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Abstract

In the present work, a numerical technique for solving a general form of nonlinear
fractional order integro-differential equations (GNFIDEs) with linear functional
arguments using Chebyshev series is presented. The recommended equation with its
linear functional argument produces a general form of delay, proportional delay, and
advanced non-linear arbitrary order Fredholm-Volterra integro-differential equations.
Spectral collocation method is extended to study this problem as a matrix
discretization scheme, where the fractional derivatives are characterized in the
Caputo sense. The collocation method transforms the given equation and conditions
to an algebraic nonlinear system of equations with unknown Chebyshev coefficients.
Additionally, we present a general form of the operational matrix for derivatives. The
introduced operational matrix of derivatives includes arbitrary order derivatives and
the operational matrix of ordinary derivative as a special case. To the best of authors’
knowledge, there is no other work discussing this point. Numerical test examples are
given, and the achieved results show that the recommended method is very effective
and convenient.

Keywords: Chebyshev collocation method; Nonlinear fractional integro-differential
equations; Functional argument; Caputo fractional derivatives

1 Introduction

Nonlinear differential (DEs) and integro-differential equations (IDEs) have a great im-
portance in modeling of many phenomena in physics and engineering [1-17]. Fractional
differential equations involving the Caputo and other fractional derivatives, which are a
generalization of classical differential equations, have attracted widespread attention [18—
25]. In the last decade or so, several studies have been carried out to develop numerical
schemes to deal with fractional integro-differential equations (FIDEs) of both linear and
nonlinear type. The successive approximation methods such as Adomian decomposition
[26], He’s variational iteration technique [8], HPM [5], He’s HPM [27], modified HPM [28],

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’'s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13662-020-02951-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02951-z&domain=pdf
http://orcid.org/0000-0001-5420-8147
mailto:skumar.math@nitjsr.ac.in
mailto:mofatzi@sci.cu.edu.eg

Ali et al. Advances in Difference Equations (2020) 2020:494 Page 2 of 23

finite difference method [29], a modified reproducing kernel discretization method [30],
and differential transformation method [31] were used to deal with FIDEs. Spectral meth-
ods with different basis were also applied to FIDEs, Chebyshev and Taylor collocation,
Haar wavelet, Tau and Walsh series schemes, etc. [32—39] as an example. The collocation
method is one of the powerful spectral methods which are widely used for solving frac-
tional differential and integro-differential equations [40—44]. Further, the numerical solu-
tion of delay and advanced DEs of arbitrary order has been reported by many researchers
[45-58]. Differential equations of advanced argument had fewer contributions in mathe-
matics research compared to delay differential equations, which had a great development
in the last decade [59, 60]. Monotone iterative technique was introduced with Riemann—
Liouville fractional derivative to deal with FIDEs with advanced arguments [61], while the
collocation method with Bessel polynomials treated linear Fredholm integro-differential-
difference equations [62]. In our previous work, Tau method with the Chebyshev polyno-
mials was employed to deal with linear fractional differential equations with linear func-
tional arguments [63]; therefore, the Chebyshev collocation method was extended to frac-
tional differential equations with delay [64]. The equations with functional form of argu-
ment represent mixed type equations delay, proportional delay, and advanced differential
equations. All reported works considered a generalization of equations with functional
argument with integer order derivative or with fractional derivative in the linear case.

In this work, we introduce a general form of nonlinear fractional integro-differential
equations (GNFIDEs) with linear functional arguments, which is a more general form
of nonlinear fractional pantograph and Fredholm—Volterra integro-differential equations
with linear functional arguments [65—69]. The spectral collocation method is used with
Chebyshev polynomials of the first kind as a matrix discretization method to treat the
proposed equations. An operational matrix for derivatives is presented. The introduced
operational matrix of derivatives includes fractional order derivatives and the operational
matrix of ordinary derivative as a special case. No other studies have discussed this point.

The proposed GNFIDEs with linear functional arguments are presented as follows:

np  ny n3  n4

DO Qui@ i + )+ DY Py @)y gpx + )
k=0 i=0 h=1 j=0
b 25 o) s
~f)+ [ D Katwmoy e [0S Vilwy ey 1)
4 d=0 a c=0

where x € [a,b], Qi(x),Pp;j(x), f(x), Vc(x,1),Ky(x,t) are well-defined functions, and
a,b,pi,&,q;,5; € N where p;,q; #0, v; >0, ¢j >0, vy >0, B, >0and i -1 <v; <
j-l<aj<j,d-1<v;<d,c-1<p.<c, n eN,under the conditions

yYO0) =, i=0,1,2,...,m—1, @)

where 5; € [a, b], and m is the greatest integer order derivative, or the highest integer order
greater than the fractional derivative. The general form (1) contains at least three different
arguments, then the following corollary defines the interval that the independent variable
x belongs to. Chebyshev polynomials of the first kind are used in this work to approximate
the solution of suggested equation (1). The Chebyshev polynomials are characterized on
[-1,1].
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Corollary 1.1 The independent variable x of (1) belongs to [a, b, which is the intersec-
tion of the intervals of the different arguments and [-1,1] i.e. x € [a,D] = [%, 1L&'] N

pi
G MGy A
[ . q/.]ﬂ[ 1,1].

2 General notations
In this section, some definitions and properties for the fractional derivative and Chebyshev
polynomials are listed [63, 64, 70, 71].

2.1 The Caputo fractional derivative
The Caputo fractional derivative operator D} of order y is characterized in the following
form:

y 1 gy
D; ¥ (x) = o=y /0 e dt, y>0, (3)

wherex>0,n—-1<y <n,ne Ny and Ny =N - {0}.
o D} Y0 LWi(x) = Y7 4D} Wi(x), where A; and y are constants.

+ The Caputo fractional differentiation of a constant is zero.
0 for ke Ng and k< [y],
Y ok 0
e Dix" = { C(ks1)k—y
Tk+17)
where [y] denotes to the smallest integer greater than or equal to y.

for ke Ng and k> [y1,

2.2 Chebyshev polynomials
The Chebyshev polynomials T, (x) of the first kind are defined as follows: orthogonal poly-
nomials in x of degree n are defined on [-1, 1] such that

T,.(x) = cosnb,

where x = cos§ and 0 € [0, ]. The polynomials T),(x) are generated by using the following

recurrence relations:
Ty (%) = 2xT0 (%) — Ta (%),
with initials
Tolx) =1, Tix)=x n=12,....

Corollary 2.1 The Chebyshev polynomials T,(x) are explicitly expressed in terms of x" in

the following form:
[n/2]
T, (x) = Z w]((”)x”"Zk, (4)
k=0
where

Wi = (—1)kn-2k1 o (n-k , 2k<n.
n-k k
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3 Procedure solution using the collocation method
The solution y(x) of (1) may be expanded by Chebyshev polynomial series of the first kind
as follows [64]:

y@) =Y e Tu®). (5)

n=0

By truncating series (5) to N < oo, the approximate solution is expressed in the following
form:

N
Y@ =Y euTlx)
n=0
=Tx)C, (6)
where T'(x) and C are matrices given by
1 T
T(x) = I:TO(x) Tl(x) e TN(x)] » C= |:§Co, C1,Cy.. .,CN:I .
Now, using (4), relation (6) may written in the following form:
y(x) = X(@)W'C, 7)

where W is a square lower triangle matrix with size (N + 1) x (N + 1) given by

1 ifi=j=0,
Wi = (—1)k2i‘2k‘1ﬁ(’;k) if i +jeven andj <i, 8)
0 ifj>i,i+jodd,
where
%,...,1,0 foreveni,
k=14"° ,j=0,1,2,...,N.
%,...,1,0 for odd i,
For example,
0 0 0 0 O
1 0 0 0 O
0 1 0 0 0 O
L 0 00 1 O 2 0 0 O
wW=}]-1 0 2 0 0 , W =
0 -3 0 4 0 O
0O -3 0 4 0
0 -8 0 8 0
1 0O -8 0 8
N=4 0 5 0 -20 0 16

Then, by substituting from (6) in (1), we get

ny  ny

33 Q@) (TC) DY T(pix + £)C

k=0 i=0
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+ 3 Py (TP ) C) DY T (g + §)C
h=1 j=0
b s Bx) 6
- / > Kale, ) TV () C dt - / ZV(x, HTP) () Cdt = f(x). 9)
a 40 a

We can write (9) as follows:

[Z 3" Q@ (TC) D" T(pix + &)

k=0 i=0

n3  n4

+ Z Z Ph,j(x)(T(h) (x)C)D"‘/ T(gqix + &)

h=1 j=0
f bin (x, )DV T (t) dt — / Z\/x, DﬂCT(t)dti|C = f(®). (10)

The collocation points are defined in the following form:

x=1lh+a, (11)
where
h=2"% 1012 N
N

By substituting the collocation points (11) in (10), we get

[Z > Quilsr) (T (1) C) D" Ty + &)

k=0 i=0
n3  ng
+ Z ZP;,, xl )C)D T (qjxi + gj)
h=1 j=0
b "5 $(x) "6
ZKd(x,, DT (t) dt - / > Velwr, t)DPT () dt | C = f(x). (12)
a 4= c=0

In the following theorem we introduce a general form of operational matrix of the row
vector T'(x) in the representation as (7), such that the process includes the fractional order
derivatives, and ordinary operational matrix given as a special case when «o; — [o;].

Theorem 1 Assume that the Chebyshev row vector T(x) is represented as (7), then the
fractional order derivative of the vector D* T'(x) is

D T(x) = Xy, (%)Bo, W7, (13)
where

Xa,-(x) — [x—oti+l xl ojti 2 aj+i xN 1— a,+z] i-l<a; <i, (14)
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where By, is an (N + 1) x (N + 1) square upper diagonal matrix, the elements b, s of By, can

be written as follows:

_ IL(r+i+l) _
br,rﬂ' = Tlr+i-a;) r,S —Oy 1)21“';N1 (15)

0 otherwise,
wherei—1<a; <i,N > [o;].
Proof Since

D*T(x)=D"[1xa’ -- &N |WT

= Xo, By, W7, (16)

if 0 < o7 < 1, using Caputo’s fractional properties, we get

Xy = [0 a2 g3 o N, (17)
2
0 e r(()s; h 0
0 0 T 0
Bu=|: z a0 18)
I'(N)
0 0 0 FN-a])
0 0 0 0

As a; — 1, the system reduces to the ordinary case (B,, —> B) (see [64]).
Also 1 < ay <2, then

Xaz _ [xZ—th X302 yhoa xN+2—052], (19)
3
0 0 TGy F(4§) 0
0 0 0 S RRR
Bo(2 S : : : . ) (20)
r(N)
0 0 0.-- 0 N0
0 0 0-- 0 0
0 0 0--- 0 0

As ay —> 2, the system reduces to the ordinary case (B,, —> B?) (see [64]).
By the same way, if we take 2 < o3 < 3, then

Xag — [xf)'—ag x4—a3 x5—0t3 L. xN+3—a3]’ (21)
4
00 0 Fgtag (()) 0
e

00 0 0 s 0
B, = I'(N) . 22
==lo 0 0... 0 0 S (22)

0 0 O--- 0 0 0

0 0 O--- 0 0 0

0 0 O--- 0 0 0
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As a3 —> 3, the system reduces to the ordinary case (B, —> B®) (see [64]).

By induction, i — 1 < «; <, then
Xai (x) — [x*ai*’i xlfoti+l' x27a1+i . xN*l*O(,’+l']’ i—1< a; < i, (23)

and By, as in (15), where the proposed operational matrix represents a kind of unification

of ordinary and fractional case. O
Now, we give the matrix representation for all terms in (12) as representation (13).
* The first term in (12) can be written as follows:
n  ny .
DO Quilw)(T(x)C) DM T (pioey + &)
k=0 i=0
n  n I
=3 Quile)(XWTC) X, By Hp Ee, W C, (24)
k=0 i=0
where
X(xo) O 0 0
0 X&) 0 0
)_( = 0 0 X(xZ) 0 ,
0 0 0 X(xn)
wT 0 0-- 0 cC 0 O 0
o wi o 0 0 C 0 0
w7 o o wT. 0|, ¢c=|0 o C 0
0 0 0--- wT o 0 0.--- C

In addition, H,, is a square diagonal matrix of the coefficients for the linear argument, and

the elements of H,,, can be written as follows:

0 ifr#s;
hrs =
pi ifr=s.

Moreover, Eg, is a square upper triangle matrix for the shift of the linear argument, and

the form of E;, is

(DE° (E° (HE*0-  (D)EN
0 (DE (HE)*" - (T)(éi)Nfl
E.=| © 0 DE2 (DEN?

i

0 0 0 () ENN
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* The second term in (12) can be written as follows:

n3  ny
DO Pujla) (TP(x) C) DY T (gt + &)
h=1 j=0
n3  H4 L B _
=Y Pujle) (XBy W C) Xy Bo HpE; W C, (25)
h=1 j=0
where
0 B, O 0
0 0 By 0
By = : )
0 0 0--- B
0 0 0 0

and By, is the same as B,;, when /1 = [o;].
The matrix representation for the variable coefficients takes the form

Q,»,j(xo) 0 0o ... 0

0 Qi,,(xl) 0o ... 0

Qij = : : . .
0 0 0o ... Qi,j(xN)

x Matrix representation for integral terms: Now, we try to find the matrix form corre-
sponding to the integral term. Assume that Kj(x, t) can be expanded to univariate Cheby-
shev series with respect to ¢ as follows:

N
Ka(x,) =Y s /() T (1), (26)

r=0

Then the matrix representation of the kernel function K, (x, t) is given by
Koo, t) = Ug ()T (2), (27)
where
Uy(x) = [ta0(x) ta1(x) -+ uan(x)].
Substituting relations (13) and (27) in the present integral part, we obtain
b
| Kty e
a
b
= / Uy()TT () TV () C dt
a

b
= / U, (x)WXT ()X, (6B, W' Cdt
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b
— / Ud(x)W[tO tl . tN]T[tO_Ud+d tl_Ud+d tZ—Ud+d . tN—l—Ud+d]BUd WTCdt

b
= ud(x)W< / thpavard dt)BvdWTC

a

b
= LId(x)W< / gpra-vard dt)BvdWTC

a

=Uy(x)WZ,,B,,W'C, pq=0,1,...,N, (28)
where
b
Za :/ ravatd gy pg=0,1,...,N,
a

or

bP+q-Ud+d+1 _ ap+q—vd+d+1

Zd:[zpq]: ’ p,q:O,l,...,N.

prq-vg+d+1

So, the present integral term can be written as:

b "5 ns
/ D Kalw, )y (e dt = Ug()) WZaB,, W' C

d=0 d=0
s
- Z u,wz,B,,w'c, (29)
d=0
where
Ua(x0)
Uy(x1)
u; =
Uy(xn)

* Matrix representation for integral terms: Now, we try to find the matrix form corre-

sponding to the integral term. By the same way V,(x,t) can be expanded as (26)

N

Vel,t) =D ge @) To(0). (30)

r=0

Then the matrix representation of the kernel function V,(x, t) is given by
Ve, 8) = Ge) T (0), (31)
where

Ge(*) = [geo () ge1(®) -+ gen(®)]-

Page 9 of 23
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Substituting relations (13) and (31) in the present integral part, we obtain

(%)
f Vil 0y 0) i
)
= / U(x)TT ) D% T(t)Cdt
(%)
= / U (x) WX (£)X,(t)Bs, W Cdt
) .
— / Llc(x)\X/[tO tl . t‘N] [tO—ﬁC+c tl—ﬂc+c t2—ﬂc+c L tN—l—ﬁC+c]Bﬂc WTCdt
(%)
= Llc(x)W< / tPgaPete dt)Bﬁc wic
¢ (x)
- L[C(x)W( / gpra-pee dt)B,gC wic
a
= U(x)WZs,(x)Bs W'C, p,g=0,1,...,N, (32)
where
#(x)
Zg,(x) = f b qr pg=0,1,...,N,
a

or

¢(x)(p+q—ﬂ¢+c+l) _ ap+q—f3¢+c+1
Zg, (%) = [zpq(x)] =

, ,g=0,1,...,N.
p+q—-PBc+c+1 P4

So, the present integral term can be written as follows:

o) 16 6
/ D Velw, 00 (6)dt =Y Golx) WZp, (x1)Bs W C

¢=0 c=0
Hne o _ B _ _
= G.WZy By W'C, (33)
c=0
where
G.(x0) 0 0 0
0 G.(x1) 0 0
Gc = 0 0 G.(x2) 0 ,
0 0 0 Ge(xn)
Z.(x0) 0 0 0
0 Z.(x1) 0 0
Zﬂc = 0 0 Zc(xZ) 0
0 0 0--- Z(xn)
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Now, by substituting equations (24), (25), and (29) into (12), we have the fundamental

matrix equation

n  ny
[Z D Qi) (X W' C) X,BiHpD: W'C

k=0 i=0
N3 ny
+ 3 Puj@)(XBy W C)XojBoy HyEej W C
h=1 j=0
ns5 ne _
=Y UWZ4B,,W'C =" G:WZ:By, W/TC:| - F. (34)
d=0 =0

We can write (34) in the form
OC=F or [O;F], (35)

where

ni 2
0= Z Z Qx.i(x) ()_(V_VTC)katiiHPiEEi w’
k=0 i=0
n3  n4
+ 3 " Puj@)(XBy W C)XojBoy HyEej W
h=1 j=0

ns ne
- > UsWZ4B,,W'C-> " G WZBsWTC, (36)
d=0 ¢=0

S )
Sx2)

(xn)

Corollary 3.1 Suppose k > 2, then the matrix representation for the terms free of deriva-
tives in (1), by using (6), we obtain

P @) = wy) = (X W) x@wTc. (37)
We can achieve the matrix form of (37) by using the collocation points as follows:
Y@ = (XWTC)xwrc. (38)
* We can achieve the matrix form for conditions (2) by using (6) on the form
Xm)BWIC=p;, i=0,1,2,...,m-1, (39)
or

M;C = [Mi]r (40)
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where
M;=X(n)BW".

Consequently, replacing m rows of the augmented matrix [O; F] by rows of the matrix
[M;; i1:], we have [O; F] or

OC=F.

System (34), together with conditions, gives (N + 1) nonlinear algebraic equations which
can be solved for the unknown ¢,, n=0,1,2,...,N. Consequently, y(x) given as equation
(6) can be calculated.

4 Numerical examples
In this section, several numerical examples are given to illustrate the accuracy and the
effectiveness of the method.

4.1 Error estimation
if the exact solution of the proposed problem is known, then the absolute error will be

estimated from the following:

) (41)

EN (x) = |yexact (x) - yapproximate (x)

where yexact (%) is the exact solution and yapproximate(%) is the achieved solution at some N.
The calculation of L, error norm also can obtained as follows:

1
L= |h Z ( |y£xact (x) - yipproximate (x) |)2’ (42)
1=0

where / is the step size along the given interval. We can easily check the accuracy of the
suggested method by the residual error. When the solution yapproximate(%) and its deriva-
tives are substituted in (1), the resulting equation must be satisfied approximately, that is,
forx € [a,b],1=0,1,2,...

ni n n3 n4
en =D @)y )y i+ £)+ Y pijla)y™ )y (g + &)
k=0 I=0 h=1 j=0
b 5 plx;) M6
—Fle)— | ) kalw, )y (e) dt - / > vele, @) dt|, (43)
2 d4=0 4 =0

where Ey < 10~ (§ positive integer) and y(x) considered as Y Approximate (%)

Example 1 Consider the following NFIDE with linear functional argument:
7 @)D" 2y(x) +y* (x)y (2% + 1) + 5" (x) + ' (x)D* y(x)

x 1
=f(x) + / (3t — 2x)y1 () dt + / ey () dt, xe€[0,1]. (44)
0 0
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TheICsare y(1) = 2,5'(1) = 2,and y”(1) = 2 and the exact solution is y(x) = x? +x at v, = 1.5,
a3 =2.5,v5 = 1.5, By = 1.8, where f (x) = =0.990113¢* + 0.300901x2° + 2.25676x%° (x + x2)2 +
(o +22)* + (x + x2)*(2 + 4(1 + 2x)). We apply the suggested method with N = 4, and by the

fundamental matrix equation of the problem defined by (34), we have

[Qu2(XWTC)*X,, B, W C + Quo(XWTC)*XB HyE1(W)T C

+ ngo ()-(V_VTC)SXWTC + Pl,g)_(Bl ‘)-VTCXQ3BLY3(W)TC

~G,WZ,Bp, WTC - U, WZ,,B,, W C] = F, (45)
where
10 0 0 0 01000
1 1 1 1
1 £ 1 L L 00200
_ 1 1 1 1 —
X— 1 § Z g E ) Bl— 0 0 0 3 0 »
3 9 27 81
1 32 2z B 0000 4
11 1 1 1 00000
11111
01 2 3 4
Ei=|lo 0 1 3 6],
0001 4
00001
-2.70811 0 0 0 0 0
~1.75983 0 0125 003125 0.0078125 0.00195313
F=| 317448 |, X, =|0 0353553 0.176777 0.0883883 0.0441942 |,
41.4935 0 0649519 0487139 0365354  0.274016
249.328 0 1 1 1 1
200 0 0
040 0 0
H,=[o 0 8 0 o],
000 16 0
000 0 32
0 0 0 677028 0
000 O 18.0541
Bi,=]0 0 0 0 o |,
000 O 0
000 O 0
1 0 0 00
0 1 0 00
w=|-1 0 2 0 of,
0 -3 0 4 0
1 0 -8 0 8
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0 0 225676 0 0
00 0 451352 0
B,=B,=]0 0 0 0 722163 |,
00 0 0 0
00 O 0 0
0 0 0 0 0
0.5 0125  0.03125 0.0078125 0.00195313
X,, = | 0.707107 0.353553 0.176777 0.0883883  0.0441942 |,
0.866025 0.649519 0.487139 0.365354  0.274016
1 1 1 1 1
0 0 0666667 04  0.285714 0 3000
0 0 04 0285714 0.222222 -1 3000
Z,=|0 0 0285714 0222222 0.181818|, Gy=|-1 3 0 0 O],
0 0 0222222 0.181818 0.153846 -3 3000
0 0 0181818 0.153846 0.133333 -2 3.0 0 0
0 0 217825 0 0
0 0 0 544562 0
B =10 0 0 0 990113,
00 0 0 0
00 0 0 0
10-101000 0 0000 0 0000 0 0 00000
00000131-2_-L1709000 0 00000 0 00000
X=|l00000000 0 012-2-1-1000 0 000000
00000000 0 0000 0 0131-2-3100000
00000000 0 0000 0 0000 O 0 11111

Equation (45) and conditions present a nonlinear system of (N + 1) algebraic equations in
the coefficients ¢;. The solution of this system at N = 4 gives the Chebyshev coefficients as
follows:

c=—, =1, c=-, c3=0, ¢y =0.

1 1
2 2
Therefore, the approximate solution of this example using (6) is given by

ya(x) = %To(x) + Th(x) + %Tz(x) =a% +x, (46)

which is the exact solution of problem (44).
Example 2 Consider the following nonlinear fractional integro-differential equation:
y" (0D 2y(x) + Y (¥)D'2y(x - 1) + ¥/ (x)

0 x
=f(x) + /1 te*y (t) dt + /1(3t +2x)y(t)dt, x€[-1,0]. (47)
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The ICs are y(0) = 1, (0) = 1, and the exact solution is y(x) = 2% + 1 at ap = 1.8, 1, = 2,
2

where f(x) = 1% + % - %’“ - £ +32.6737x*% - % +6(=1 +x)(1 +x%)3.

The matrix representation of equation (47) is
[PQ,QXB_Z V_VTCXDQBO,Z WTC + Qg’z ()-(V_VTC)SXVZBVZHlE_l WTC
+ Qo XByWTC —UhWZy B, WTC — GoWZs, By WTC] = F. (48)

Equation (48) and conditions present a nonlinear system of (N + 1) algebraic equations in
the coefficients c;, the solution of this system at N = 4 gives the Chebyshev coefficients

3 1
C():l, 6121, 62:0, C3:E.

Thus, the solution of this problem becomes

3 1
ya(x) =Ty + 2 Ty (x) + ETg(x) =x>+1, (49)
which is the exact solution of problem (47).

Example 3 Consider the following nonlinear fractional integro-differential equation with
advanced argument:

Y2(x)D*2y(x) + y*(x)y" (x + 1) + 2y (x + 1)

3x+1

1 1
=f(x) + / (5t — dx)y(t) dt + / (3t +2€%)y "7 (t) dt + / (3t +2x)y V() dt,
0 0 0
xe[0,1]. (50)

The subjected conditions are y(1) = 3, y/(1) = 3, and the exact solution is y(x) = x> + x + 1
at ay = 1.6, where f(x) = —8.42841 — 3.20484¢" + (22x)/3 — 1.35406(1 + 3x)*° — 1.28958(1 +
3x)3° + 2(1 + x + x2)? + 2.25412x%4(1 + x + x2)3 + x(1 + 2(1 + %)) — 2(1.50451(1 + 3x)1° +
1.2036(1 + 3x)>%). The fundamental matrix equation of the problem becomes as follows:
[Qs2(XWTC)* Xy, Bay WTC + Qua(XWTC)*X,, B, HLE, W C

+ Qo X1BiHiE\WTC - UyWZ,,W'C

~U\WZ, B,y WTC~ GiWZy By WTC] = F. (51)
Equation (50) and conditions present a nonlinear system of (N + 1) algebraic equations in

the coefficients ¢;. The solution of this system at N = 4 gives the Chebyshev coefficients in
the following form:

3
c=—, =1, =, c3=0, ¢y =0.
0 B 1 2 5 3 4

Thus, the solution of the proposed problem becomes

ya(x) = ;To(x) + Th(x) + %Tz(x) =x>+x+1, (52)

which is the exact solution of problem (50).
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Table 1 Comparison of the absolute errors for Example 4 for different N values at v, =2

X Present method N =4 Ref [65] at N=8 Ref [65] at N=10
0 8.88178x 10710 0.67000x 1071 0.12300x 10712
0.1 1.77636x107"° 0.22193x1072 0.39880x 1074
02 8.88178x 10716 0.95897x 1072 0.22276x1073
03 1.33227x107"° 0.22995% 107" 0.87128x 1073
04 8.88178x 10710 0.70446x 107! 0.20625x 1072

Table 2 Numerical solution of Example 4 for different N values

X Exact solution Present method N =4 Ref [65] at N =8
0 4.000000 4.000000 4,000000
0.1 3.610000 3.610000 3.607781
0.2 3.240000 3.240000 3.230410
0.3 2.890000 2.890000 2.867005
04 2.560000 2.560000 2.779554

Example 4 Consider the following linear fractional integro-differential equation with ar-
gument [65]:

1 2
xzD”Zy(x) +xy (x) + y(e = 1) + y(x) = f(x) + A (% - Z)y(t) dt, xe]l0,1]. (53)

The ICs are y(0) = 4, ¥ (0) = —4, and the exact solution is y(x) = x? — 4« + 4 at v, = 2, where
fx) = % — 14x + 2x2. We apply the suggested method with N = 4, then the fundamental

matrix equation of the problem becomes as follows:

[Q02X1, By, W C+ Qo1 X1BiW'C

+ Qo0XuyBuyHiEL1 W' C -~ UyWZ,,,B,, W' C| = F. (54)

Equation (53) and conditions present a linear system of (N + 1) algebraic equations in the
coefficients c;. The solution of this system at N = 4 gives the Chebyshev coefficients as
follows:

9

1
=7 ¢ = -4, &=, c3 = 1.73868 x 1071°, €4 = —6.61509 x 10718,

Thus, the solution of this problem becomes

yax) = ZTo(x) —4T;(x) + %Tz(x) +1.73868 x 1071075 (x) — 6.61509 x 1078 T, (x). (55)

In Table 1 the comparison of the absolute errors for the present scheme at N = 4, where
v, = 2, and the method of reference [65] at N = 8,10 is presented. Also, Table 2 shows the
numerical values of the approximate solution for various N with reference [65] and the
exact solution. The residual error according to (43) is given in Tables 3 and 4 as follows:
Eg and E for various values of v,. Figure 1 provides the comparison of y(x) for N = 4
with various values of v,, where v, = 2, 1.8, 1.7, and 1.6. The same comparison is made for
N =10 in Fig. 2, and the comparison of the error function for the present method at N = 4
and [65] at N = 8 and 10 is given in Fig. 3 for Example 4.
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Table 3 Residual error Fg at v =1.9,1.8,1.7 for Example 4

X vy=19 v»y=18 v, =17
0 3.1997 x 1072 6.13977 x1073 9.50079 x1072
0.1 1.24881 x 1072 586362 x1073 448177 x1072
02 6.01862 x1073 5.77562 x1073 269324 x1072
03 251885 x1073 584015 x1073 161229 x1072
04 1.69053 x 1073 568434 x1073 1.7053 x1073
Table 4 Residual error E1g at v, =1.9,1.8,1.7 for Example 4
X| v»v=19 v»y=18 vw=17
0 1.06581 x 1074 1.24345 x 10714 6.53699 x 10713
0.1 1.13687 x 10714 9.9476 x 10714 136424 x 10712
02 341061 x107'4 284217 x1074 159162 x 1072
03 568434 x 10714 1.7053 x10713 454747 x10712
04 2269969 x107"3 227374 x10713 8.18545 x 10712
4“\.
35 ; xﬁ.&\h E
r N - U,=2
3.0r ™ ~u,=1.8 ]
[ B u,=1.7
2, r "N v,=1.6 ]
£ 257 m\“\,‘ ]
[ N ]
20F " ]
[ \% i
\'?f»,,,\_
1 5 r "\‘\,,h’*ﬁ\% —
r -
L |
1.0 Oy . . . | . . . | . . . | . . . | . . A
0.0 0.2 0.4 0.6 0.8 1.0
X
Figure 1 Comparison of y(x) for N =4 with v, =2, 1.8, 1.7, and 1.6 for Example 4
Example 5 Let us assume the fractional integro-differential equation [68, 69]
X
D"y(x) - y(x) = x(1 + €*) + 3" — / y(t)dt, x¢€l0,1]. (56)
0

The subjected conditions are y(1) = 1 + e, ¥'(1) = 2¢, y"(1) = 3e, y”'(1) = 4e, the exact so-
lution of this FIDE is y(x) = 1 + xe* when v, = 4. For solving this challenge, we apply the
present scheme for various values of N.

In Table 5, we contribute the numerical results y(x;), for N = 9, of our proposed scheme
together with numerical results y(x;), for N = 10, of the Legendre collocation method
(LCM) [69] and [68]. It is observed that the proposed scheme reaches the same results
of [69] with lower degree of approximation. Moreover, the proposed scheme has superior
results with regard to the ADM [66] as shown in [69]. In addition, the numerical results as-
sociated with our presented method LCM and generalized differential transform method
(GDTM) [67] for N = 10 and v, = 3.75 are given in Table 6. As shown in Table 4 of [69],
the ADM has very weak approximations with regard to GDTM and LCM. Therefore, we
do not consider ADM in Table 6. From this table, we can find that our achieved results

Page 17 of 23



Ali et al. Advances in Difference Equations (2020) 2020:494 Page 18 of 23

y(x)
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£ [
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Xi

Figure 3 Comparison of error function for the present method at N =4 and [65] at N =8 and 10 for Example 4

are the same as those of LCM, but GDTM results are away from our proposed scheme
and LCM results. Achieved evidences confirm the capability of our scheme. For showing
the authenticity of the proposed scheme, we depicted the numerical solution y(x) for var-
ious values of v4 such as: 3.50, 3.75, and 4. Also, Fig. 5 compares the error function for the
present method at N = 8, N =9 and 12 with v, = 4, and the comparison of the absolute
errors for different values of N at v, = 4 is given in Table 7. The residual error Ejj is given
in Table 8 for different values of v, as follows: 3.75, 3.5.

Finally, since problem (56) defines on [0,1] the proposed method applied with the
Chebyshev nodes (zeros of Chebyshev polynomials) as collocation points. Table 9 com-
pares the absolute errors for different values of N at v, = 4 using Chebyshev nodes col-
location points, namely %(1 + Cos iﬁ”),i =0,1,...,N. Also, the comparison of the L, er-
ror norm according to (42) using both equally spaced (11) and Chebyshev nodes collo-
cation points is given in Table 10. Comparing Table 7 with Table 9 and the L, results
in Table 10, one finds that the nodes of Chebyshev fall on [-1,1] and they are chosen
with the collocation method as collocation points if the problem is also defined in the
same interval, and better results will be obtained than any choice of other form of collo-
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Table 5 Numerical results of Example 5 for different N values at v4 =4
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X Exact solution PMforN=9 LCMforN=10 Ref [68] for N =8
0 1.0000000 1.0000000 1.0000000 1.0000000

0.1 1.11051709 1.1105709 1.11051709 1.11051709

0.2 1.24428055 1.24428055 1.24428055 1.24428055

03 140495764 14049564 140495764 140495765

04 1.59672988 1.59672988 1.59672988 1.59672989

05 1.82436064 1.82436064 1.82436064 1.82436063

0.6 209327128 209327128 209327128 2.09327126
Table 6 Numerical results of Example 5 for v4 = 3.75

X PM LCM GDTM Ref [68]

0 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.11580022 1.11580022 1.11580022 1.11576401
0.2 1.25417406 1.25417406 1.25417406 1.25472311
03 141835392 141835392 141835392 141826880
04 1.61225031 1.61225031 1.61225031 1.61225425
0.5 1.840149469 1.840149469 1.840149469 1.840149953
0.6 2.10850149 2.10850149 2.108501549 2.10850524

Table 7 Comparison of the absolute errors for Example 5 for different N values at vq =4

X PMN=8 PMN=9 PMN=12

0 131521%107 45665909% 1078 1.365685% 1072
0.1 392192107 1.9078572x 1077 1.114663%x 10713
02 9.13696x 10~/ 546094681077 248912x10713
03 1.30555x 1077 3.38934x107° 1.985078x 10713
04 7.09891x107° 1.94735%107° 1.234568x 1073
05 1.22285x1078 1.08624 x107° 6.94999x 10714
Table 8 Residual error F1g at v4 = 3.75,3.5 for Example 5

X| V4 =375 V4 =35

0 7.04992x1071° 6.99441 x107"°
0.1 240086 x 10715 9.99201 x 10716
02 48633 x1071° 7.77156 x1071°
03 3.06005 x 10712 5.9952 x 10710
04 242167 x1071° 832667 x107'°
05 261596 x 10715 280331 x1071°

Table 9 Comparison of the absolute errors for Example 5 for different N values at v4 =4 using
Chebyshev nodes collocation points

X PMN=8 PMN=9 PMN=12

0 459517x107* 1.09547 %107 2.06403 x107°
0.1 3.24835x107 748071 x107° 144816 x107°
0.2 2.19655 x 107 4.84424 x 1070 9.69587 x 10710
03 140277 x 1074 292682 x107° 6.10813 x 10710
04 830159%x 10~ 161034 x107° 3.54423 x 10710
0.5 441922 x10™ 7.7671 x107/ 1.83025x 10710

cation points, and any modification in the nodes to fit the interval of the problem does

not give the good results as expected than the original zeros of the Chebyshev polynomi-

als.
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Table 10 Comparison of the L, error norm for Example 5 using both equally spaced and Chebyshev
nodes collocation points

N L, Using equally spaced collocation points L, Using Chebyshev nodes collocation points
8 8.14861 x 107" 2.87505% 1077
9 565635 x1071° 150223 x107°
12 872978 x 1072 568544 x 10718
5
3.5 %
——y(X): U4:4, N=8 //‘
30 — y(%): U4=3.75, N=10 Ve
’ Y(X): v4=3.5, N=10 g,/'

y(x)
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Figure 5 Comparison of error function for the present method at N =8, N =9 and 12 for Example 5, where
vy =4

5 Conclusion

A numerical study for a generalized form of nonlinear arbitrary order integro-differential
equations (GNFIDEs) with linear functional arguments is introduced using Chebyshev
series. The suggested equation with its linear functional argument represents a general
form of delay, proportional delay, and advanced nonlinear fractional order Fredholm—
Volterra integro-differential equations. Additionally, we have presented a general form of
the operational matrix of derivatives. The fractional and ordinary order derivatives have
been obtained and presented in one general operational matrix. Therefore, the proposed
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operational matrix represents a kind of unification of ordinary and fractional case. To the
best of authors knowledge, there is no other work discussing this point. We have presented
many numerical examples that greatly illustrate the accuracy of the presented study to the
proposed equation and also show how that the propose scheme is very competent and

acceptable.
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