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Abstract
The current effort is devoted to investigating and exploring the stochastic nonlinear
mathematical pandemic model to describe the dynamics of the novel coronavirus.
The model adopts the form of a nonlinear stochastic
susceptible-infected-treated-recovered system, and we investigate the stochastic
reproduction dynamics, both analytically and numerically. We applied different
standard and nonstandard computational numerical methods for the solution of the
stochastic system. The design of a nonstandard computation method for the
stochastic system is innovative. Unfortunately, standard computation numerical
methods are time-dependent and violate the structure properties of models, such as
positivity, boundedness, and dynamical consistency of the stochastic system. To that
end, convergence analysis of nonstandard computational methods and simulation
with a comparison of standard computational methods are presented.
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1 Introduction
Humanity is enduring many diseases of variable lethality since its birth. Ebola, HIV, and
Lassa fever are just a few of them. Ebola is a devastating disease that is transmitted to
humans from carrier nonhuman primates, named fruit bats, and destroyed races of hu-
mankind. HIV is transferred from cross-species of chimpanzee to humans. In the ear-
lier 19th century it was unknown. It spread rapidly to five continents of the world, killing
300,000 people, including children and women, because its signs and symptoms did not
accompany any transmission. Lassa fever has its severity and history of destroying hu-
mankind. It is transmitted to humans via rats. Not only this fever, but many other diseases
are also present that prove themselves devastating for the living being. Therefore, sci-
entists tried very hard to build instruments to encounter the adverse effects of ailments
and to produce possible treatment via vaccine or medicine. Among several other vicious
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diseases, COVID-19 has uprooted the humanity by killing many of people and is still con-
suming many lives to date. It was first discovered in the city Wuhan, Province Hubei in
China [1, 2]. It is a pandemic that causes respiratory disorder and is transmitted through
sneezing droplets of infected individuals. These droplets can fall on the objects around
the effected and enter a healthy individual through contact. The number of cases is surg-
ing dramatically, raping developed and undeveloped countries together. It is frequently
spreading so that it becomes impossible for the world’s aristocrats to overcome [3]. Cur-
rently, every continent is a sufferer, and among them, China, Iran, the UK, the USA, Spain,
Italy are considered the most effected countries. Major symptoms of this disease include
lethargy, dry cough, followed by fever [4]. Few patients may develop pains and aches, run-
ning nose with nasal congestion, diarrhea, and sore throat. Some individuals have devel-
oped these as mild symptoms, while others may show their severe forms. Those affected
with mild symptoms recover through special treatment. Every individual out of six showed
recovery. This virus shows severe symptoms in older individuals and in those who are al-
ready indulged with some sort of disease, like diabetes, cardiovascular disorders, cancer,
chronic respiratory disorders, etc. The outbreak of COVID-19 raised many questions like
how much time is required to formulate the vaccine or medicine to treat this disease ef-
fectively [5]. When would the world be free of all the deadly viruses? How much recession
and life loss will occur, and will the world overcome this loss? No answer is available right
now. Even though the recovery ratio is much larger compared to the death ratio, the num-
ber of fatalities is surging [6, 7]. Khan and Atangana [8] have suggested a fractional-order
COVID-19 model with the Atangana–Baleanu–Caputo operator and have introduced this
model to evaluate the infection in Wuhan. In the absence of efficient vaccines and treat-
ment to mitigate the COVID-19 pandemic, the function of lock-down is studied [9]. In
formulating the proposed mathematical model, the author used the new fractional opera-
tor’s method. In [10] Khan analyzes the dynamics of the current chaotic system, i.e., using
Caputo–Fabrizio and Atangana–Baleanu derivatives. Some other articles on Atangana–
Baleanu derivative applications can be found in [11, 12]. A coronavirus model has recently
been mathematically considered in [13]. The authors used Pakistan’s actual data and dis-
cussed the potential control and infection removal from Pakistan. In [14], where potential
removal of the virus was discussed, the data from Ghana and its study using a mathemat-
ical model were taken into consideration.

In this paper, we aim to suggest and present mathematical analysis revealing the spread
of such a deathly disease, and develop some prediction with real-world data [15, 16].
Also, the proposed structure-preserving nonstandard computational method, named the
stochastic nonstandard finite difference (SNSFD), is applied for the given pandemic model
[17, 18]. This is the critical point of this paper. The flow of the paper is based on the fol-
lowing sections: In Sect. 2, the formulation of the deterministic susceptible–infected–
treated–recovered model is given. In Sect. 3, we formulate the stochastic susceptible–
infected–treated–recovered model and study its threshold dynamics. In Sect. 4, we
present different numerical methods for the stochastic model and develop convergence
analysis. Finally, in Sect. 5, the conclusion is presented.

2 Formulation of deterministic SITR model
In this section, we consider the dynamics of a human population, which is divided into four
components, or subpopulations. The population will be represented by N : [0,∞) → R,
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as a function of the time t ≥ 0. Furthermore, each of the components of the population
will be denoted by a nonnegative differentiable function S, I, T , R : [0,∞) →R. The com-
ponents of the human population are described as follows: S(t) denotes those who are not
infected yet with the coronavirus, but have some serious diseases, I(t) denotes humans
infected with the coronavirus, T(t) denotes those who are availed via the vaccination or
precautionary measures or quarantine, and R(t) denotes those who have recovered from
the coronavirus. The nonnegative constants of the model are presented as follows: B de-
notes the natural rate of new-borns or rate of individuals who have travelled from other
countries, β is the rate of interaction between individuals with serious diseases and indi-
viduals infected with coronavirus, δ is the rate of individuals with serious diseases who
have recovered directly from the coronavirus due to their immune system or quarantine
or extensive use of precautions, α is the rate of individuals who may die due to coronavirus
or naturally, μ is the rate of individuals infected with coronavirus who are treated, and ρ is
the rate of treated individuals who are completely recovered due to quarantine or vaccina-
tion. The dynamics of the coronavirus model is given by the nonlinear system of coupled
ordinary differential equations as follows:

S′(t) = B – βS(t)I(t) – αS(t) – δS(t), ∀t ≥ 0, (1)

I ′(t) = βS(t)I(t) – αI(t) – μI(t), ∀t ≥ 0, (2)

T ′(t) = μI(t) – αT(t) + δS(t) – ρT(t), ∀t ≥ 0, (3)

R′(t) = ρT(t) – αR(t), ∀t ≥ 0. (4)

Obviously, the identity N(t) = S(t) + I(t) + T(t) + R(t) is satisfied at all time instances t ≥ 0.
Let S0, I0, T0, and R0 be nonnegative real numbers that represent the initial sizes of each
component of the population, respectively. More clearly, the following conditions are sat-
isfied:

S0 = S(0), I0 = I(0), T0 = T(0), R0 = R(0). (5)

2.1 Basic properties
Lemma 1 For any given nonnegative initial conditions, there exists a unique solution S, I ,
T , R, respectively, for all t ≥ 0. Moreover, it satisfies the following inequality of boundedness:
limt−→∞ sup N(t) ≤ B

α
.

Proof The total dynamics of the model (1)–(4) is obtained by adding the four equations
as follows:

dN
dt

≤ B – αN . (5a)

It follows that

N(t) ≤ N(0)e–αt +
B
α

. (5b)

Thus a solution of the model (1)–(4) exists for given initial conditions and is eventually
bounded on every finite time interval. �
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Lemma 2 The closed set � = {S(t), E(t), T(t), R(t)εR4
+ : S(t) + I(t) + T(t) + R(t) ≤ B

α
} is posi-

tively invariant.

Proof Using Eqs. (5a) and (5b), it follows that as the time approaches infinity, t → ∞, the
population is bounded by a positive number so on the set �,

N(t) ≤ B
α

,

therefore, the set � is positively invariant. �

2.2 Steady states of the model
It is easy to see that there are three steady states of Eqs. (1) to (4) as follows:

• Trivial equilibrium (TE) = (S, I, T , R) = (0, 0, 0, 0);
• Virus-free state (VFS) = V1 = (S0, I0, T0, R0) = ( B

α+δ
, 0, 0, 0);

• Virus existence state (VES) = V2 = (S1, I1, T1, R1),
where

S1 =
α + μ

β
, I1 =

B – (α + δ)S1

βS1 , T1 =
μI1 + δS1

α + ρ
, R1 =

ST1

α
.

Notice that the reproduction number RO is the spectral radius of G1G–1
2 [4], where

G1 =

⎡
⎢⎣

Bβ

α+δ
0 0

0 0 0
0 0 0

⎤
⎥⎦ and G2 =

⎡
⎢⎣

α + μ 0 0
–μ α + δ 0
0 –ρ α

⎤
⎥⎦ .

More precisely, notice that

RO =
Bβ

(α + μ)(α + δ)
.

3 Stochastic SITR model
Let us consider the vector V (t) = [S(t), I(t), T(t), R(t)]T , the possible changes in the given
model are as presented in Table 1.

Table 1 Transition probabilities

Ti = Transition Pi = Probabilities

T2 = [–1 1 0 0]T P2 = βSI�t
T3 = [–1 0 0]T P3 = αS�t
T4 = [–1 0 1 0]T P4 = δS�t
T5 = [0 – 1 0 0]T P5 = αI�t
T6 = [0 – 1 1 0]T P6 =μI�t
T7 = [0 0 – 1 0]T P7 = αT�t
T8 = [0 0 – 1 1]T P8 = ρT�t
T9 = [0 0 0 – 1]T P9 = αR�t
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Notice that the expectation and variance of the given model are as follows:

E∗[�V ] =
9∑

i=1

PiTi =

⎡
⎢⎢⎢⎣

B – βSI – αS – δS
βSI – αI – μI

μI – αT + δS – ρT
ρT – αR

⎤
⎥⎥⎥⎦�t,

Var = E∗[�V�V T]
=

9∑
i=1

Pi[Ti][Ti]T

=

⎡
⎢⎢⎢⎣

P1 + P2 + P3 + P4 –P2 –P4 0
–P2 P2 + P5 + P6 –P6 0
–P4 –P6 P6 + P7 + P8 –P8

0 0 –P8 P8 + P9

⎤
⎥⎥⎥⎦ .

Note that the stochastic drift is f (V (t), t) = E∗[�V ]
�t , while stochastic diffusion is L(V (t), t) =√

E∗[�V�V T ]
�t .

So, the stochastic differential equation of the given model is as follows:

dV (t) = f
(
V (t), t

)
dt + L

(
V (t), t

)
dW (t), (6)

with initial conditions V (0) = Vo = [0.7, 0.05, 0.2, 0.05]T , 0 ≤ t ≤ T , and where the Brown-
ian motion is denoted by W (t).

3.1 Euler–Maruyama method
This method can be applied to Eq. (6) as follows [19]:

Vm+1 = Vm + f (Vm, t)�t + L(Vm, t)�Wm, (7)

where �t is the time step size and �Wm = Wtm+1 – Wtm is a random variable having
the standard normal distribution. It is normally distributed between stochastic drift and
stochastic diffusion, i.e., �Wm ∼ N(0, 1).

4 Parametric noise in SITR model
In this section, we shall choose parameters from Eq. (1) to (4) and change them into ran-
dom parameters with small noise as β dt = β dt + σ dW (t) as follows [20]:

dS(t) =
(
B – βS(t)I(t) – αS(t) – δS(t)

)
dt – σ I(t)S(t) dW (t), ∀t ≥ 0, (8)

dI(t) =
(
βS(t)I(t) – αI(t) – μI(t)

)
dt + σ I(t)S(t) dW (t), ∀t ≥ 0, (9)

dT(t) =
(
μI(t) – αT(t) + δS(t) – ρT(t)

)
dt, ∀t ≥ 0, (10)

dR(t) =
(
ρT(t) – αR(t)

)
dt, ∀t ≥ 0. (11)

The Wiener process is denoted by Wk(t), while σ is the randomness of Eqs. (8) to (11).
The system of Eqs. (8) to (11) is nonintegrable because of the Wiener process.
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4.1 Stochastic reproduction dynamics
Let us introduce RS

o = Rd
o – σ 2

2(α+μ) , where RS
o denotes the stochastic reproduction number.

Lemma 3 If the initial data satisfy (S(0), I(0), T(0), R(0)) ∈ R4
+, then the system (8)–(11)

has a unique solution, and the solution (S(t), I(t), T(t), R(t)) belongs to �.

Definition If limt→∞ I(t) = 0, then in the system (8)–(11), infected individuals will expe-
rience extinction.

Theorem 1 If RS
o < 1 and σ 2 < B

(α+δ) , then the number of infected individuals in the system
(8)–(11) exponentially tends to zero.

Proof Assume that initial data satisfy (S(0), I(0), T(0), R(0)) ∈ R4
+ and (S(t), I(t), T(t), R(t))

is a solution of system (8)–(11), with constant randomness σ and constant drift β , satis-
fying the stochastic differential equation dI = (βSI – αI – μI) dt + σ IS dW for a Brownian
motion W . Applying Itô’s lemma with f (I) = ln(I) gives

dln(I) = f ′(I) dI +
1
2

f ′′(I)I2σ 2 dt,

d ln(I) =
1
I

dI +
1
2

(
–

1
I2

)
I2σ 2 dt,

d ln(I) =
(

βS – α – μ –
1
2
σ 2

)
dt + σS dW .

More precisely, by integrating from [0, t], ∀t ≥ 0,

ln(I) = ln I(0) +
∫ t

0

(
βS – α – μ –

1
2
σ 2

)
dt +

∫ t

0
σS dW .

Notice that a local continuous martingale is defined as M(t) =
∫ t

0 σS dW with M(0) = 0.
If σ 2 > Bβ

(α+μ)(α+δ) ,

ln(I) >
(

βB
(α + δ)

– (α + μ) –
1
2

Bβ

(α + μ)(α + δ)

)
t + M(t) + ln I(0),

ln(I)
t

>
(

Bβ(2(α + μ) – 1)
2(α + μ)(α + δ)

– (α + μ)
)

+
M(t)

t
+

ln I(0)
t

,

lim
t→∞

ln(I)
t

>
(

Bβ(2(α + μ) – 1)
2(α + μ)(α + δ)

– (α + μ)
)

> 0, with lim
t→∞

M(t)
t

= 0,

If σ 2 < Bβ

(α+μ)(α+δ) , then

ln
(
I(t)

)
<

(
βB

(α + δ)
– (α + μ) –

1
2
σ 2

)
t + M(t) + ln I(0),

ln(I)
t

< (α + μ)
(

βB
(α + δ)(α + μ)

–
σ 2

2(α + μ)
– 1

)
+

M(t)
t

+
ln I(0)

t
,

lim
t→∞ sup

ln(I)
t

< (α + μ)
(
RS

0 – 1
)
,
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so that, when

RS
0 < 1,

we get

lim
t→∞ sup

ln(I)
t

≤ 0,

lim
t→∞ I(t) = 0,

as desired. Moreover,

RS
o = Rd

o –
σ 2

2(α + μ)
< 1. �

5 Numerical methodology
For each NεN, define the set IN = {0, 1, 2, . . . , N}. In this section, we will provide and ana-
lyze a discretization of the system (8)–(11). To that end, we consider the temporal period
of length T > 0. Fix a uniform partition of the temporal interval [0, T] consisting of N
subintervals, and let k = T

N . Defining tm = mk, for each mεIN , we will employ the nota-
tion Sm, Im, Tm, and Rm to represent the numerical approximation to the values of the
functions S, I , T , and R, respectively, at time tm.

Also, we will apply different explicit and implicit methods to the given system. As ex-
pected, we will employ the discrete initial data (S0, I0, T0, R0), where S0 = S(0), I0 = I(0),
T0 = T(0), R0 = R(0).

5.1 Stochastic Euler method
This method can be applied to the system of Eqs. (8) to (11) as follows [21]:

Sm+1 = Sm + k
(
B – βSmIm – αSm – δSm – SmImσ�Wm

)
, (12)

Im+1 = Im + k
(
βSmIm – αIm – μIm + SmImσ�Wm

)
, (13)

Tm+1 = Tm + k
(
μIm – αTm + δSm – ρTm)

, (14)

Rm+1 = Rm + k
(
ρTm – αRm)

, (15)

where k is time step size and �Wm = Wtm+1 – Wtm .

5.2 Stochastic Runge–Kutta method
This method can be applied to the system of Eqs. (8) to (11) as follows:

Stage 1

A1 = k
(
B – βSmIm – αSm – δSm – SmImσ�Wm

)
,

B1 = k
(
βSmIm – αIm – μIm + SmImσ�Wm

)
,

C1 = k
(
μIm – αTm + δSm – ρTm)

,

D1 = k
(
ρTm – αRm)

.
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Stage 2

A2 = k
[

B – β

(
Sm +

A1

2

)(
Im +

B1

2

)
– (α + δ)

(
Sm +

A1

2

)

–
(

Sm +
A1

2

)(
Im +

B1

2

)
σ�Wm

]
,

B2 = k
[
β

(
Sm +

A1

2

)(
Im +

B1

2

)
– (α + μ)

(
Im +

B1

2

)

+
(

Sm +
A1

2

)(
Im +

B1

2

)
σ�Wm

]
,

C2 = k
[
μ

(
Im +

B1

2

)
– α

(
Tm +

C1

2

)
+ δ

(
Sm +

A1

2

)
– ρ

(
Tm +

C1

2

)]
,

D2 = k
[
ρ

(
Tm +

C1

2

)
– α

(
Rm +

D1

2

)]
.

Stage 3

A3 = k
[

B – β

(
Sm +

A2

2

)(
Im +

B2

2

)
– (α + δ)

(
Sm +

A2

2

)

–
(

Sm +
A2

2

)(
Im +

B2

2

)
σ�Wm

]
,

B3 = k
[
β

(
Sm +

A2

2

)(
Im +

B2

2

)
– (α + μ)

(
Im +

B2

2

)

+
(

Sm +
A2

2

)(
Im +

B2

2

)
σ�Wm

]
,

C3 = k
[
μ

(
Im +

B2

2

)
– α

(
Tm +

C2

2

)
+ δ

(
Sm +

A2

2

)
– ρ

(
Tm +

C2

2

)]
,

D3 = k
[
ρ

(
Tm +

C2

2

)
– α

(
Rm +

D2

2

)]
.

Stage 4

A4 = k
[
B – β

(
Sm + A3

)(
Im + B3

)
– (α + δ)

(
Sm + A3

)
–

(
Sm + A3

)(
Im + B3

)
σ�Wm

]
,

B4 = k
[
β
(
Sm + A3

)(
Im + B3

)
– (α + μ)

(
Im + B3

)
+

(
Sm + A3

)(
Im + B3

)
σ�Wm

]
,

C4 = k
[
μ

(
Im + B3

)
– α

(
Tm + C3

)
+ δ

(
Sm + A3

)
– ρ

(
Tm + C3

)]
,

D4 = k
[
ρ
(
Tm + C3

)
– α

(
Rm + D3

)]
.

Final stage

Sn+1 = Sn + 1
6 [A1 + 2A2 + 2A3 + A4],

In+1 = In + 1
6 [B1 + 2B2 + 2B3 + B4],

Tn+1 = Tn + 1
6 [C1 + 2C2 + 2C3 + C4],

Rn+1 = Rn + 1
6 [D1 + 2D2 + 2D3 + D4],

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(16)

where k is the time step size and �Wm = Wtm+1 – Wtm .
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5.3 Nonstandard computational method
This method can be applied to the system of Eqs. (8) to (11) as follows:

Sm+1 =
Sm + kB

1 + kβIm + k(α + δ) + kImσ�Wm
, (17)

Im+1 =
Im + kβSmIm + kSmImσ�Wm

1 + k(α + μ)
, (18)

Tm+1 =
Tm + kμIm + kδSm

1 + k(α + ρ)
, (19)

Rm+1 =
Rm + kρTm

1 + kα
, (20)

where k is the time step size and �Wm = Wtm+1 – Wtm .

5.3.1 Convergence analysis
In this section, we shall present the following theorems for positivity, boundedness, con-
sistency, and stability.

Theorem 2 For any given initial value (Sm(0), Im(0), Tm(0), Rm(0)) ∈ R4
+, the system of

Eqs. (17) to (20) has a unique positive solution (Sm, Im, Tm, Rm) ∈ R4
+ for any m ≥ 0.

Proof All the parameters and initial conditions must be nonnegative due to biological rea-
soning. The proof is straightforward. �

Theorem 3 The region � = {(Sm, Im, Tm, Rm) ∈ R4
+ : Sm ≥ 0, Im ≥ 0, Tm ≥ 0, Rm ≥ 0, Sm +

Im + Tm + Rm ≤ B
α
} for all m ≥ 0 is a positively invariant feasible region for Eqs. (17) to (20).

Proof We rewrite the system (17) to (20) as follows:

Sm+1 – Sm

k
=

(
B – βSmIm – αSm – δSm – SmImσ�Wm

)
,

Im+1 – Im

k
=

(
βSmIm – αIm – μIm + SmImσ�Wm

)
,

Tm+1 – Tm

k
=

(
μIm – αTm + δSm – ρTm)

,

Rm+1 – Rm

k
=

(
ρTm – αRm)

,

(Sm+1 + Im+1 + Tm+1 + Rm+1) – (Sm + Im + Tm + Rm)
k

= B – α
(
Sm + Im + Tm + Rm)

,
(
Sm+1 + Im+1 + Tm+1 + Rm+1) =

(
Sm + Im + Tm + Rm)

+ kB – kα
(
Sm + Im + Tm + Rm)

,

(
Sm+1 + Im+1 + Tm+1 + Rm+1) ≤ B

α
+ kB – kα

(
B
α

)
,

(
Sm+1 + Im+1 + Tm+1 + Rm+1) ≤ B

α
. �

Theorem 4 For any m ≥ 0, the system of discrete dynamical Eqs. (17) to (20) has the same
steady states as that of the continuous dynamical Eqs. (8) to (11).
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Proof Solving the Eqs. (17) to (20), we get three states as follows:
• Trivial equilibrium (TE) = (Sm, Im, Tm, Rm) = (0, 0, 0, 0),
• Virus-free state (VFS) = (Sm, Im, Tm, Rm) = ( B

α+δ
, 0, 0, 0),

• Virus Existence state (VES) = (Sm, Im, Tm, Rm),
where

Sm =
α + μ

β
, Im =

B – (α + δ)Sm

βSm , Tm =
μIm + δSm

α + ρ
, Rm =

STm

α
. �

Theorem 5 For any m ≥ 0, the proposed computational method is stable if the eigenvalues
of Eqs. (17) to (20) lie inside the unit circle.

Proof Consider the right-hand sides of Eqs. (17)–(20) as functions F , G, H , and L as fol-
lows:

F =
S + kB

1 + kβI + k(α + δ) + kIσ�wm
, G =

I + kβSI + kSIσ�wm

1 + k(α + μ)
,

H =
T + kμI + kδS
1 + k(α + ρ)

, L =
R + kρT
1 + kα

.

The Jacobian matrix is defined as

J =

⎡
⎢⎢⎢⎢⎢⎣

∂F
∂S

∂F
∂I

∂F
∂T

∂F
∂R

∂G
∂S

∂G
∂I

∂G
∂T

∂G
∂R

∂H
∂S

∂H
∂I

∂H
∂T

∂H
∂R

∂L
∂S

∂L
∂I

∂L
∂T

∂L
∂R

⎤
⎥⎥⎥⎥⎥⎦

where

∂F
∂S

=
1

1 + kβI + k(α + δ) + kIσ�Wm
,

∂F
∂I

=
–(S + kB)[kβ + kσ�Wm]

[1 + kβI + k(α + δ) + kIσ�Wm]2 ,

∂F
∂T

= 0,
∂F
∂R

= 0,

∂G
∂S

=
kβI + kIσ�Wm

1 + k(α + μ)
,

∂G
∂I

=
kβS + kSσ�Wm

1 + k(α + μ)
,

∂G
∂T

= 0,
∂G
∂R

= 0,

∂H
∂S

=
kδ

1 + k(α + ρ)
,

∂H
∂I

=
kμ

1 + k(α + ρ)
,

∂H
∂T

=
1

1 + k(α + ρ)
,

∂H
∂R

= 0,

∂L
∂S

= 0,
∂L
∂I

= 0,
∂L
∂T

=
kρ

1 + kα
,

∂L
∂R

=
1

1 + kα
.

Now we want to linearize the model about the steady-state of the model for virus-free
state V1 = ( B

α+δ
, 0, 0, 0) and Ro < 1.

The given Jacobian there is

J(V1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1+k(α+δ)

–( B
α+δ

+kB)[kβ+kσ�Wm]
[1+k(α+δ)]2 0 0

0 kβ( B
α+δ

)+k( B
α+δ

)σ�wn
1+k(α+μ) 0 0

kδ
1+k(α+ρ)

kμ

1+k(α+ρ)
1

1+k(α+ρ) 0

0 0 kρ

1+kα
1

1+kα

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Figure 1 Graph of the spectral radius of the
Jacobian matrix associated with the computational
method (17)–(20) at the steady-state V2. The
estimated parameter values of Table 1 were used,
and the spectral radius was obtained for various
temporal time step sizes k in [0, 1000]

The eigenvalues of this Jacobian matrix are

λ1 =
∣∣∣∣

1
1 + kα

∣∣∣∣ < 1, λ2 =
∣∣∣∣

1
1 + k(α + ρ)

∣∣∣∣ < 1,

λ3 =
∣∣∣∣

1
1 + k(α + δ)

∣∣∣∣ < 1, λ4 =
kβ( B

α+δ
) + k( B

α+δ
)σ�wn

1 + k(α + μ)
< 1, if RS

o < 1.

So, the given model is stable around V2 as shown in Fig. 1. This shows that all the eigen-
values of the Jacobian matrix lie inside the unit circle. So, the given model is stable around
V1. We plot the largest eigenvalues of the Jacobian matrix associated with V2. Notice that
the spectral radius is always less than one, as desired. �

5.4 Computational results
In this section, we present a comparison analysis of existing numerical methods with the
nonstandard computational method by using different values of the parameters as pre-
sented in [22], B = 0.3, β = 0.3, α = 0.3, δ = 0.001, ρ = 0.03, σ = 0.2, for RS

0 < 1. For RS
0 > 1,

B = 0.3, β = 0.5, α = 0.3, δ = 0.001, ρ = 0.03, σ = 0.2. Moreover, we used S0 = 0.7, I0 = 0.05,
T0 = 0.2, R0 = 0.05.

Example 1 (Simulation for the free of coronavirus state) For given real data, the repro-
ductive value is RS

0 = 0.6975 < 1. So, the system converges to V1 = ( B
α+δ

, 0, 0, 0). However,
in Fig. 2, we just take a susceptible component; the numerical solution of the system us-
ing the nonstandard and standard computational methods is presented. In Fig. 2, (a), (c),
and (e), the results converge to V1 for certain small temporal step size. On the other hand,
in Fig. 2, (b), (d), and (f ), the results violated the structural properties of the system. The
comparison graph exhibits the fact that the proposed nonstandard computational method
is capable of preserving the structural properties of the solutions in the sense of biological
reasoning, as desired.

Example 2 (Simulation for the existence of coronavirus state) The reproductive value is
RS

0 = 1.1958 > 1. So, the system converges to V2 = (0.8000, 0.1480, 0.0473, 0.0047). Never-
theless, in Fig. 4, we just take the infected component; the numerical solution of the system
using the nonstandard and standard computational methods is presented. In Fig. 3, (a), (c),
and (e), the results converge to V2 for a certain small temporal step size. On the other hand,
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Figure 2 Comparison graphs of computational methods at the free of coronavirus state

in Fig. 3, (b), (d), and (f ), the results violated the structural properties of the system. Fig-
ure 3 exhibits the fact that the nonstandard computational method has kept the structural
properties of the model such as positivity, boundedness, and dynamical consistency, as
desired.

Example 3 (Simulation for reproduction number with the effect of treatment) Let μ =
0.0488. Notice that the reproduction value decreases, moving the dynamics of the model
from virus existence state to virus-free state. So, the virus-free state of the system is stable.
However, Fig. 4 exhibits the fact that the increases in treatment strategy such as quarantine
or vaccination can overcome the pandemic of coronavirus, as desired.
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Figure 3 Comparison graph of computational methods at the existence of coronavirus state

Example 4 (Simulation for a component of the infected humans) Let us now for different
values of μ (treatment rate) notice that the number of infected humans converges to zero.
Eventually, the reported rate of infected humans has been controlled in certain scenarios.
Consequently, Fig. 5 shows the fact that the treatment strategy has a vital role in the control
of the pandemic of the coronavirus around the world.

6 Conclusion
This study focused on the stochastic susceptible–infected–treated–recovered model,
which elaborates a simplified way to describe the dynamics of coronavirus in the human
population. Also, we have applied different explicit and implicit computational methods
to study the dynamics of the stochastic system. The proposed nonstandard computational
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Figure 4 Graph of the effect of treatment on
reproduction number RS0

Figure 5 Graph of the effect of quarantine on
infected humans at the existence of a virus state

method is unconditionally convergent as compared to other explicit numerical methods.
This method preserves the structural properties of stochastic models, such as consistency,
stability, positivity, and boundedness [12]. Moreover, this study provides a valuable proof
that the confinement rules are vital to control the situation in a reasonable time. If the con-
tact rate is dropped between people then stabilization of classes can be achieved signifi-
cantly earlier. Therefore, there is no chance for governments to get rid of social distancing
rules among individuals.
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