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Abstract

Blended compact difference (BCD) schemes with fourth- and sixth-order accuracy are
proposed for approximating the three-dimensional (3D) variable coefficients elliptic
partial differential equation (PDE) with mixed derivatives. With truncation error
analyses, the proposed BCD schemes can reach their theoretical accuracy,
respectively, for the interior gird points and require 19 points compact stencil. They
fully blend the implicit compact difference (CD) scheme and the explicit CD scheme
together to make the derivation method and programming easier. The BCD schemes
are also decoupled, which means the unknown function and its derivatives are
separately resolved by different finite difference equations. Moreover, the sixth-order
schemes are developed to solve the first-order derivatives, the second-order
derivatives and the second-order mixed derivatives on boundaries. Several test
problems are applied to show that the present BCD schemes are more accurate than
those in the literature.

Keywords: 3D elliptic equation; Mixed derivative; Variable coefficients; BCD scheme;
High-order accuracy

1 Introduction
In the paper, we study the steady 3D elliptic PDE

AUy + DUy + Clhzz + PUy + Gy + 71, + A1 Uy + dotty, + dstizy + su = (%, 9, 2), (1)

where a, b, ¢, p, q, 1, d1, da, ds, s and f are sufficiently smooth functions and have the
required partial derivatives on Q. The computational domain €2 is a union of rectangular
solid. a2 is the boundary of .

The elliptic PDE like (1) is of primary importance in various fields of engineering and
science [1, 2]. The numerical solution to the elliptic PDE has important interest in numer-
ical analysis. In the past few decades, a lot of numerical methods, which include meshless
methods [3], spline collocation methods [4], finite element methods [5], fast domain de-
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composition methods [6], Sinc-Galerkin methods [7] and finite difference methods [2, 8—
44], have been proposed by many authors. Among the methods above, the finite difference
method has been widely used in scientific research and engineering practice because of
its simple structure, it being easy to understand and needing only a small amount of cal-
culation.

The traditional difference schemes generally have low accuracy and calculation insta-
bility. And the non-compact high-order finite difference schemes are computational not
efficient for a conventional type problem. However, high-order CD schemes have the ad-
vantages of having small discrete stencil, high-order accuracy, smaller element sensitivity
and good numerical stability, which make it attractive in the fields of partial differential
equations and computational fluid dynamics.

According to the difference of discrete objects, the compact difference scheme is divided
into an explicit CD scheme and an implicit CD scheme. The former mainly discretize the
differential equation (or model equation). The latter only discretizes derivatives of the un-
known function involved in the model equation (or differential equation). Various special
techniques have been developed rapidly based on implicit compact difference schemes
[8-18]. In 1975, Adam [8], Kreiss [9] and Hirsh [10] proposed fourth-order CD schemes
for different types of partial differential equations based on the Hermite formula, respec-
tively. In Ref. [10], Hirsh solved the Burgers equation, the boundary layer problem and
the driven cavity problem. In 1992, Lele [11] independently proposed a new type of CD
method with quasi-spectral resolution and obtained a variety of symmetric compact dif-
ference schemes. Ma and Fu [12] proposed the upwind CD scheme with arbitrary-order
accuracy in order to suppress the non-physical high frequency oscillation of the numer-
ical solution near the shock wave. Deng and Zhang [13] developed the nonlinear CD
scheme and overcame the non-physical oscillation of the symmetric compact difference
scheme, which directly improved the quality of the stability simulation. Chu and Fan [14]
derived a sixth-order combined CD scheme which is known as (CCD) scheme. In 1998,
Mabhesh [15] also proposed a CCD scheme of first-order and second-order derivatives
with quasi-spectral resolution. Subsequently, the combined compact difference scheme
is applied to resolve the wave propagation problem and the solution of the Navier-Stokes
equation by Sengupta et al. [16, 17]. On the basis of Ref. [14], Lee et al. [18] constructed
a new CCD scheme (CCD2) to solve two-dimensional (2D) elliptic problems with mixed
derivative. Meanwhile, many explicit CD schemes have been also developed. Using Tay-
lor series expansion and the method of undetermined coefficients, Gupta et al. [19] de-
veloped a fourth-order polynomial CD scheme for the 2D convection-diffusion equation
with variable coefficients. Dennis and Hudson [20] developed a fourth-order CD scheme
for solving the 2D convection-diffusion equation by using Numerov approximation and
applied it to solve the Navier-Stokes equations. Spotz and Carey [21], Li et al. [22] and
Gupta [23] proposed a nine-point fourth-order CD method for the Navier-Stokes equa-
tions in the form of incompressible vorticity-stream function, respectively. Ananthakrish-
naiah et al. [24] also developed a fourth-order CD scheme for the 3D elliptic equations by
using a Taylor series expansion and the method of undetermined coefficients. Chen et al.
[25] developed a perturbation fourth-order exponential compact difference scheme for
convection-diffusion equations with constant and variable coefficients. Tian and Dai [26]
and Radhakrishna-Pillai [27] proposed fourth-order exponential CD schemes for the 1D
and 2D steady convection-diffusion equations, respectively. Mohanty [28] constructed a
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fourth-order CD scheme for the 3D nonlinear elliptic PDE. Gupta and Kouatchou [29] de-
rived a 19-point fourth-order and a 27-point sixth-order CD schemes for the 3D Poisson
equation by using the symbol software named Mathematica. Ge and Zhang [30] devel-
oped a 19-point fourth-order CD scheme for resolving the 3D linear elliptic equations by
using Maple software. For the 3D steady convection-diffusion equation, Tian and Cui [31]
and Zhang [32] proposed an explicit fourth-order CD scheme, respectively; Ma and Ge
[33] developed a sixth-order CD scheme by using extrapolation technology; Mohamed et
al. [34] proposed a fourth-order exponential CD scheme. Recently, Ma and Ge [35] de-
veloped a new class of BCD schemes to solve the 2D elliptic PDE with mixed derivatives
by combining the advantages of the explicit CD and implicit CD. The BCD schemes can-
not only achieve higher-order accuracy, but they also reduce the complexity of algebraic
equations, so that they can be solved iteratively by the decoupling method.

As far as we know, there are few reports about the BCD schemes for the 3D elliptic
equations with mixed derivatives, especially those with sixth-order accuracy. The main
aim of the present paper is to extend our research work for 2D elliptic equations [35] to the
3D cases with variable coefficients and mixed derivatives to derive fourth- and sixth-order
BCD schemes. The outline of this paper is organized as follows. Section 2 presents the two
kinds of BCD schemes for the 3D elliptic PDE. In Sect. 3, we give truncation error analyses
of the BCD schemes, respectively. Next, in Sect. 4, we compare our schemes with other
schemes in the literature when numerical tests are conducted. Finally, some concluding
remarks are given in Sect. 5.

2 The blended compact difference (BCD) schemes

In this section, the development of BCD formulations for Eq. (1) is briefly discussed. For
convenience, the derivatives are symbolized as u, i, 1y, Uz, Uy, Uyy, Uz7, 050y1, 050,14, 0,051,
020yu, 870,u, 8} 01, 37 0.u, 8701, 70y, :0,0.u, B3, 90u, d]u, O3u, Ou, dYu, 3u, dSu,
d2u, 0%u, 87 u, 0%u, respectively. The general Dirichlet boundary condition is considered.
Here we use the notations

ai . 8i+j

— =9t — qi g/
aci_ag and o0 = 05 -

2.1 Inner grid points

Assume the problem domain to be cubical and construct on it a uniform Cartesian mesh
of steps /i, h, and &, in the x, y and z directions, respectively. For convenience, we use a
local coordinate system [30]. The approximate values of functions u, iy, iy, 1z, Uy, thyy, Uz,
0,0y1, 0,0,u, ,0xu at an internal mesh point (x;, y;, zx) are denoted by uo, U010, 120, U
Uyy0, Uzz0, 0xOyUo, 0y0;Ug, 0;0x1g. The approximate values of its immediate 18 neighboring
points are denoted by u;, tys, Uy, Uiy Usxts Uyyly Uzzls Ox0yts, OyOz24y, 0,01y, [ =1,2,...,18, as
in Fig. 1. We use the Taylor series expansions at point (x;,y;, zx) for uy, u,, u,.

We obtain

Uy = Sl — 5

h K

4

2
6
W2 h
Uy = 8yu — éaju—ﬁyoafwo(hj), (3)
2
6

U, = S,u — ;

h K
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Figure 1 The 19-point stencil of 3D

here §,, §, and &, are central difference operators for u,, u,, u,. Substituting Eqgs. (2)—(4)
into Eq. (1), we obtain

2 nt n n
Ak + DUty + Clhy; +p(5xu - Z"Bfu - 12xO afu> + q(zSyu - Zyaj’u - Fyoaﬁu>

W2 ht
+ r(SZu - Ezaju - 1220 8fu) +d1 0,0yt + d2 0,01 + d3 0,051 + su

+O(KS +h + ) =f. ®)
Differentiating Eq. (1) with respect to x, y and z, we get

1

83u = , (ﬂC - bayzaxu - byuyy - cajaxu — Cylhzy — Pllyy — Pxlhy — GO0y Oxlh — (xlhy — T'ylh;
— 19,01 — d1320yu — d1,050yu — )0, u — drd,Dyd,u
— d3,0,0,U — dg,aiazu — Syl — sux)

- a—;‘(f — buyy, — cu; — puy — quby — rit; — d10,0yu — do0y0,u — d3d,0,u — su), (6)
a

3 1 2 2
By U= 5 (}ﬁ, — a0, 0yl — Aylhyy — CO; OyU — Cylhyy — POLOyU — Pyliy — Glhyy — Gylhy — Tyl
— 19,0y — dy 3] Bt — dyy 0Dyt — oy 0,01t — 0 014 — dl3y D Dyt

— d30,0,0,u — syu — suy)
b
- b—g(f — Ay — Clhzy — Pl — by — U, — A1 050,14 — A0y 0,u — d30,0,u — su), (7)
1
823u == (fz - aafazu — AyUyy — bajazu — bty — POy U — Pty — GO, 0;U — q Uy — VU,

— Py, — d1350,0,u — dy,0x0yu — o0y, — dr 320U — d3,0,0,u
- dgaﬁaxu — S, U — suz)

- z—;(f — buyy, — cu, — puy — qiby — 11, — d1 0,01 — d20,0,u — d30,0,u — su), (8)
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substituting Egs. (6)—(8) into Eq. (5), we get

Attty + Apttyy + Asthyy + Agtty + Astty + Agtt, + A70,0yu + Agdyd,u
+A90,0xu + A190,0,0,u
+ A1 020yu + A1g0) it + Ar30] Oyt + A1407 0, +A158y282u

+ A168128yu +Ay7u + pdeu + qéyu

hip hyq Hir
+ré,u — 120 8;? 150 8y5 1207 U+ O(h6 + h6 + h6) 9)

where

Al =a+ hf‘pz - abyhiq - aczhgr + olyhiq + azhgr (10)
! 6a 6b2 6¢2 6b 6c

h2q* bh? bh r b i2p  b,h?
Ay=b+ N Nl zzr, (11)
6b 6a? 6c2 6a 6¢c

W2 auchlp  byhlg o hp  ohiq
- - + +
6¢ 6a? 6b? 6a 6b
Wap, Wrp, ahlp® bphlq  cphir

h’p
Ay = P P BIP _ ST 13
4= g ) T e T e 6b? 6c> (13)

A3 =Cc+ B (12)

h2 hz h2 hz b h2 2 hz
As:ﬂ(quH Y N O o e B A (14)
6b 6a 6¢ 6a2 6b2 6c2
n2r h2pr, h2qry  a rh2p byrh’q ¢ h%r?
Ag = = = - = 15
i R T B (15)
2 2
A; = hpq + hyap +di+ iy + ey + hrds - hpasd
6a 6b 6a 6b 6¢ 6a2
2
_hyabydy  kre.d, , (16)
6b2 6c2
2 2
Ag - hyqr N h2rq dy+ H2pd,, N hyqday . hrdy,  hlpa.ds
6b 6¢ 6a 6b 6¢ 6a2
2
~ hyqbyd, ~ hgrczdz’ 17)
6b2 6c2
o - hxpr Werp dy+ Wpds, hingy . h2rds,  hlpa.ds
6a 6c 6a 6b 6¢ 6a?
2
~ hyqbyds ~ hgrczdg’ 18)
6b? 6c?
Wpd, hyqds  hird,
A== z , 19
T (19)
Wpdy hqa
A= X , 20
11 6a + 6b (20)
72 b h2qd
= 2 BT (21)
6a 6b
h> Wrd
A= 28 BT (22)

6a 6c ’
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hra  hlpds
A== ’ 23
4= e 23)
hgrb hiqdz
) ’ 24
155 et ~op (24)
h2qc hzi"dz
A= 2 =272 .
165 e T e (25)
2
A17 _(1- ﬂxhip _ byhyq _ Czhgr s+ S hxp SJ/ yq + Szhgl’" (26)
6a? 6b2 6¢2 6a 6b 6¢

aph  byghl ¢ ri? h? h2 rh2
I I

In order to get a fourth-order formulation for Eq. (9), all the derivatives {u,y, u,,, 4.,
00yt 00,1, 0 0x1t, 07 Oy, 029,14, 83? O, 8y2 0,1, 07051, 02 9yu, 0,0,0,u} are approximated as

follows:
Uy = 282U — Stty + O(hfc‘), (28)
iy = 287U~ 8,u, + O(h), (29)
Uy = 287U — 8u, + O(hY), (30)
Oxyth = Sxtty + Syth — 8,81 + O} + hiy + W), (31)
0Bzt = Syt + 8yt — 8,8,u + Oy + by + hyh2), (32)
0,01 = (Sux+8uz—66u+0(h +h4+h2h2) (33)
320yu = 82uy + O(h2), (34)
370,u =82u, + O(h2), (35)
070, = 87u, + O(13), (36)
37 0.u = 8,u; + O(I), 37)
92 0xu = 87uy + O(I2), (38)
929yu = 82uy + O(h2), (39)
30y 0,1 = %(syazux + 8481ty + 8:8yu;) + O(M3 + 5 + 1), (40)

Here Egs. (28)—(30) have been studied in Refs. [43, 44]. Substituting Egs. (28)—(40) into
Eq. (9), we have

(24,87 + 2A28y2 +2A387 + POy + 8y + 18, — A76,8, — Agd)8, — Agd. 8y )u

Ajo 2 2

+ A4 —A18x +A7(Sy +A9(Sz + ?SySZ +A12(Sy +A13(Sz Uy
AIO 2 2

+ A5 —Aztsy +A75x +A88Z + ?Sx&z +A115x +A165Z Uy

+ | Ag — A3, + Agdy + Agd +@53 + A1482 + A1582
6 30z 80y 90x 3 %% 140, 150, U

D byl ek ph? h? h
:<1_“px_yqy_” P sy ré)f (41)

64> 6b2 6c:  6a ob " "6

Page 6 of 30
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8y, 82, 82, 82, 82, 8,8, 8,8;, 8,8

x? Yy

« given in Appendix A at grid point 0 into

Eq. (41). Then eliminating the sixth-order truncation error terms, we obtain the required
fourth-order BCD scheme with 19 grid points

Ay
—4 ﬁ‘f‘

Ay
72
h3

244
+ [
h?c

+A3 . 24
23, =
)0\ R

o, (A
2n, )\ B2

N
2h,
4o
2h

2A3 + ro 2A3 ro
w2 " on, 2 on )"

Ay
+ —_—
4hch,

Ag

Ag

Uuio————u
10 4hxhz 11

h

(”‘2
U+ \\ ——
Iy

v ),
2h,) "

A7
+
aih,"

A7
ah,h,

A7
ug — u
T 4,

6 —

Ag

4,
A

dhh,

+ (A4

+(_

Ag
2h
4w
12k,

+<A5—

1S

As

+ —_—
20,

_ ﬂu
2,

+ <A6— h2

(-
(-

2h, I

Uip + Uiz +

Ao Asg
2T agn, T i,
o o As
P 4 18

2415 2453
T Jher

A12

h2 Uya

JAsY, (LA A
T ) T, T

Uxle T

A7
2h,

Aro y
12mh,
2411 2456 A7
— uyo
2 2,
An Az
e )" o,

2h
A16
+ _hg l/ly5

+ As
2,

Ay
2h

2A14 _

Ag As

2_hz Uzs

A
+ — U3 —

As

Uig +

2

Aqo

Uis +

Ao
i, " a0

Ao
120, I,

Axo
12k,

Uxe + Ux12 — Ux14

A11 A,
e )T o,
y

. Ay e Aro
T Vonn, M

Ao

As A o As
2n, " H2 ) on

A1 Ay

+
1200, "

2
ﬂxopohx

Uzi0

12k,

byoqohi coroh

12k,

Uz7 —

7 12hh,

poh? qoh; roh?

(42)

:(1_

6a> 6b2 6c2

2
z>/0+

fro +

z
6a fro 6¢ Jeo-

6b

Page 7 of 30
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Notice that there are four unknowns {u, i, u,,u,} to be determined for fourth-order

scheme. In order to match the system, in the inner field, u,, u, and u, are computed, re-

spectively, by

and

1 4 1 Uy —us
guxl + guxo + 6ux3 T¢
X
1 4 1 Uy — Uy,
guyz + glzty() + 6My4 = Z—hy’
1 4 1 Us — Ug
—Uyps + U0+ —Uze = ’
6 z5 6 z0 6 76 2hz

(43)

(44)

(45)

to get a sixth-order compact formulation for Eq. (9), consider the following approxima-

tions for all the derivatives:

4

Uyw = 2801 — Sytty + —=0%u + O(KS),

h4
y

Uyy = 23yzu —8yuy + 360 8y6u + O(h?),
4

Uy = 282U — 8,u; + —=35u + O(KS),

920y = Suy + 828yu — 8,8y, + O(H} + h4 + hzhz),
89%8214 = S;fuz + 5§82u — 8,8,Uy + O(h + h4 + hzhz),
+ hy + ),

07 0xtt = 8714 + 878,14 — 8,814, + Oy

070 = 8 u; + 8581 — 8,8,y + O(hy + i + o h2),
0201 = 87ty + 828, — 8, 8,u; + O(W} + M} + h2h2),

0 0yu = 821ty + 828yu — 8. 8yu, + O(h + i) + H2h),

1
00,0, u = §(28x8y82u +28,0,0,u + 26,0, 0yu — 0x5y1,

— 8,8ty — 8. 8510y) + O(M + Hy + hi + Woh + W2 + W2,

360 n?
Wu= ( — S+ —xaxuxx> +0(2),

7—1,1;,; Uy — OxlU 6
u = % (uxx ~82u+ lf—zéﬁuxx) +O0(12),
Ru= g (uy —8yu+ thyuyy> +O(h3),
y
B = % (M Su+ i’; %y) +o(12),
Pu= % (uz —8u+ %Szuzz> +0(n2),
Bzﬁu = % (uzz - Szu + %&f”zz) + O(hz)

(46)

(47)

(48)

(49)
(50)
(51)
(52)
(53)
(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

Page 8 of 30
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Substituting Egs. (46)—(61) into Eq. (9) and rearranging it, we have

4 10
[g (A182 + Az8) + A38?) + 7(p8x + Gy +18;) + A11878, + A12826,

2 2 2 2 2A10
+A13828xA148x82 +A158y82 +A16828y A7 + — 3 Bxayu

A
- %%5::) Uy

3 2 2 AlO
+ A5 — ;q —A25y +A115x _A128y8x —A155y82 + A1682 - ?528x Uy

3
+ <A4 - ;p —Al(Sx —A116x8y +A128§ +A13(S§ —A14(Sx82

2 2 Ao
A138z8x +A148x +A155y _Alﬁazay - ?3x5}/ Uy
2A1 + All’lazc 82 phx

2 2
Uy 24 + Ao, —282 - a7y u
18 * 14 73 T

g
( 3 18 7 14
245  Ash? h? 24 24
+ ( 3B M Z)uzz (A8 3105 )ayazm (Ag + 3“’8 )8z8xu

3 18 ¢ 14

={1- axphi _ bthJZ/ _ CZrh2 ph 8 qhy8 rh28
- 62> 602 62 = 6a 6b ‘
6,76 16, 1472 , 1234 , 1472 1274 | 3412 | 1274
oK + hy + hy + Bohy + Bl + ok + hphy + B + hyhz). (62)

Substituting 8, 8, 8, 82, 8}%, 82, 8,8, 8,8, 8,8, (see Appendix A) at grid point 0 into (62),
and neglecting the truncation error terms, the 19-point sixth-order BCD scheme can be

derived as follows:

2o ) !

441 5po . Az Ap 4 44, 5610 Aq A16
**\52 " 7, T 2n, " Wk,

All A12 U — All n A12 u
2i2h, 22k, ) " \2i2h, " 202k, )"
_An s Aq - Az s A u
212, 202k, ) \2k2h,  2h2h.)
AIS i A16 wio + [ — AIS ¥ A14 u
22k, 2m2hy ) T\ 22k, 202, )

Ais  Ale - Az Au "
2n2hy )T\ 2k2h, T 2020, )

s %_%+A14+A15 et Au . An "
32 7h,  K2h. K2h.)"° " \2k2h, " 2h2h, )"

Page 9 of 30
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+(_ Ass . Al )u (A s Al "
2m2h,  2h2hy ) \ 212k, " 2020 )"

(A . Asg - A_%_ZA12+2A13 " —ﬂu
22k, 2m2h, )T\ T T e T R )

A12 A A

h2 I/lx2+ Mx3+ h2 Uxa
A13u +A13 _An - An e An - An "
w2 T T T g T e, a0 a1
A A
- iqu - iuxu
4, 12/1,h,
+ﬂu +A10u +A14u +A10u—AMu
ahh, P 12hhy T Ak, T 120k, 0 bk,
A A
" ol 8 ¢ g
'y x
3q0 2411 24 Ay An A
AT T T e g et T s g, e
z 4 Y
+ﬂu +A16 Aip
w2 T 2 T Tk,
+A10u—A10u+A10u—Alsu—Amu
20, 7 120k, " 12k, 0 kg, M dhyh, 0
A1z Ase
T a7 g,
Az A Az Ass
—u U6~ ———Uy17 — U
T i, ah, " an, Y a7
+ A—%—ZAM+2A15 +Eu
T TR R n
A15u +Al4u +A15u —ﬁu +£u -t u
h2 z2 hz z3 ]’l? z4 2hz z5 2hz z6 12hxhy z7
Ay Aip
T 12k, T 12k,
Ao _A13M_A16M+A13M+A16u
2hhy, 20 g, O Ahyh, 0 dhgh, SO dhyh,
A1z A
4hxhzuz15+ 4hyhzuZ16
A e Aie " +%u A1 hypo
4'hxhz z17 4hyhz z18 9 xx0 T 18 28 xxl

+ é+hxp0 Uys + A Mg u
18 28 )77 \18 28 )2

+%u + A2 hyqo u +%u + 1&—@ u
g Mot \1g T gg )t T M0 T 15 T g ) ¥

Ag h F
(18 280)lez6 +A78 0 yUo
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A1o Ao Axo Ao
3]/1 8 By 5 — 3hz 8x8yu6 +A83y82u0 + B—thyazul 3[’[ 3 B U3
b Aottty + 1% 51
90x0z10 3hy xOzU42
10
— —— 0,0,
30, O
2 2 2
dxop()h?c byoqohy Czor()hz pohx 610 y hz
=|1- — - » . 63
(1- o S S N s T s e (69

Notice that all the derivatives are separately computed and are demanded to achieve

sixth-order accuracy. In the study, we directly use the sixth-order schemes of u,, u,, u,,

Uyx, Uyy and i, in Ref. [14] as well as the sixth-order CCD2 schemes of 9,0,u, 3,0, and

0;0xu in Ref. [18]. The sixth-order schemes of u,, u,, u;, s, 1,y and u;, in x-, y- and

z-directions are as follows:

(ux)Hl/k + (ux)z]k + 16(14,6),;1’]-’/(
15 i .
~ 16 (Wierjh — tic1jk) + 1_6[(uxx)i+1,j,k = (thn)ic1 k| + O(K2), (64)
X
1 1
__(Mxx)i+l,j,k + (uxx)i,j,k - _(uxx)i—l,j,k
8 8
9
= ﬁ(um,j,k —2Ujk + Uis1jk) — . [()is1k — ()icrjik ] + O(KS), (65)
X X
7
16(”y)11+1k + )ik + 16(uy)i,j—1,k
15 hy .
= 164 (uivj+1’k Ujj- lk) + [(uyy)11+1k - (uyy)zj lk] + O(h ) (66)
y

g(uyy)i,jﬂ,k + (uyy)i,j,k -

1
g (Myy)i,j-l,k

3 9
2 (Mz;+1 k= 2Uiji + ui,j—l,k) -5 [(My)i,j+1,k - (My)i,j—l,k] + O(hS), (67)
R 8h,
1—6(uz)i,j,k+1 + (Mz)i,j,k + 1—6(Mz)i,j,k-1
15 hz 6
= th(ui,j,kd — Ujjk-1) + E[(Mzz)i,j,kn — (z)iji-1] + O(h2), (68)

1

1
_g(uzz)i,j,kﬂ + (uzz)i,j,k - g(uzz)i,j,k—l

9
(ul] k+1 — 2l"z/k + Uij k- 1) [(uz)11k+l - (uZ)l]k 1] + O(h6)

3
h2

(69)

The mixed derivatives {0,d,u, 9,0,u, 3,0,u} are computed with the nine-point sixth-order

schemes in Ref. [18], which are expressed as follows:

1
0x0ylio + B(axayul + Ox0yUy + 0x0y U3 + 0,0y 1y)

1 9
- 3—2(3x8yu5 + 050yt + 050y U7 + 0, 0ylg) + th(uxz — Uyg)

Page 11 of 30
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9 9
= —m(ug — U+ Uy — Ug) + —— Lo (ty1 — wy3) + O(KS + h6) (70)

88u0+ (88u2+88u5+88u4+88u6)

1 9
32(3 0 U12 + 8 ) U4 + 3 ) U6 T+ 8 0 Mlg) 16h (My5 Lly6)
0 )+ —— (1t~ tt5) + O + 1), 7)
=——— U —Ulat Uig— U + — U u + +
32h hz 12 14 18 16 16hy z2 — Uz4

88u0+ (88u1+88u3+88u5+88u6)

1(aa 3,0 3,0 3,051417) o ( )
32 20xU11 + 070xU13 + 0,0xU 5 + 070xU17) + 16hz Uxs — Uxe

gy = 17 + o = ) + O(AS + 1), (72)

In the explicit fourth-order CD scheme [32], the third- and fourth-order derivatives of

the truncation errors are represented by the original differential equation. But in the BCD

schemes, the fifth- and sixth-order derivatives are represented by an unknown function,

its first- and second-order derivatives, while the third-order derivatives are represented
by means of the method in Ref. [32].

2.2 Boundary formulas for derivatives

It is of great significance to construct higher-order boundaries schemes for the BCD
schemes at inner points. If the boundaries schemes are not well constructed, the accu-
racy and stability of the numerical solution will be affected. For the fourth-order BCD
scheme, we adopt the consistent fourth-order boundary schemes [37], which have good
stability and accuracy (see Appendix B).

For the sixth-order BCD scheme, because the first-order, second-order and second-
order mixed derivatives are unknown at the boundaries, so we need to construct sixth-
order boundaries schemes for them. Firstly, we consider the left boundary. In order to
obtain the sixth-order scheme of the left boundary (i = 0 and i = N, in x-direction) of u,,
we assume that the unknown function and its first-order derivative u, have the following

relationship:

(Mx)O/k"'a(ux 11/(— Zb Uijk (] 0,1,. Ny;k=0,1,...,NZ). (73)

The left boundary format discrete template is shown in Fig. 2.

Figure 2 Grid point discretization for the left boundary
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Next, the unknown function u and its first-order derivative u, in Eq. (73) are expanded

by a Taylor series at point i = 0. By matching the coefficients of the unknown function and
its derivatives, we can obtain the following constrained linear equations:

bo+b1+by+bs+by+b5=0,
1(by +2%by + 3%b3 + 4°by + 5°b5) = a,
3 (b1 +23by + 3%bs + 4%by + 5°bs) =
L(by +2*by + 3*b3 + 4*by + 5*b5) =
L(b1+2°by +3°b3 + 4°by + 5°bs5) =
&(by +2°by + 3%b3 + 4°by + 5°bs5) =
L(by+27by +37b3 + 47y + 57bs) =

(74)

1
27
o
6’
Q€
24’
£
120
&£
720

With the help the Matlab software, we obtain the sixth-order scheme of the left boundary:

1
(ux)o,j,k - g (Mx)l,j,k

1 ( 149 1723 19 43

Ugjk + ———ULjk — TUjk + —U3jk — —U
hx 60 0,7,k 300 1),k 2,7,k 3 3k — 12 4.5,k
23 4 .
+2—0u5,1‘,k 25”61/() (]=0,1,...,Ny;k:0,1,...,NZ), (75)

similarly, the remaining sixth-order schemes of the boundaries (right, down, up, rear and
front) for {uy, u,,u.} are given as follows:

1
(U )N jik — g(ux)Nx—l,j,k

29 1877 3 5 .
= ——UN,_1jk + SUN, 2k + —UN.—3jk — TUN 4]
h 12 UN,jk — 300 Nx—1,j,k Nx—2,j,k 3 Nx—3,j,k Nx—4.j,k

4-7 5 .
TAUNy -5k — TUN-5k (] =0, L«w;Ny;k:O; 1w~er)) (76)
12 4
Uy)iok + —\Uy)il1,k
(uy) 5( )
1 14-9 1723 7 19 43 23 4
=— Ui — TUiog + — Uiz g — —Uiak + —Uisk — —U
hy 60 Ui,k 300 i,1,k 0,2,k 3 1,3,k 12 i,4,k 20 1,5,k 25 1,6,k
(i=0,1,...,Ny;k=0,1,...,N,), (77)
1
(uy)iNy k — = (Uy)iN, -1,k
Yy 5 y
29 1877
= h_ T3 ok = 3007 HiNy-1k + 8N, -2k + 3 UiNy-3k 7UiNy—4k
47 5 ,
+ Eui,zvy-s,k - Zui,Ny—&k) (i=0,1,...,Ny;k=0,1,...,N,), (78)

1
(u2)ijo + E(Mz)i,/‘,l

1 ( 149 1723 19 43 23

T _Eui,j,o 300 Xt T 7”1‘,/‘,2"’?”1‘,}',3 D) 1]4+20u115

Page 13 of 30
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4 . .
25”1}6 (l=0,1,...,Nx;]=0,1,...,Ny), (79)

1
(uz)i,j,Nz - g(uz)i,j,Nz—l

29 1877 5
= h o UijN, — 300 HiiNe-1 +8uijn, 2 + 3 HijNz-3 = 7U;jN,-4
47 5 , ,
12u11Nz _5— Zui'j'Nz_6> (l = 0,1,...,Nx;] =0, 1,...,Ny). (80)

With a similar method, we can get the boundary schemes for {,y, 4y, 4.} on boundaries.
All sixth-order boundaries schemes (left, right, down, up, rear and front) for {2y, 1y, 11}
are given as follows:

(uxx)O,j,k - 6(Mxx)1,j,k

1/ 403 21 4 26
AT +B3ujp = St = Gk | = g3 (edoj

1
+ h— [—6(ux)1,,',k + 3(Mx)2,/‘,k] (] =0,1,... ;Ny; k= 0¢ ]-) cee ¢Nz): (81)
X
(Uax) Ny jk — O(Uan) N1,k

1 403 33 21 4 26( )
= —| ———un,jx + 33u —uUN, 2k — —UN,3jk | + —— ()N,
h,% 18 Ni,j.k Ny-1jk — 9 Ny—2,j,k 9 Nx—3,j,k th %) Ny.,j,k

1
+ — [6(ttx)Ny-1k — B(th)Ny—2k]  (G=0,1,...,Ny3k=0,1,...,N,), (82)

N‘
<

(uyy)i,(),k - 6(uyy)i,l,k

1 403 21 4 26
= h_§ ~g okt 33ui1k — 5 Yink ~ glizk ) = 3 i — (uy)i0k
1 .
+ h_[_6(uy)i,l,k + 3(uy)i,2,k] (l = Oy 1;'“rNx;k = 01 1:-«‘1Nz): (83)

<=

(uyy)i,Ny,k - 6(uyy)i,Ny—1,k

2 9 3h

1 403 21 4 26
= ﬁ g Ytk + 33uiN, -1k — — WiN,-2k = TUiN,-3k | + 57 (Uy)in k
1 .
h_[6(uy)lNy 1k_3(uy)lNy 2/(] (l:()r 1;H~1Nx;k:0,11»-~!N2)) (84)

(uzz)i,j,O - 6(Mzz)i,/,1

9 3h

21 4 26
Mz;o +33u;j1 — = Hij2  GHii3 —(u2)ijo
1 . ,
h_[ 6(uz)l}1+3(u2)112] (l:0,1,...,Nx;]20,1,...,Ny), (85)
(Mzz)i,j,Nz - 6(uzz)i,j,Nz—1

1

403 21 4 26
= ﬁ —UijN, + 33UijN,-1 — T UijN,—2 — TUijN,-3 L. ()i,

18 2 9 3

[6(42)ijn,-1 = 3(1)ijn,—2]  (i=0,1,...,Ny;j=0,1,...,N,). (86)

swf\

Page 14 of 30
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Finally, all sixth-order boundaries schemes for {0,dy, 9,3, 3,0,u} are derived, similar to
deriving the boundaries schemes of {u,,,, 1.} (see Appendix C). Taking 9,9, as an ex-
ample, the 0,0,u can be regarded as (i), or (u,),. All sixth-order boundaries schemes

(left, right, down, up) for d,0,u are given as follows:

axayuo,j,k + gaxayul,j'k
149 1723 19 43
= [_E(uy)o,j,k * 300 (uy)1jk — 7(ty)2jk + ?(uy)&j,k - E(uy)él,/’,k
23 4 ‘
+ %(uy)s,,-,k - g(uy)w [he (=0,1,...,Ny;k=0,1,...,N,), (87)
1
0xOyUN, jk — gaxayuNx—l,j,k
29 1877 7
= [E(uy)l\[x,j,k 300 (u}/)Nx—ljk + 8(uy)Nx -2,k — 7(uy)Nx 3kt — D) (uy)Nx—éL,j,k
5 13 .
- Z(uy)Nx—S,j,k + %(uy)Nx—G,j,k /he (j=0,1,...,Ny;k=0,1,...,N,), (88)
1
8xayui,o,k + gaxayui,l,k
149 1723 19 43
= [_E(ux)i,o,k * 300 —— ()i — 7(Ux)iof + — 3 (Ux)izh — E(Mx)i,z;,k
23 4 .
+ %(ux),.,s,k - g(ux)i,é,k} /hy (i=0,1,...,Ni;k=0,1,...,N,), (89)
1
O Oy i,y ke — = O Oy i,N, 1,k
29 1877 4
|: (ux)zNy k— 300 (ux)zNy—l k t S(ux)lNy—Zk 7(ux)lNy 3kt = 12 (ux)i,Ny—4,k
5 13 .
- Z (ux)i,N;rS,k + % (ux)i,NJ,—6,k /hy (l = O) 1’ “oe ;Nx; k = 01 1) o 7NZ)' (90)

With a similar method, we are able to obtain the boundaries schemes for {9,0,u, 9,0xu}.

All sixth-order boundaries schemes (rear, front, down, up,) are given for 9,3, as follows:

1
ayazu,',,;o + = ByBZu,»,j,l

149 1723 19 43
= |: (uy)z]O + —— 300 (uy)zj 1 7(”}/)1‘,}',2 + ?(”y)i,j,?: - E(uy)i,j,él

23 4 , ,
+ %(My)i,j,S - g(uy)i,j,6:| /h; (i=0,1,...,N:;j=0,1,...,N,), 91)
1
0y0,u;jN, — gayazui,j,Nz—l
29 1877 47
= |:1_2(uy)i,j,Nz 300 ——(uy)ijn,—1 + 8(2ty)ijn,—2 — 7(2y)ijN,—3 + 12(”y)i,j,NZ—4
13 .
(uy)l,NZ 5+ o2 (y)ijn,—6 | /h: (i=0,1,...,Ng;j=0,1,...,N,), (92)
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1
8yazl'ti,(),k + gayazui,l,k

149 1723 19 43 23
= [— 0 (u2)iok + 300 ——— ()i h — 7(z)iok + ?(uz)i,s,k - E(”z)i/},k + %(uz)i,&k
4 )
- %(uz)ib,k /hy (l :0; 1,...,Nx;k:0, I;H'rNZ): (93)
1
ayazui,Ny,k - g ayazuz’,Ny—l,k
29 1877 47
|: (MZ)lNy 300 (uz)zNy 1,k + 8(”2)1Ny—2k - (uz)i,Ny—B,k + E(uz)i,Ny—AL,k
5 13
(”z)tNy 5k+ (uz)LNy 6,k /h 0:11---:Nx;k=0)1;-~~1NZ)- (94')
All sixth-order boundaries schemes are given for 9,0,u as follows:
1
0, 0xUojk + gazaxul,j,k
149 1723 19 43
= [—E(Mz)o,j,k * 300 (k= 7()2jk + ?(uz)s,j,k - 1—2(Mz)4,j,k
23 4 ,
+ %(uz)S,j,k_ %(uz)é,j,k /hx (]:01 lr'n’Ny;k: 0, 11'“:NZ)’ (95)
1
8zaxuN,c,j,k - g azaxuNx—L/,k
29 1877 47
[12( Uz )Ny jik = 300 —— () N1k + 8(U)Ny—2jk — 7(Uz) N3,k + B —(Uz)Ng-ajik
5 13 .
- Z(uz)z\[x_s,,-,k + %(uz)Nx_6,j,k [he (i=0,1,...,Ny;k=0,1,...,N,), (96)
1
0,0xu;j0 + gazax”i,j,l
149 1723 19 43
= |: (Mx)uo t+ 300 (Mx)i,j,l - 7(Mx)i,/,2 + ?(ux)i,jﬁ - E(ux)z}j/}
23 4 .
+ %(ux)i,jﬁ - %(ux)i,jﬁ} /hz (l = 0’ 1; e ’Nx;k = 0; 1; o :NZ), (97)
1
0 0xUijN, — gazaxui,j,]\/z—l
29 1877 47
= |:ﬁ ux)i,j,NZ 300 (Mx)z/Nz 1+ 8(ux)L]NZ 7(ux)i,j,Nz—3 + E(ux)i,j,Nz—éL
5 13 ,
(ux)l,NZ 5+ o2 (x)ijn,-6 | /B2 (i=0,1,...,N5j=0,1,...,N,). (98)

In the section, we obtain all sixth-order boundaries schemes which require more than

3 grid points. Although they are not compact in the traditional sense, the major compact

structure is from the interior difference equations.

2.3 Computing process

Next, we will give computing process of the sixth-order BCD scheme. Computation of the

fourth-order BCD is close to it, so we will not talk about it more.

Page 16 of 30
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Step 1: Giving any initial guess values for {uu),u),ud,ul,ul ,uj,8,9,u’,
dy0,u°, 3,0,u’}.

Step 2: Computing ", ;,m), u™ by interior difference equations (64), (66), (68) and
boundaries difference equations (75)—(80), respectively.

Step 3: Computing um uyy"), ulm by interior difference equations (65), (67), (69) and
boundaries difference equations (81)—(86), respectively.

Step 4: Computing d,0,u™, d,0,u™, 9,0,u™ by interior difference equations (70)—(72) and
boundaries difference equations (87)—(98), respectively.

Step 5: Computing ™ by the present sixth-order BCD scheme (63) to compute the
transport variable u.
If the condition ||F — Lu || < ¢ is satisfied, then stop. Otherwise, let m = m + 1
and repeat steps 2—5.

Here m — the iteration number; L — the linear difference operator of the scheme (63);

Il - || = Loo norm; & — the convergence tolerance.

3 Truncation error analysis
For simplicity, it is supposed that /,, /1, and /4, is equal to /4. Truncation error analysis is
given as follows. Using the Taylor series expansions at point (x;, y;, zx)

8 " 32 i 3 i 3u+O(h®) (99)
= _— _— _— + 5
o = Oalt = O 190 %" T Boap
§ 3 * 5 6 7 8
uy:Syu—ZByu—anyu— 50408yu+0(h ), (100)
h? h* h®
Uy =8u— —3u— — u-— 3]u+O(h®). (101)

6 * 120 ~# 5040 ~#
Differentiating Eq. (1) with respect to x, y and z, we get

1
aﬁu =— (ﬂc - ba;axu — byuy, - cajaxu — Cyllzy — Pllixy — Pxlhy — 0, 0xU — Gylhy — V'l
a
— Pl — A1 020y — A0yt — By .1 — dp 30,0, — d3,0, 0,1
- dgafazu — Syl — sux)
— %(f — buyy, — Cuyy — puty — qiby — Yt — d1 0,0y — dr0y0,u
— d30,0,u — su), (102)
3 1 2 2
By U= b (fy — a0, 0yU — Aylhyy — CO; Oyl — Cylhyy — POLOyl — Pylly — Glhyy — Gylhy — Tyl

= Fttgy — d1 ] 0t — 0,0y — iy 0y B4 — 0 D14 — 3y B0t

— d30,0,0,u — syu — suy)

b
- b_z(f — AUxx — CUzz — PUy — Uy — TUU; — dlaxayu - dzayazu
— d30,0,u — su], (103)

1
Bzgu = 2 (fz - aaﬁazu — Ayl — bajazu — bty — P50 U — Pty — GO, 0;U — G Uy — VU,
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— Py, — d1050,0,u — dr,0xdyu — do,0y0,u — dr 020
— d3,0,0,U — dgajaxu —SU— suz)
- z_;(f — by, — Cuz, — ity — iy — Y1t — d1 0,0y — d2 0,0,

— d30,0,u — su).
Substituting Eqs. (102)—(104) into Eq. (1) and rearranging it:

Aty + Agttyy + Asthyy + Aglty + Astty + Agli; + A70,0yu + Agd,yd,u
+Ag0, 05U + A100,0,0,u
+ A110; By + A1p0) 1t + A130; 01t + A140; 014 + A150, 0,1
+A168228 u+péyu + qéyu + A7u

hr5
IZOZ

Kt
+réu — —pa5u

hop Hp
120 ¥

yo s, e
5040

12075040
_F.

(104)
I s o)
5040

(105)

Here, A1, Ay, As, A4, As, As, A7, Ag, Ao, Aro, A1, A2, A13, Ara, Ars, A, A1z and F

are defined in (9). In order to get a sixth-order compact scheme for Eq. (42), consider the

following approximations for all the derivatives. These derivatives are approximated as

follows:
h4 6
ox = 2820 — Sy + ——3%u + 3%u +O(h®),
360 10,080
2 h* 6, Al 8
Uyy = 28U — 8y + — 360 Oy u + 10,080 Oyu+ o(h®),
ht ° 8 8
Uy, = 287U — 8u+%82 1008082u+0(h)
_ 3 6
0x0y1 = (Bxtty + 8ylhy — 85 8y1) + 8 oyu+ O(h )

dyd.u = (8yu, + 8,1ty — 8,8,u) + a 293u + O(h®),

0:0stt = (St + Sthz = 8:5,4) + o a 292u + O(h°),

D0y 0,1t = 8,0, 0,1 + 80y Dyth — 8,8y + %aﬁa;azu +O(h°),
h4

O20yu = 82uy + 828, U — 8,8y + %Bfﬂfu +O(h°),
h4

07 Oth = 81t + 87 814 — 8,8y 1ty + %aja;’u +O(n°),
h4

0701 = 831z + 8581 — 8,814, + %8;8314 +O(h°),

h4
020yu = 82uy + 828,u — 8,8,u, + %ajaju +O(K°),

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)
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320,u = 82u, + 828,1 — 88,1y +

020,14 = 821, + 8281 — 88,1, +

(2020) 2020:525

h4
—3u+ O(h°),
36

h2
S—ajagu +O(K°),

3h?

360 h?
aﬁu = e (ux — S U+ Zquxx) - —87u + O(h4)
_ 240 1142
3u 52 - ——3%u+0(n),
( + gt | = gy Ou + OUF)
_ 360 3n?
( 8 uyy) n —=dJu+O(h"),
_ 240 ) 114% 8, 4
( 125y””> P o).
_ 360 h?
Pu ( 5 uzz> I ——3]u+O(h*),

240 h? 1142
du="— (uzz - 5§u + —82uzz> - —88

£ ht 12°%

Substituting Egs. (106)—(124) into E

4
T+ [g(Alsﬁ +A25y2 +A387) +

S5y 0 +O(h*).

g. (105), we have

3
;(pr + gy +18;) + A11878, + A12826,

+ A13828, + A14828; + A15878, + Amaﬁay}u

3
+ A4 — ;p—Aléx

+ A5—

>
Plss,

2A h2
Y (i (Si
3 14

+<A7+ )88u

(2A3 A hz 2 th
MGERRTR

14

— A1y

3 2
;q —AQ(S}/ +A118x

z 2A10
=0y Uy + | Ag + ——

9 9 10

8y +A128y +A1352 —A145x82 — ?83,82 Uy
, 10

—A128y3x —A153},8Z +A165Z - ?52536 Uy

i 3 10
+ | Ag - o — A38, — A138,8; + A1s8? +A156y2 ~A168,8, — ?my] u,

Ayh?

Y2
18 7

qh
14

24,
Uy + T + 8}’ Uyy

2A10
33u+ A9+T(S

_(1 axphx bthy c.rh;
B 6a> 6b2 62
Here
h6 8 8
T= 15,360 (A100u + Ardju+ A
36
Aqoht
+

108

2 72 W2 h2
p x(s q J’(Sy 7 8
661 6b 6¢

305 u) + (p87u+q87u+r87 )

35,280

(888u+888u+888u)

(117)
(118)

(119)
(120)
(121)
(122)
(123)

(124)

>8zaxu

(125)

h4
+ o (A1 000U + A1p0) 07 + A130} 071 + Arady 0 u + Arsdy 03 u + A160; 05 )

(126)
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Notice that all the derivatives {u,, u,, t;, Uy, Uyy, Uz, 050y, 00,1, 00,1} are calculated in-
dependently. Detailed derivation of the above discretization can be found in [20]. By sub-
stituting the truncation errors of the derivatives, we can get truncation error of the sixth-

order BCD scheme as follows:

Tom (s 2o Ay — Ay Apy + Ars - Apy— 210 ) 2 7
6= 4—519— 1—A11 A + A13 — A4 — 3 71 U
4:A3 Aghz th h6 8
+ | — + - — | =0;u
3 9 7 ] 8!
Ao Ayt Ary = A= Ars 4 A~ A0) B 57
+ —=—qg-Ay+ — — + —— | =0 u
5 7q 2 11 12 15 16 3 1%

4A,  Ash® qh®*\ K°
o222, 20 AT s,
3 9 7 )87

Agm oAy Ayt Ayt Ay — Ay~ 10 i 37
+ ——r—As- + + - - — | =ou
6 7 3 13 14 15 16 3 7! z

4:A1 A1h2 pl’l2 h6 8
+| —+ —— )= 0,u
3 9 7 )8!

h6
* 560 [A7(0705u + 9705 u) + Ag (0597 u + 0 0 u)

+Ao(0200u + 9293u)] + T. (127)

Similarly, we can obtain a truncation error of the fourth-order BCD scheme as follows:

h4 6 6 6 h4 5 5 5
Ty = %( 1071+ A28 u +A30%u) - m(paxu +qd)u + roJu)
h4
- %(A7(8y383u +Agd; 07U + Ag0; 03 u)

_ KAy
18

h2
+ E(Anaya;ju +A128x8;u + A130,0]u + A140,07u +Alsaza;u +A160,0;1)

(820014 + 30,0y + 929,01 + 020, 0,1 + aj’axazu +070,0,14)

Ao /S
+ A4—A1+A7+A9+?+A12+A13 —du

180 *
As—Ap+Ar+Ag+ 220 L 4 v A e 3>
+ —Ay+ A7+ Ag+ — + + —3u
5=yt A7+ dAg+ — B AT
AlO ]’14 5

+ A6—A3+A3+A9+?+A14+A15 ﬁazu. (128)

4 Numerical experiments

In order to verify the accuracy and reliability of the present BCD schemes, numerical ex-
periments with five test problems which have analytical solutions are carried out in this
section. All the test problems, where the right-hand function and the Dirichlet boundary
conditions can be given using the analytical solutions, are defined on the unit cube domain
€2 =(0,1) x(0,1) x (0, 1). The hybrid biconjugate gradient stabilized method (BiCGstab(2))
is selected to resolve the resulting linear systems in the problems. The errors and the con-
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vergence order of the method are obtained according to the following definitions:

log(Errorl/Error2)
; Order =
log(h1/h3)

Error = m;akx‘ui’,'_k — u(Xi, ¥j> Zk)
i,

Here u(x;, yj, z) is the exact solution. Errorl and Error2 are the maximum absolute errors
estimated for two different grid step sizes 4 and k.

For comparison, the proposed BCD schemes are used to compute the numerical solu-
tions of all problems and the results with those computed by the explicit fourth-order CD
scheme [24]. The maximum absolute errors and convergence orders with different values
of i are listed in Tables 1-5, respectively. These results show clearly the BCD4 scheme, the
explicit fourth-order CD scheme [24] and the BCD6 scheme can reach their fourth- and
sixth-order accuracy and the BCD4 scheme gets a slightly better accurate solution than
the explicit fourth-order CD scheme. However, the BCD6 scheme produces a much better

Table 1 The maximum error and convergence order for Problem 1

h Ananthakrishnaiah [24] BCD4 scheme BCD6 scheme

Error Order Error Order Error Order
1/4 7.66(-04)
1/8 4.93(-05) 3.96 2.15(-05) 246(-07)
1716 3.14(-06) 397 1.32(-06) 403 2.81(-09) 6.45
1/32 - - 8.14(-08) 4.02 265(-11) 6.73
1/48 - - 1.60(-08) 401 1.99(-12) 6.39
Table 2 The maximum error and convergence order for Problem 2
h Ananthakrishnaiah [24] BCD4 scheme BCD6 scheme

Error Order Error Order Error Order
174 2.50(-05)
1/8 1.29(-06) 428 6.25(-07) 1.14(-07)
1716 8.04(-08) 4.00 2.40(-08) 4.70 1.88(-09) 592
1/32 - - 1.19(-09) 433 2.99(-11) 597
1/48 - - 2.10(-10) 4.28 2.60(-12) 6.02
Table 3 The maximum error and convergence order for Problem 3
h Ananthakrishnaiah [24] BCD4 scheme BCD6 scheme

Error Order Error Order Error Order
1/4 8.88(-05)
1/8 5.18(-06) 4.10 4.29(-07) 4.35(-08)
1/16 3.18(-07) 403 1.69(-08) 467 6.15(-10) 6.14
1/32 - - 8.63(-10) 4.29 8.68(-12) 6.15
1/48 - - 1.60(-10) 4.16 6.98(-13) 6.22
Table 4 The maximum error and convergence order for Problem 4
h Ananthakrishnaiah [24] BCD4 scheme BCD6 scheme

Error Order Error Order Error Order
174 2.53(-04)
1/8 1.64(-05) 3.95 1.17(-05) 2.75(-07)
1716 1.04(-06) 3.98 6.12(-07) 4.26 2.95(-09) 6.54
1/32 - - 3.64(-08) 4.07 2.78(-11) 6.73
1/48 - - 7.09(-09) 403 2.01(=12) 648
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Table 5 The maximum error and average convergence order for Problem 5

h Ananthakrishnaiah [24] BCD4 scheme BCD6 scheme

Error Order Error Order Error Order
174 4.96(-06)
1/8 3.06(-07) 402 3.77(-07) 1.29(-08)
1716 2.06(-08) 3.89 1.21(-08) 4.96 1.73(=10) 6.22
1/32 - - 540(-10) 449 157(-12) 6.39
1/48 - - 9.55(-11) 427 2.07(-13) 5.00

accurate solution than both the BCD4 scheme and the explicit fourth-order CD scheme
[24].

Problem 1 ([24]) We choose the coefficients in Equation (1) as

a=>5, b=3, c=4, p=13, qg=11, r =10,

di =0, d, =0, ds; =0, s=-7.
The analytic solution is
u(x,y,z) =explx +y + z).
Problem 2 ([24]) The coefficients of our second problem is chosen as

a=1+x%  b=1+yY  c=1+z% p=1l+cosx; g=1+cosy;

r=1+cosz; d, =0; d, =0; ds; =0; s=-1.
The analytic solution is

u(x,y,z) = [cosh(x) + cosh(y) + cosh(z)]/ cosh(1).
Problem 3 ([24]) The coefficients of our third problem is chosen as

a = exp(2x); b =exp(2y); ¢ = exp(2z); p=expx+y+2);

q=expx+y+2z); r=—explx+y+2); di=dy=d3=5=0.
The analytic solution is

u(x,y,z) = cos(x) + cos(y) + cos(z).
Problem 4 ([24]) The coefficients of our fourth problem is chosen as

a=b=c=10, p =13, q=11, r=10,

The analytic solution is

u(x,y,z) = exp(x + y + z).
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Problem 5 ([24]) The coefficients of our fifth problem is chosen as

a:b:c:10+x4+y4+z4; p=1+cosx; q=1+cosy;

r=1+cosz di=1+z dy=1+x; d;=1+y; s=0.

The analytic solution is
u(x,,2) = (cosh(x) + cosh(y) + cosh(z))/ cosh(1).

5 Conclusions

In this paper, we have constructed the fourth- and sixth-order BCD schemes for the 3D
variable coefficients elliptic PDE with mixed derivatives. Firstly, based on Taylor series ex-
pansion and truncation error remainder, combined with the fourth-order Padé schemes
of the first-order derivatives, a new fourth-order BCD scheme is constructed. In this new
scheme, the unknown function and its first-order derivatives are regarded as the unknown
variables in the calculation. Then, on the basis of the fourth-order BCD scheme proposed
above, a new sixth-order BCD scheme is proposed by replacing the fifth- and sixth-order
derivatives of the truncation errors with the linear combination of the unknown function,
the first- and second-order as well as the second-order mixed derivatives. In other words,
in the sixth-order BCD scheme, the unknown function, its first- and second-order deriva-
tives as well as the second-order mixed derivatives are regarded as the unknown variables.
At the same time, the sixth-order boundaries schemes of the first-order derivatives, the
second-order derivatives and the second-order mixed derivatives are proposed. Finally,
numerical results indicate that the present BCD schemes exhibit a very good resolution
and high accuracy for all test problems.

Appendix A: Details of the finite difference operators

M1—2M0+M3 u2—2u0+u4 u5—2u0+u6

2. _ 2. _ 2, _
5x140 = h2 ) 8y Up = hz ) 82 Uo h2 )
x y z
Seu Uy —us St Uy — Uy Sou Us — Ue
xU0o = ’ 0= ’ 1o = »
2k, g 2h, 2h,
oS = U7 —Ug + Uy — U1
xOyH0 = ’
4l
S8t = Uiy — U1a — Ure + U1g
y0z40 = ’
4h.h,
Uil — U1z — U5 + Uiz
szSzuo = ’
4h.h,
9 U7 + Ug — Ug — U1g — 2Uy + 2Uy
8x5;\/u0 = 5 )
2h2h,
9 Uy — Ug — Ug + Urg — 2U1 + 2Us3
Sy(quo = 5 »
2h%h,
y
2 Uip + U4 — U16 — U188 — 2145 + 2M6
8y82M0 = ) )
202h,
2 Ulp — U4 + U1 — U118 — 2M2 + 2M4
(styl/lo =

2h2h, ’
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Uil + U3 — U5 — Uy — 2115 + 2M6

B:to = 2h2h, ’
2 _ Uil — U3 + U5 — U7 — 2”1 + 2”3
(SZ (le/to = h2h

Appendix B: Fourth-order scheme for boundary conditions of the first-order
derivatives [37]

14
(Ux)ojik + E(ux)l,j,k
1 184 703 89 67
= — + —uy; — Ui+ —U
B\~ 75 OBk T T ik T 3o Mk T 3tk
77 41 .
90u4,k SOOMSJk) (G=1,2,...,Nsk=1,2,...,N), (B.1)
()N jk — —= (Ux) N-1k
15
52 1067 67 41
_ N it e UN o h — ——Unr 2
h 25 Nx]k 180 Nx-1,,k 10 Nx-2,j,k 10 Nx—-3,j,k
133 69 .
ik = gogcsit) =12 Nk =120 (B2)
14
(uy)t()k + = 15 (My)i,l,k
1 184 703 89 67
=— + —Ui1k— —=Uizk + —U;
hy 75 Ui 0,k 180 i,1,k 30 ,2,k 30 1,3,k
77 41
— %Mi,él,k"' %ui,ik) (l= 1,2,...,Nx;k= 1,2,...,Nz), (BS)
14
(uy)iNyk — == (thy)iN, -1,k
Yy 15 Y
52 1067 67 41
= h_ 25 UiNyk — mui,Ny—l,k + l_oui,Ny—Z,k - l_oui,Ny—B,k
133 69 .
+ %ui,]\]y_z;,k — ﬁui,Ny—S,k (i=1,2,...,Ngyk=1,2,...,N,), (B.4)
14
(Mz)i,j,o + 1_5(uz)i,j,l
1 184 703 89 67
= h_z —Eui,j,o + @ui,j,l 30 Ujjo + 30%13
77 41 . ,
~ % Uija+ 300u”5 (i=1,2,...,Nsj=1,2,...,N,), (B.5)
14
(u2)ijN, — ﬁ(uz)i,j,Nz—l
1 /52 1067 67 41
= h 25 UijN, — 180 “on YijN,-1 Tt IOM”NZ -2~ IOM”NZ -3
133 69 , ,
90 “on 4ijN-4 Booul]Nz -5 (l:1127'-'1Nx;]:1;2y~n,Ny)¢ (B.6)
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40 1 2 3 4 5

Figure 3 Grid point discretization for left boundary

Appendix C: The sixth-order boundary schemes of the mixed derivatives
The sixth-order approximation of left boundary of mixed derivative may be obtained from

a relation of the form

axayuo,j,k + Olaxayl/llyj,k

= [(”y)x]o,j,k + O‘[(”y)x]l,j,k
= [ﬂo(uy)o,j,k + ﬂl(uy)l,j,k

+as(uy)aji + as(uy)zjk + as(uy)aji + as(uy)sjx + ﬂe(uy)6,j,k]/hx- (C.1)

Herej=0,1,...,Ny;k =0,1,...,Ni the coefficients ao, a1, a2, as, aa, as, as (for the subscript
see Fig. 3) and « are derived by matching the Taylor series coefficients of various orders.
The detailed derivation process is given below.

Using the Taylor series expansions at point (xo, ¥}, zx)

2 3

h h
x 02 X 3
()1 = U)ok + Mx0x0ytho ik + 58’“ OyUojk + §3y3x U )k

4 5

h h h®
+ Z"‘Byafuo,j,k + S—TByaﬁuo%k + 6—’:8y8fu0,j’k + O(h;), (C.2)

22 2 23 3
X 2 X 3
(ty)2jk = U)ok + 2h0y0xtho ik + o 0,05 Uojk + 3 0,0, Uo jk

24h4 25 5 26 6
+ Txayaﬁuo,,,k + Txayaguo,,,k + Txayafuo,,,k + O(hZ), (C.3)

272 333
X 2 X 3
()3 = (Uy)ojk + 3Nx0yOslhojk + Tayax Uojk + Taﬁx Uk

34h4 35h5 36 6

+7f@$wﬂ+zﬁmxmﬂ+7fmﬁwﬂ+owg (C.4)
42h2 43 3

(y)ajk = (Uy)ojik + 4h0y0xtho ji + Txayaﬁ Uojk + Txaya,? Uoj k

44 4 . 45 5 5 46 6 p ;
+ Txayax Uojk + ?"8),8,6 Uk + Txayax uojx + O(hL), (C.5)
2h2 37,3
(1y)5,k = (y)ok + 5h0ydxtho ji + Txayaf Uojk + Txaya,? Uojk

5%y 5°I; 55h8
+7T%$%M+7r@$mﬂ+7T®$%M+OWQ (C.6)
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21,2 63 3
X 2 X 3
(My)6,j,k = (uy)O,j,k + 6hxayaxu0,j,k + 21 (Myxx)ayax Upjk + 31 ayax Uik

(3 6°h2 6°h8
Txaya;juo,,,k + 7aya,iuo,,;k + Tayajuo,,,k +O(KL). (C.7)

+

Substituting Egs. (C.2)—(C.7) into Eq. (C.1), we are able to obtain linear equations as
shown now:

ag+ay+ax+as+ag+as+ag=0,

— (a1 + 22612 + 32613 + 42a4 + 52615 + 62a6) =q,

2!
1 3 3 3 3 3 o
g(a1+2 a +3°as +4°a4 + 5°a5 + 6 a6)= >
o (m + 2%, + 3%as + 4%a, + 5tas + 64616) = %, (C.8)
E(m + 25a2 + 35613 + 45614 + 55u5 + 65616) = 20[—4,
o
6! (611 +2dy+oadz+adyg+ods+ 616) 120
o
— (a1 +2ay +37as +4as + 5 as + 6’ ag) = —.
7 (611 +2dy+oadz+adyg+ods+ 616) 720
And resolving it by Matlab Software, we can get the results as follows:
1 149 1723
a=-, ap=——- ar = ——-» 42=_7!
5 60 300
19 43 23 4
a3 =—, ag=———1, as = —, ag = ———.
°7 3 T2 720 Y
So, the sixth-order scheme for the left boundary mixed derivative can be written as:
1
axayuo,j,k + gaxayul,j'k
149 1723 19 43
= [—E(uy)o,j,k * 200 (uy) 1k — 72y )2k + ?(”y)S,j,k - E(uy)él,j,k
23 4 ,
+ %(uy)s,,,k - g(uy)ﬁ,,-,k [he j=0,1,2,...,Ny;k=0,1,2,...,N,. (C.9)

With a similar method, we can get the sixth-order boundaries schemes for other second-
order derivatives as follows:

1
3xayuNx,j,/< - gaxayuNx_l,j,k

) [29 1877

E(uy)Nx,j,k ~ 300 (Uy)Ne-1jk + 8ty N2,k — 7 (thy)N—3,k

47

5
+ E(uy)Nx—él,j,k - :L(My)Nx—S,j,k

13
+ 7—5(uy)Nx_6,,,k]/hx, j=0,1,2,...,N;k=0,1,2,...,N,, (C.10)
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1
8xayui,o,k + gaxayui,l,k
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1
8zaxl'iN,g,j,k - g 3zaxl"N,c—l,j,k
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1
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1
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