiable on (0, °%)
with 0 < ay < ay. If |Y'|? is an n-polynomial (s, m)-exponential-type convex function on
(0,%] for g > 1 and g ' +pt =1, then for some fixed s, m € (0,1], the following inequality
holds:

‘vf(kal);w(az)_ . “Zwe)d@‘

as —kay Jiq,

1
- ay —ka; 1 \»?
- 2 p+1

(e-s-1\ (1, h,
[ G 2 (2)

i=1

)@
)} . (4.10)

Proof From Lemma 3, Holder’s inequality, and n-polynomial (s, 7)-exponential-type con-
vexity of |'|7, we have

‘vf(kal)wmz)_ 1 @W)de'
2 ﬂg—kﬂl kay

1

L 1 P [ !

(“2 2(“1)(/0 |2x—1|de> {/o |‘/f/(k(1—x)ﬂ1+X“2)|qu}
L 1 5

(ﬂz 2%)(/0 |2X_1|de>

IA

IA
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1
q

[ (22)] 2 eyl ke |
m! n !

i=1

q>}é’

which completes the proof. O

n s_s—1 i 1 , i ,
[ Grvanr e (2)

i=1

Remark 8 If we take n = 1 in Theorem 8, we obtain

’wkal);w(az)_ 1 ”zuf(e)de\

a; — kay kay

) mrb @N] o

Theorem 9 Suppose 0 < k < 1 and a mapping ¥ : (0, 2] — N is differentiable on (0, °2)

with 0 < ay < ay. If |Y'|? is an n-polynomial (s, m)-exponential-type convex function on
(0, 22] for q > 1, then for some fixed s,m € (0, 1], the following inequality holds:

’1/’(](“1)2"' Yla) 1 a2 1/f(9)d9‘

as —kay Jiq,

_ -1 n o) S0 oo aNi
(= kay 1\ 7 Z 2(s—2)e’ +8e2 —s* —2s—4
- 2 2 s} 252

; 'NE
X (lhb/(kal)ri + ﬂ’w/<a_2l>’ )} . (4.12)
n n m

Proof From Lemma 3, power mean inequality, and n-polynomial (s, m)-exponential-type

convexity of |¢’'|7, we have

‘I/f(kﬂl) + Y (az) B 1 a2
2

as —kay Jiq,

w(e)de'

“—Z_k‘”){ 2 1l k(1 - d}
5( 5 /le | (k(1 - x)ay + xaz)| dx

ﬂz—kﬂl 1 17‘1?
5( )(/ |2x—1|dx)
2 0

1 7
) {/0 12x = 1|y’ (k(1 = x)as + Xﬂz)’qu}

ay —ka; 1 -3
5(4)(/ |2x—1|dx)
2 0

n

1 1 i,
X [/0 12x —1|{;Z(3(1—x)s_1) | (k)|

i=1




Butt et al. Advances in Difference Equations (2020) 2020:508

1o ;
+ . Zmi(esx - 1)1
i=1

(=5)()

2 (2s—2)e +8e3 —s2—2s—4\' (1, , ¢ M
X {Z( o ><Z|Iﬁ(ku1)| r

i=1

r() o]

(@)

which completes the proof. O

Remark 9 If we take n = 1 in Theorem 9, we have

|w<ka1>+w(az)_ L dg}

2 a —kﬂl ka1

< ﬂz—kﬂl 1 17%
“(*37)6)
y {(2(5_2)es+82672_52_25_4><|1//(ka1)|q+M‘w’(@> q)}q, (4.13)
S m

Theorem 10 Suppose 0 < k < 1 and a mapping v : (0, 2] — % is differentiable on (0, °2)

with 0 < ay < ay. If |Y'|? is an n-polynomial (s, m)-exponential-type convex function on
(0,%2] for g > 1 and g ' +pt =1, then for some fixed s, m € (0,1], the following inequality
holds:

Y(kay) + Yr(as) 2 a2
k+1  (k+ 1)@z — kay) Jia, ‘”(9)‘”’

1
- ay —ka; 1\~
N\ k+1 p+1

e —s—1\'[1, , i,
S oo ()

i=1

'Y
)} . (4.14)

Proof From Lemma 4, Holder’s inequality, and n-polynomial (s, 71)-exponential-type con-

vexity of |'|7, we have

V(kay) + ¥ (az) 2 “2
‘ k+1 B (k + 1)(az — ka1) Jia, w(e)de’

1

1 5[ 1 ’
s(ﬂzk_kal)(/ |2x—1|de>p{/ Iw’(ku—x)aﬁxm)'qd’(}q
+1 0 0
ay — kay ! ’
5( k+1 )(/o |2X_1|de>
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n

AL RS v S e

i=1

PG |
B I O T VEAYO
(50 ) (=) G- RGN

which completes the proof. O

Remark 10 If we take n = 1 in Theorem 10, we get

Y(kay) + Y(az) 2 a2
‘ ki1 (ke D —ka) kal‘“e)de’

- a, — kas
_( k+1 )
G @D s

Theorem 11 Suppose 0 < k < 1 and a mapping r : (0, 2] — % is differentiable on (0, °2)

with 0 < ay < ay. If |Y'|? is an n-polynomial (s, m)-exponential-type convex function on
(0, 22] for q > 1, then for some fixed s,m € (0, 1], the following inequality holds:

¥ (kay) + Y(aa) 2
k+1  (k+1)(ag — kay) kar

1 n s i
- ay—kai\ (1 -3 Z 2s—2)ef +8e2 —s* —25s—4
—\ k+1 2 p= 2s2

x (l\w(kﬂl)]" N ﬁW(Q) q)}q, (4.16)
n n m

Proof From Lemma 4, power mean inequality, and n-polynomial (s, m)-exponential-type

I/f(e)de’

convexity of |y/'|7, we have

Y (kay) + ¥ (az) 2 “
k+1 B (k +1)(as — ka1) Jia, w(&)d&’

iy !
(=) [ 11w k- )

— o ;
_(“2/ “’1)(/ |2X—1|dx) {f |2X—1||1//(k(1—x)a1+xtl2)|qu}
k+1 0
ﬂz—kﬂl %
_< k+1 )(/ |2X_1|dx)

1 1 n .
_ - A=) _ 1\, q
X |:/0 12 1|:n ;zl (e 1 1) |¢ (ka1)|

Page 14 of 25



Butt et al. Advances in Difference Equations (2020) 2020:508

_ ﬂz—k[ll 1 1_%
O\ k+1 2

1 (2As—2)e +8er —s>—2s—4\' (1, , m| (ay\ | 7
g 2 ) Grosaor 50 ()}

i=1

which completes the proof. d

Remark 11 If we take # = 1 in Theorem 11, we obtain

‘Vf(kﬂl) +Y(ar) 2 “
k+1 (k + 1)(az — ka1) Jia,

< ﬂz—kﬂl 1 17%
_< k+1 )(5)
] (BB (e ey (2) )
s m

Theorem 12 Suppose 0 < k < 1 and a mapping r : (0, t5] — N is differentiable on (0, 2=
with 0 < ay < ay. If |Y'|? is an n-polynomial (s, m)-exponential-type convex function on
(0, 2] for g>1and q™' + p~' =1, then for some fixed s, m € (0,1], the following inequality
holds:

I/f(e)de’

k 3 a + as
0)de —
ﬂz—k&h a w( ) vl( 2k )‘

ay — kay 1 \7 [/ —s—1\/1 , ¢ M| (a\| i
(22| ) |2 (=) Gr 2w ()

1, - 2¢’ —2e3 s\’
(Bt (22

i=1
i a2 7t 26%—5—2 i
— w(kml) ZE(T) )} (4.18)

Proof From Lemma 5, Holder’s inequality, and n-polynomial (s, 7)-exponential-type con-
vexity of ||, we have

m

k aTZ a) +as
0)do —
ay —kﬂl a w( ) w( 2k )

) 1 : 1

= (T ) | o (rava-0)
. 3

+/1 w’(xal + (l—x)a—z)‘dx

k
2

(5[ )

73
dx}
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x{/ol{ii( 1)’ |9/ (ar)|” Zm

i=1

i=1

1, , g (2¢° —2e3 —5\' ﬂ‘
+<;|w<a1)| ()

n

which completes the proof.

Remark 12 If we take n = 1 in Theorem 12, we have

k

a) +ady
@_km/ ¥(6)do - w( )‘

- a, — ka; 1 5 ef—s—1

(7N G) (=
’ 25_2%_ ’

(o (E22) o (2)

q(
’km

L L w(“”“z)‘
ﬂg—k&ll
q_n i

< (,—’)[(i) ( w2
z<—w-*-%-2>f>q

ﬁil/,/ %

* kmi Py 2s?

1 'y ~(e-et 1Y
(Bwers(52-3)
ﬂil//(@ " (23 —s—2\'
km' ]| <= 2s '

q

n

Proof From Lemma 5, power mean inequality, and z-polynomial (s,

convexity of |/'|7, we have

k

ﬂz—km/ ve)db - w(al+a2)‘
— ke 1 1
< (az X al){/o X‘W<xa1+(1—x)%)‘dx+f

1¢ s iy q 1o i (1-
+/1[n2(ex—1) |¥/(a1)] +;;m(e
(@ —kay 1\ [ fe-s—1\'(1 , 4 m
(N s oA
w’(

1-x)s _

a

kmt

)

2e7 —s-2

28

q n

2

i=1

e —s% +2>

(

)(|w/(a1)|"+m‘w/(,f—;)

2e? —s—2

2s

Q

)

)]

Theorem 13 Suppose 0 < k < 1 and a mapping r : (0, g1 — N is differentiable on (0, 7%)
wzth 0<ay <ay. If |Y'|1 is an n-polynomial (s, m)-exponential-type convex function on
1 for g > 1, then for some fixed s,m € (0, 1], the following inequality holds:

i A2
v (m)

)]

(4.19)

(4.20)

m)-exponential-type

) Iﬂ’(xal +(1- x)a/—f)‘dx}
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(5 o)

W(Xm +(1- x)ﬂ—kz>

() ([ xer)”

x</01)<<%;( -1)'[v' (@) +—Zm (1o iw/(kj;i)‘q}dX)%
+/11[%1n( )Iw(az)ih_zm (
z(az_kk@)[(gl_l( W) Z(% e s v2y

i=1
i) 2
1, " e —el Dot ap \| (262 —s—2)'
+<;|¢( )| ( )*71/’(/72«') Z<725 >>}
i-1 i-1

which completes the proof. d

X
A/
S~

il
=

q i 1
)«

2

w’(xal +(1- x)%)’dx}

1
m

n

Remark 13 If we take n = 1 in Theorem 13, we get

k w(@)d@ w((l1+ﬂg>‘

a) — kﬂl

1
ay — kay 1\« , g 2(s—1)e —s*+2
("% )[(2) (iver (%5
(2 902 — 52— 25-2\\7
+m — e
km 2s?
e €—e 1 S( a2\ Qe —5-2

i <|¢ (@) ( - 2) +m‘¢ (km> (7% . (4.21)

Theorem 14 Suppose 0 < k < 1 and a mapping r : (0, %] — % is differentiable on (0, °Z)

with 0 < ay < ay. If |Y'|? is an n-polynomial (s, m)-exponential-type convex function on

(0,°2] for g > 1 and g ' +pt =1, then for some fixed s, m € (0,1], the following inequality
holds:

1 uzx[f(@)d@ W(kﬂ1+d2)‘

ay —kay Jia,

1 \? [fe—s—1\i[1, , i\
S(ﬂz—kal)[(m) {;( SS )(;W(kﬂl)’q+m7‘w (%)

1

i




Butt et al. Advances in Difference Equations (2020) 2020:508

1, i 2e7 —s-2\'
+<;|1//(kﬂ1)| Z(T)

i-1
m | an \|T (26 —2e3 — 5\
et )

Proof From Lemma 6, Holder’s inequality, and #n-polynomial (s, 71)-exponential-type con-

vexity of |'|7, we have

1 azw(@)d@—xﬂ(kal; a2>‘

ay —kay Jiq,

1 5 1 :
§(a2—ka1){</0 Xde> (/(; W/(k(l—x)a1+xﬂ2)‘qu)

1
+/1 |v' (k(1 = x)a1 +Xa2)|dx}

1 ,
S(az—kﬂl){</(; Xpdx)
1/ i IS Hy ! %
N (/0 (ZZ(E(I_X)S_I) |v' (kay)|" + ;;m (e -1) ’lﬁ (%)} )dx)

i=1

+/l li(e(l”‘)s—l)i|1/f/(koz )|q+ an:mi(eSX 1)y’ s ! d
1 \n& ! ni= mt X

1 \7 [ -s-1\/(1 / g m| (a\|! g
G 2= Qo G
1, " (27 —s—2\' 2" —2e% —s
(e ) e () S

which completes the proof. d

Remark 14 If we take n = 1 in Theorem 14, we obtain

" y6)dn - w(k“”‘”)‘
ﬂz—k&ll kay
P(/e s 'L
ot (22 e ()
p+1 s m
. (|¢/(ka1)|q<w) s m‘v,<@) "(M))] (4.23)
2s m 2s

Theorem 15 Suppose 0 < k < 1 and a mapping ¥ : (0, °2] — N is differentiable on (0, °2)

<

with 0 < ay < ay. If |Y'|? is an n-polynomial (s, m)-exponential-type convex function on
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(0, 22] for q > 1, then for some fixed s,m € (0, 1], the following inequality holds:

1 “2
ay —kay Jia,

1—% n 2 99N\
<(az —kﬂl)[ <%) (Z(W) %Wf’(km)r[

i=1
" (2As-1)e -2+ 2\ 'mi| [ a\|T\?
() e () )
" (23 -s-2\'1, ,

+ (;(—25 ) ;W (kay)|
i A2

v ()

" [2¢5—2e2 —s\'mi g
E _ ) — . 4.24
' i-1 < 2s ) n )} 2

Proof From Lemma 6, power mean inequality, and n-polynomial (s, 71)-exponential-type

convexity of |/'|7, we have

1 azw(@)d@—xﬂ(kal; a2>‘

as —kay Jig

1 1
<(a —kal){/o | = xI|¥'(k(1 = x)a1 + xa2) | dx +ﬁ |y (k(1 = x)a1 + xaz)|dx}

1 -1
= (ﬂz—kﬂl){</ XdX>
0

1 i 1
X(/o xlw/(/<(1—x)a1+xaz)|qu) +/1 |1/f/(k(1—x)a1+xaz)|dx}

1 -1
= (flz—kﬂl)[</ XdX>
0

n

1 1 . L . i
X (/0 X(; ;(e(l—x)s_l) |y (kay)| + ;;m (- 1)

kai + ay
2

ww)de—w(

1

n

1 . n ) )
i=1

n
i=1

2(s—1)ef —s% + 2>imi

N7 (a2 52 =25 -2\'1,

= (ﬂz—kﬂl):(i) (;(%) ;W (kay)|*

n [ a
)G

" (23 —s—2\'1, , " (2e —2e% —s\'m
+ <Z<72S >;|1/f(ka1)|q+2(7zs )7

i=1 i=1

AG)

which completes the proof. O
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Remark 15 If we take n = 1 in Theorem 15, we have

a2 w(e)de-w(kﬂl +a2>’

a) — k&ll kay 2

1—% & — 2 _
<@~ /«n){ (%) ((%) [ (ka)|"
(2(8—1)65—S2+2) /(a2> q)%
m( 22—~ T2 2
252 m
R ((L ;S"z)lw%kal)rum(izes‘2‘” ‘S)’w'(@>
S 2s m

5 Applications to some means

q
) } (4.25)

Consider two special means for different positive real numbers a; and a, as follows:
1. The arithmetic mean
a) + dy

Alay, az) = I

2. The generalized log-mean
I+1 I+1
a4 —4

e = | g e

}l; leR\ {-1,0).

Dragomir et al. [3] have proved that for s € (0,1), where 1 </ < %, the function f(x) = x,
x>0 is an s-convex function. Then from Proposition 1, it is also an s-exponential convex
function for some fixed s € [In2,1).

Now, using the theoretical results in Sect. 4, we give some applications to above special
means for positive different real numbers.

Proposition 2 Let 0 < a; < ay, 0 <k <1, and q > 1 be such that p™* + qg~* = 1. Then for
some fixed s € [In2,1), where 1 <[ < %, we have

Is
a) k ar
Al a5, | = SR Y -
‘ (“1 (k)) ay — kay “(‘“ k)‘

1 n i 5=
st(az—kal) 1 ”LZ e-s-1yi,1 a2 e . (51
k&2 p+1l) Yn i-1 $ k

Proof Considering the n-polynomial s-exponential-type convex function v (x) = x, x > 0,

and using Theorem 6 with m = 1, we obtain the required result. O

Proposition3 Let0<aj <ay, 0<k <1,and q > 1. Then for some fixed s € [In2,1), where

1§l§§,wehave

Is
ds k as
A ls’ > _ Lls it
(o (%) ) i %)
- Is(ay —lkzzl)
4k
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S i1
1 < /2(s—2)e +8e2 —s2—2s—4\'7 1 sovg (@ (Is-1)q
X o At (= . (52
In il( 252 ) “ k (5.2)

Proof Considering the n-polynomial s-exponential-type convex function v (x) = %, x > 0,
and using Theorem 7 with m = 1, we obtain the required result. O

Proposition 4 Let 0 <aj <ay, 0<r <1 and q>1 such that p™* + q~! = 1. Then for some
fixed s € [In2,1), where 1 <[ < %, we have

|A((kar)"*, a5) - Lis(kay, a2) |

1 .1
ls(ag—kal)( 1 )7’ 1 & (e‘—s—l)“’l 1 - (Is-1)
< — ) Ad((kay) Ve, g5, 5.3
= {/E p+1 W; s (((ﬂl) a, ) ( )

Proof Considering the n-polynomial s-exponential-type convex function v (x) = x, x > 0,
and using Theorem 8 with m = 1, we obtain the required result. O

Proposition 5 Let 0 < ay <ay, 0<k <1 and q> 1. Then for some fixed s € [In2, 1), where
1<i< %,wehave

A ((kth)lS, ﬂlzs) - L (kay, )|

- Is(ay — kay)

40-9)
1 2":(2(5 ~2)e’ +8e? — s — 2s—4)i%A; ((kay)==D4, 4811 (5.4)
X — a, ,dy . .
2
In S 2s

Proof Considering the n-polynomial s-exponential-type convex function v (x) = x, x > 0,
and using Theorem 9 with m = 1, we obtain the required result. O

Proposition 6 Let 0 < a; < as, 0 <k <1, and q > 1 be such that p' + g ! = 1. Then for
some fixed s € [In2,1), where 1 <[ < %, we have

1 (A((kar)", af) - Lfﬁ(kﬂhdz))‘

1
lS(&lg—kﬂl)( 1 )17 1 &/e-s-1\
< 2 — -
<¥2 k+1 p+1 {i/ﬁ; s

Proof Considering the n-polynomial s-exponential convex function ¥ (x) = x%, x > 0, and

ey

At (ka5 68707, (5.5)

using Theorem 10 with m = 1, we obtain the required result. O

Proposition7 Let0<aj <ay, 0<k <1,and q> 1. Then for some fixed s € [In2,1), where
1<i< %,wehave

2
1 (A((kar)®,d5) - Li(kay, a»))

- Is(ay — kan)
2k +1)
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s 1
1 < /2(s—2)e +8e2 —s2—2s—4\'7 1 (Us-1)g (Is-1)
N E —1)q q
“ ,-1( 25 ) AT ((ka)™ 0 (>0

Proof Considering the n-polynomial s-exponential convex function ¥ (x) = 4, x > 0, and
using Theorem 11 with m = 1, we obtain the required result. O

Proposition 8 Let 0 <a; <ay, 0 <k <1, and q > 1 be such that p~* + q* = 1. Then for
some fixed s € [In2,1), where 1 <[ < %, we have

|L5§(kﬂ1,6l2) —Als(kﬂl,ﬂ2)|

1

1 " i1
1 r 1 e—s—1\'7 1
q Z H (Is-1)g (Us-1)q
= blea ) { ﬁ(ﬁ + 1) (I/ﬁ i=1 < S ) At ((kal) q’aZ )

1o /2e2—5-2\" (sl (26 —2e3 -5\’
ka1 = e (Is=1)g _ ma———— 5.7
+ (kay) n Z 2s T n Z 2s (57)

i=1 i=1

Proof Considering the n-polynomial s-exponential convex function ¥ (x) = x**, x > 0, and
using Theorem 14 with m = 1, we obtain the required result. O

Proposition9 Let0<a; <ay, 0<k <1,and q > 1. Then for some fixed s € [In2,1), where
1<i< %,wehave

|Li(kay, ay) — A5 (kay, a5))|

1-1
<ls(az—ka1){2f ((ka )= qu(zessz—sfs‘z)

i=1
1

; .
_ 2s—2)e —s2 +2\'\ ?
oy (B2

i=1

+ Z((ka (ls 1q21(2€2 ;Ss— ) qZ(zes 262 —S) )} (5.8)

Proof Considering the n-polynomial s-exponential-type convex function v (x) = &%, x > 0,
and using Theorem 15 with m = 1, we obtain the required result. O

At the end, let us consider some applications of the integral inequalities obtained above,
to find new error estimates for the trapezoidal and midpoint formula.

Foray; >0,letUd :0=xo9< x1 <+ < Xu-1 < Xn = ay be a partition of [0, a,].

We denote
(Y0 ¥ (n) S (utn
T -3 (P N e = w2 ),
j=0 j=0
and

/0 " U@ dx = TUW) + RU W), /O T U@ dr= MU ) + RAUAD),
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where R(U, ) and R*(U, V) are the remainder terms, and 4; = xj,, — x; forj=0,1,2,...,
n—1.
Using above notations, we are in a position to prove the following error estimates.

Proposition 10 Let  : (0,a;] — R be a differentiable mapping on (0, a,) with a; > 0. If
|1 is n-polynomial s-exponential-type convex on (0,a,] for q>1and g ' +p™' = 1, then
for some fixed s € (0,1], the remainder term satisfies the following error estimate:

1

—s—1\'a
=3 () 45
n-1 L
< Y O]+ [ ()| ]9 (5.9)
j=0

Proof Using Theorem 6 on the subinterval [, x;.1] of the closed interval [0, ,], for all
j=0,1,2,...,n—1, we have

YO+ i)\, [
K%);@_/M V(@) dx

1 z s—1\'a 1
=3 <p+1) {’/EZ< ) B9 G| + v ()] "]7. (5.10)

—

Summing inequality (5.10) over j from O to # — 1 and using the property of modulus, we
obtain the desired inequality (5.9). The proof of Proposition 10 is completed. d

Proposition 11 Let ¢ : (0,a;] — N be a differentiable mapping on (0, a,) with a; > 0. If

|W'|1 is n-polynomial s-exponential-type convex on (0,a,] for ¢ > 1, then for some fixed
s € (0,1], the remainder term satisfies the following error estimate:

1 .1
1\"7 1 G [/2(s—2)e +8ed —s2 —2s—4\'a

RWU, - =
R ‘”)’5(2> ﬁzl( 257 )

n-1 L
x DI G+ [ g 1] (5.11)
j=0

Proof We prove the claim by applying the same technique as in the proof of Proposition 10
but instead using Theorem 7. O

Proposition 12 Let v : (0,a,] — N be a differentiable mapping on (0,ay) with a; > 0. If
|W'|1 is n-polynomial s-exponential-type convex on (0,a;) for > 1 and g' + p~' = 1, then
for some fixed s € (0, 1], the remainder term satisfies the following error estimate:

i1

X 1 e€—s—1\'1
o= () ()

n-1 1
X th[|1/f/(x;’)|q + |I/f/(Xj+1)|q]§

j=0
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1 ) " (26 — 23 5!
+22:hj2 |1/f(X/)|qZ<T>
j=0 i

i=1

+ W/(Xj+1)|q2(%> . (5.12)

i=1

Proof The claim is proved by applying the same technique as in the proof of Proposition 10
but instead using Theorem 12. O

Proposition 13 Let v : (0,a,] — N be a differentiable mapping on (0,ay) with a; > 0. If
|¥'|1 is n-polynomial s-exponential-type convex on (0,a,] for ¢ > 1, then for some fixed

s € (0,1], the remainder term satisfies the following error estimate:

S " ote 11— 2 a2\
Rl =(3) g | ol (2

. . 252
j=0 i=1

N

n 2 i
+ W/(Xi+1)|q (M)

252
i-1

124 , "le—er 1)
+;th |W(X1‘)|qZ( . —§>
=0 1

(263 —s—2\'
+}w’(x;+1)|qz<%) : (5.13)
i=1

Proof We apply the same technique as in the proof of Proposition 10 but use Theorem 13
instead. d

6 Conclusion

In this article, the authors showed new generalizations of Hermite—Hadamard-type in-
equality for the new class of functions, the so-called n-polynomial (s, 71)-exponential-type
convex functions. We have obtained refinements of the Hermite—Hadamard inequality
for functions whose first derivatives in absolute value at certain power are n-polynomial
(s, m)-exponential-type convex. Some applications to special means and new error esti-
mates for the trapezoid formula were given as well. We hope that our new ideas and tech-
niques may inspire many researchers in this fascinating field.
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