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Abstract
The aim of the paper is to derive certain formulas involving integral transforms and a
family of generalized Wright functions, expressed in terms of the generalized Wright
hypergeometric function and in terms of the generalized hypergeometric function as
well. Based on the main results, some integral formulas involving different special
functions connected with the generalized Wright function are explicitly established
as special cases for different values of the parameters. Moreover, a Gaussian
quadrature formula has been used to compute the integrals and compare with the
main results by using graphical representations.
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1 Introduction and preliminaries
The research on integral transforms involving special functions (see, e.g., [1–4, 6, 8–
12, 19]) has received a considerable attention of the research community primarily because
their application has made prominent contributions in several domains of mathematics,
engineering and their applications in mathematical physics (see, e.g., [7, 15, 21, 22, 27–
30]). Among these special functions of mathematical physics, the Wright, the Bessel, and
similar functions are of central importance and are fairly useful in the theory of integral
and fractional calculus. To this end, a very little or no work on integral transforms in-
volving Wright function has been done so far. In the main section, our focal point is to
derive two essential theorems concerning integral transforms which will be used further,
followed by related corollaries. In the last section, we specifically evaluate the Wright type
auxiliary functions and some other deducible functions to derive a few results as special
cases.

Now we recall some useful definitions of functions that are essential for the present
investigation.
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Definition 1.1 Wright introduced the classical Wright function Wα,β (t) [13, 20], defined
by the series representation

Wα,β (t) =
∞∑

n=0

1
Γ (αn + β)

tn

n!
(β ∈C,α > –1), (1)

∀α ∈ R and β ,γ , δ ∈ C;α > –1, δ �= 0, –1, –2, . . . , with t ∈ C and |t| < 1 with α = –1, a fur-
ther generalization of the Wright function (see, for details, [18]) was introduced as

W γ ,δ
α,β (t) =

∞∑

n=0

(γ )n

(δ)nΓ (αn + β)
tn

n!
, (2)

where (γ )n is the Pochhammer symbol (see [21] p. 2 and pp. 4–6) and Γ (·) is the gamma
function (see [21] Sect. 1.1), with the two auxiliary functions

Mγ ,δ
α (t) = W γ ,δ

–α,1–α(–t) =
∞∑

n=0

(γ )n

Γ (1 – α – αn)(δ)n

(–t)n

n!
(3)

and

Fγ ,δ
α (t) = W γ ,δ

–α,0(–t) =
∞∑

n=1

(γ )n

Γ (–αn)(δ)n

(–t)n

n!
. (4)

Wright [24–26] studied the generalized Wright hypergeometric function defined as

pψq

[
(α1A1), . . . , (αp, A1);
(β1, B1), . . . , (βq, Bq);

t

]
=

∞∑

m=0

∏p
j=1 Γ (αj + Ajm)

∏q
j=1 Γ (βj + Bjm)

tm

m!
, (5)

where the coefficients (A1, . . . , Ap; B1, . . . Bq) ∈ R
+ obey

1 –
p∑

j=1

Aj +
q∑

j=1

Bj ≥ 0.

It is easily seen that (5) is the generalization of the famous generalized hypergeometric
series pFq defined by

pFq

[
α1, . . . ,αp;
β1, . . . ,βq;

t

]
=

∞∑

n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

tn

n!
. (6)

The Fox H-function [16], a generalization of the Fox–Wright function, is defined in
terms of the Mellin–Barnes integral as

Hμ,σ
α,β

[
x
∣∣∣∣
(a1, A1), . . . . . . , (aα , Aα)
(b1, B1), . . . . . . , (bβ , Bβ )

]
=

1
2π i

∫

L
Θ(s)x–s ds, (7)

where i = (–1) 1
2 , x �= 0 and x–s = exp[–sln |x| + i arg x] and

Θ(s) =
{∏σ

j=1 Γ (1 – aj – Ajs)}{∏μ
j=1 Γ (bj + Bjs)}

{∏β

j=μ+1 Γ (1 – bj – Bjs)}{∏α
j=σ+1 Γ (aj + Ajs)} .
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The Meijer G-function [5] introduced by Meijer is defined as

Gμ,σ
α,β

(
x|a1,a2,...,aα

c1,c2,...,cβ

)

= Hμ,σ
α,β

[
x|(ak ,1)α1

(bk ,1)β1

]
=

μ∑

k=1

∏μ
j=1 Γ (cj – ck)

∏σ
j=1 Γ (1 + ck – aj)xck

∏β

j=μ+1 Γ (1 + ck – cj)
∏α

j=σ+1 Γ (aj – ck)

× pFq
(
1 + ck – a1, . . . , 1 + ck – aα ; 1 + ck – c1, . . . , 1 + ck – cβ ; (–1)α–μ–σ x

)
, (8)

where 1 ≤ μ ≤ β , 0 ≤ σ ≤ α ≤ β – 1.
The classical Mittag-Leffler function [17, 23] is defined as

Eα,β (t) =
∞∑

k=0

tk

Γ (kα + β)
(α > 0,β ∈C). (9)

We also note that W γ ,δ
α,β immediately reduces to the above-mentioned functions as fol-

lows:
1. On replacing α by –α, t by –t, setting β = 0 in (2) and with the help of (4), we get

W γ ,δ
–α,0(–t) = Fγ ,δ

α (t). (10)

2. On replacing α by –α, t by –t, setting β = 1 – α in (2) and with the help of (3), we get

W γ ,δ
–α,1–α(–t) = Mγ ,δ

α (t). (11)

3. On replacing t by –t in (2) and with the help of (7), we can easily relate the
generalized Wright function with the Fox H-function as

Γ (γ )
Γ (δ)

W γ ,δ
α,β (–t) = H1 1

1 3

[
t
∣∣∣∣

(1 – γ , 1)
(0, 1), (1 – β ,α), (1 – δ, 1)

]
. (12)

4. On replacing t by –t, α = 1 in (2) and with the help of (8), we can easily relate the
generalized Wright function with the Meijer G-function as

Γ (γ )
Γ (δ)

W γ ,δ
α,β (–t) = G1 1

1 3

[
t
∣∣∣∣

1 – γ

0, 1 – β , 1 – δ

]
. (13)

5. On setting α = 0, γ = 1 in (2) and with the help of (9), we get

Γ (β)
Γ (δ)

W 1,δ
0,β (t) = E1,δ(t). (14)

Definition 1.2 The following result is also essential for the present investigation. For
(�(u) > 0 and �(v) > 0), the Lavoie–Trottier [14] integral formula is defined as

∫ 1

0
xu–1(1 – x)2v–1

(
1 –

x
3

)2u–1(
1 –

x
4

)v–1

dx =
(

2
3

)2u
Γ (u)Γ (v)
Γ (u + v)

. (15)
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2 Main results
In this section, considering the integral in (15) and the generalized Wright function in (2),
we establish two theorems as follows.

Theorem 1 With the existence of the conditions α ∈R and β ,γ , δ, u, v ∈C,�(u+v) > 0,α >
–1, δ �= 0, –1, –2, . . . with t ∈ C and |t| < 1 with α = –1 and x > 0, the following formula
holds:

∫ 1

0
xu+v–1(1 – x)2u–1

(
1 –

x
3

)2(u+v)–1(
1 –

x
4

)u–1

W γ ,δ
α,β

{
t
(

1 –
x
4

)
(1 – x)2

}
dx

=
(

2
3

)2(u+v)
Γ (u + v)Γ (δ)

Γ (γ ) 2ψ3

[
(u, 1), (γ , 1);
(δ, 1), (β ,α), (2u + v, 1);

t

]
. (16)

Proof Applying the definition (2) in the left-hand side of (16) and denoting it by I , we
write

I =
∞∑

n=0

tn(γ )n

n!(δ)nΓ (αn + β)

∫ 1

0
xu+v–1(1 – x)2u+2n–1

(
1 –

x
3

)2u+2v–1(
1 –

x
4

)u+n–1

dx. (17)

Using (15) and interchanging the order of integration and summation, we obtain

I =
(

2
3

)2(u+v)
Γ (u + v)Γ (δ)

Γ (γ )

∞∑

n=0

Γ (u + n)Γ (γ + n)
Γ (δ + n)Γ (αn + β)Γ (2u + v + n)

tn

n!
, (18)

which on using (5), yields the required assertion (16) of Theorem 1. �

Theorem 2 With the conditions already mentioned in Theorem 1, the following formula
holds:

∫ 1

0
xu–1(1 – x)2u+2v–1

(
1 –

x
3

)2u–1(
1 –

x
4

)u+v–1

W γ ,δ
α,β

{
xt

(
1 –

x
3

)2}
dx

=
(

2
3

)2u
Γ (u + v)Γ (δ)

Γ (γ ) 2ψ3

[
(u, 1), (γ , 1);

(δ, 1), (β ,α), (2u + v, 1);
4t
9

]
. (19)

Proof The result in (19) can be derived with ease by the same procedure as followed in
the establishment of (16).

Based on the previous theorems, at least two corollaries immediately follow which ex-
ploit the use of the hypergeometric function in (6). �

Corollary 2.1 Let u+v ∈C\Z–
o and with all conditions of Theorem 1, the following integral

formula holds true:

∫ 1

0
(1 – x)2u–1xu+v–1

(
1 –

x
3

)2u+2v–1(
1 –

x
4

)u–1

W γ ,δ
α,β

{
t
(

1 –
x
4

)
(1 – x)2

}
dx

=
(

2
3

)2u+2v
Γ (u + v)Γ (u)
Γ (β)Γ (2u + v) 2Fα+2

[
(γ ), (u)

(δ), (2u + v), ( β

α
), ( β+1

α
) . . . , ( β+α–1

α
)

∣∣∣∣
t

αα

]
. (20)
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Corollary 2.2 Let u+v ∈C\Z–
o and with all conditions of Theorem 1, the following integral

formula holds true:

∫ 1

0
(1 – x)2u+2v–1xu–1

(
1 –

x
3

)2u–1(
1 –

x
4

)u+v–1

W γ ,δ
α,β

{
tx

(
1 –

x
3

)}
dx

=
(

2
3

)2u+2v
Γ (u + v)Γ (u)
Γ (β)Γ (2u + v) 2

Fα+2

[
(γ ), (u)

(δ), (2u + v), ( β

α
), ( β+1

α
), . . . , ( β+α–1

α
)

∣∣∣∣
4t

9αα

]
. (21)

Proof Making use of the result (for n ∈No)

(λ)2n =
(

λ

2

)

n
22n

(
λ + 1

2

)

n
,

in (18) and with the help of (5), we can easily establish (20). A similar approach will estab-
lish (21). �

3 Special cases
According to the procedure we have employed, we can appreciate the importance of the
special cases mentioned in (10)–(14) to establish some new results. We have indeed the
following result.

Corollary 3.1 ∀u, v, b ∈ C with �(u) > b
2 ,�(u + v) > 0,�(2u + v) > b

2 , α ∈ (0, 1) and x > 0,
let

∫ 1

0
(1 – x)2u–b–1xu+v–1

(
1 –

x
3

)2u+2v–1(
1 –

x
4

)u– b
2 –1

Fγ ,δ
α

{
t
(

1 –
x
4

)
(1 – x)2

}
dx

=
(

2
3

)2u+2v
Γ (u + v)Γ (δ)

Γ (γ ) 2ψ3

[
(γ , 1), (u – b

2 , 1);
(δ, 1), (0, –α), (2u + v – b

2 , 1);
– t

]
. (22)

Corollary 3.2 Allowing for the conditions already stated in (22), we have

∫ 1

0
(1 – x)2u+2v–1xu– b

2 –1
(

1 –
x
3

)2u–b–1(
1 –

x
4

)u+v–1

Fγ ,δ
α

{
tx

(
1 –

x
3

)2}
dx

=
(

2
3

)2u–b
Γ (u + v)Γ (δ)

Γ (γ ) 2ψ3

[
(γ , 1), (u – b

2 , 1);
(δ, 1), (0, –α), (2u + v – b

2 , 1);
–

4t
9

]
. (23)

The proof of (22) and (23) is very similar to that of Theorem 1 and Theorem 2. It can be
easily established by setting β = 0, α = –α, and replacing t by –t and then using (10).

Corollary 3.3 Allowing for the conditions already stated in (22), we get

∫ 1

0
(1 – x)2u–b–1xu+v–1

(
1 –

x
3

)2u+2v–1(
1 –

x
4

)u– b
2 –1

Mγ ,δ
α

{
t
(

1 –
x
4

)
(1 – x)2

}
dx

=
(

2
3

)2(u+v)
Γ (u + v)Γ (δ)

Γ (γ ) 2ψ3

[
(γ , 1), (u – b

2 , 1);
(δ, 1), (1 – α, –α), (2u + v – b

2 , 1);
– t

]
. (24)
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Corollary 3.4 Allowing for the conditions already stated in (22), we get

∫ 1

0
(1 – x)2u+2v–1xu– b

2 –1
(

1 –
x
3

)2u–b–1(
1 –

x
4

)u+v–1

Mγ ,δ
α

{
tx

(
1 –

x
3

)2}
dx

=
(

2
3

)2u–b
Γ (u + v)Γ (δ)

Γ (γ ) 2ψ3

[
(γ , 1), (u – b

2 , 1);
(δ, 1), (1 – α, –α), (2u + v – b

2 , 1);
–4t

9

]
. (25)

Corollary 3.5 Allowing for the conditions already stated in (22), we get

∫ 1

0
(1 – x)2u–b–1xu+v–1

(
1 –

x
3

)2u+2v–1(
1 –

x
4

)u– b
2 –1

× H1 1
1 3

[(
1 –

x
4

)
(1 – x)2t

∣∣∣∣
(1 – γ , 1)

(0, 1), (1 – β ,α), (1 – δ, 1)

]
dx

=
(

2
3

)2u+2v

Γ (u + v)2ψ3

[
(γ , 1), (u – b

2 , 1);
(δ, 1), (β ,α), (2u + v – b

2 , 1);
– t

]
. (26)

Corollary 3.6 Allowing for the conditions already stated in (22), we get

∫ 1

0
xu– b

2 –1(1 – x)2(u+v)–1
(

1 –
x
3

)2u–b–1(
1 –

x
4

)u+v–1

× H1 1
1 3

[
xt

(
1 –

x
3

)2∣∣∣∣
(1 – γ , 1)

(0, 1), (1 – β ,α), (1 – δ, 1)

]
dx

=
(

2
3

)2u–b

Γ (u + v)2ψ3

[
(γ , 1), (u – b

2 , 1);
(δ, 1), (β ,α), (2u + v – b

2 , 1);
–

4t
9

]
. (27)

Corollary 3.7 Allowing for the conditions already stated in (22), we get

∫ 1

0
xu+v–1(1 – x)2u–b–1

(
1 –

x
3

)2(u+v)–1(
1 –

x
4

)u– b
2 –1

× G1 1
1 3

[(
1 –

x
4

)
(1 – x)2t

∣∣∣∣
1 – γ

0, 1 – β , 1 – δ

]
dx

=
(

2
3

)2(u+v)

Γ (u + v)2ψ3

[
(γ , 1), (u – b

2 , 1);
(δ, 1), (β , 1), (2u + v – b

2 , 1);
– t

]
. (28)

Corollary 3.8 Allowing for the conditions already stated in (22), the following integral for-
mula holds true:

∫ 1

0
(1 – x)2u+2v–1xu– b

2 –1
(

1 –
x
3

)2u–b–1(
1 –

x
4

)u+v–1

× G1 1
1 3

[
xt

(
1 –

x
3

)2∣∣∣∣
(1 – γ , 1)

(0, 1), (1 – β ,α), (1 – δ, 1)

]
dx

=
(

2
3

)2u–b

Γ (u + v)2ψ3

[
(γ , 1), (u – b

2 , 1);
(δ, 1), (β , 1), (2u + v – b

2 , 1);
–

4t
9

]
. (29)
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Figure 1 Solution of (16) with the parameters used
in the simulation u = 3, v = 3, δ = 5, α = –1, β = 12
and γ = 2

Figure 2 Solution of (19) with the parameters used
in the simulation u = 6, v = 3, δ = 5, α = –1, β = 12
and γ = 2

Corollary 3.9 Allowing for the conditions already stated in (22), we get

∫ 1

0
(1 – x)2u–b–1xu+v–1

(
1 –

x
3

)2u+2v–1(
1 –

x
4

)u– b
2 –1

E1,δ

{
t
(

1 –
x
4

)
(1 – x)2

}
dx

=
(

2
3

)2(u+v)

Γ (u + v)2ψ2

[
(1, 1), (u – b

2 , 1);
(δ, 1), (2u + v – b

2 , 1);
t

]
. (30)

Corollary 3.10 Allowing for the conditions already stated in (22), we get

∫ 1

0
(1 – x)2u+2v–1xu– b

2 –1
(

1 –
x
3

)2u–b–1(
1 –

x
4

)u+v–1

E1,δ

{
tx

(
1 –

x
3

)2}
dx

=
(

2
3

)2u–b

Γ (u + v)2ψ2

[
(1, 1), (u – b

2 , 1);
(δ, 1), (2u + v – b

2 , 1);
4t
9

]
. (31)

4 Graphical interpretation
In this section, we illustrate the solutions (16), (19), (22), (23), (24) and (25) using a graph-
ical representation in terms of the parameter t. We use the numerical method named the
Gaussian quadrature method to evaluate the integral of these equations and compare with
the main results. To get the specific results, we take n = 8 and k = 5 (see Figs. 1–6).
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Figure 3 Solution of (22) with the parameters used
in the simulation u = 6, v = 3, δ = 5, α = 0.05, β = 0,
γ = 5 and b = 4

Figure 4 Solution of (23) with the parameters used
in the simulation u = 6, v = 3, δ = 5, α = 0.5, β = 0, γ
= 5 and b = –6

Figure 5 Solution of (24) with the parameters used
in the simulation u = 6, v = 3, δ = 10, α = 0.5, γ = 12
and b = 4

5 Conclusion
In these final remarks, it is worth stressing that the integral formulas computed in this pa-
per involving a generalized Wright function are amenable for further research and gener-
alizations. It is natural to note that the generalized Wright function depicts a close connec-
tion with several important special functions mentioned in the paper. As a consequence,
we have attempted to compute the integrals of the above-mentioned functions in the form
of generalized Wright function by some suitable parametric replacement, linking differ-
ent families of special functions. We have also used the Gaussian quadrature formula to
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Figure 6 Solution of (24) with the parameters used
in the simulation u = 6, v = 3, δ = 10, α = 0.5, γ = 12
and b = 4. Solution of (25) with the parameters used
in the simulation u = 6, v = 3, δ = 5, α = 0.5, γ = 5
and b = –6

compare our main results graphically using Matlab. The conclusion we may draw is that
the generalized Wright function has a wide range of applications in different domains;
therefore, the results obtained provide a significant step which can yield some potential
applications in the field of classical and applied mathematics.
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