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Abstract
We study the SEIR epidemic model for the spread of AH1N1 influenza using the
Caputo–Fabrizio fractional-order derivative. The reproduction number of system and
equilibrium points are calculated, and the stability of the disease-free equilibrium
point is investigated. We prove the existence of solution for the model by using fixed
point theory. Using the fractional Euler method, we get an approximate solution to
the model. In the numerical section, we present a simulation to examine the system,
in which we calculate equilibrium points of the system and examine the behavior of
the resulting functions at the equilibrium points. By calculating the results of the
model for different fractional order, we examine the effect of the derivative order on
the behavior of the resulting functions and obtained numerical values. We also
calculate the results of the integer-order model and examine their differences with
the results of the fractional-order model.
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1 Introduction
The pandemic virus AH1N1/09 that was identified in April 2009 is a flu virus of swine,
avian, and human origin. This virus first was identified in Mexico and the USA and then
spread to the rest of the world so that the WHO declared the new influenza A(H1N1)
a pandemic on June 11, 2009 [1]. Through effective contacts of susceptible people with
infectious people, the virus AH1N1 transmits. In the USA, approximately 36,000 people
die from seasonal influenza or flu-related causes every year. Due to the importance of
vaccination in epidemics, many attempts were made to find the vaccine of this disease
until the first effective vaccine was found in the United States in October 2009 [2].

To investigate the dynamic behavior of epidemic diseases, mathematical models have
an important role. There are several mathematical models such as SI, SIR, SIS, SIRS, and
SEIR [3]. To study the dynamics of H1N1 influenza virus transmission, several mathemat-
ical models have been presented. The SIR model has been presented in the approach of
Ebenezer [4], Hattaf et al. [5]. El-Shahed and his colleagues used the SIRC model [6] to in-
vestigate this disease transmission. Karim and Razali examined the spread of influenza in
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Malaysia using the SEIRS model [7]. Altaf Khan and his colleagues [8] and Gonzalez-Parra
[9] also studied the spread of influenza using the mathematical SEIR model, which is one
of the good models in the study of the spread of diseases. With the spread of influenza, Tan
et al. used the SEIARC model [10], which has two groups more than the SEIR model and
includes more details, to analyze the spread of the disease in Guangdong province. The
study of diseases dynamics is a dominating theme for many biologists and mathematicians
(see, for example, [11–21]).

It has been studied by many researchers that fractional extensions of mathematical mod-
els of integer order represent the natural fact in a very systematic way such as in the ap-
proach of Akbari et al. [22], Baleanu et al. [23–25], Kumar et al. [26], Singh et al. [27].
With the expansion of the application of fractional derivatives, methods for solving frac-
tional mathematical systems have been considered by many researchers (see, for example,
[28–35]). Also, the study of the mathematical model of phenomena with fractional order
derivatives and their optimal control has been the subject of research by many researchers
(see, for example, [36–40]). In recent years, many papers have been published on the sub-
ject of Caputo–Fabrizio fractional derivative (see, for example, [41–48]).

Given that research conducted in the recent decade shows that fractional-order deriva-
tives work better in modeling real phenomena than integer-order derivatives and in-
clude the system of internal memory, in this paper, we study the mathematical model for
AH1N1/09 influenza transmission [9] by using the Caputo–Fabrizio fractional derivative.
In order to examine the difference between the results of the model with the fractional and
integer order, in the numerical part, we also obtain the results with the integer derivative
and compare them. We obtain the reproduction number and equilibrium points of the
system, and in the numerical simulation we examine the behavior of the system at equi-
librium points. In the integer-order derivative, the least change in the order is a unit and
the effect of small changes in the derivative order in the results cannot be examined. In this
work, we obtain the results of the fractional-order model for different values of derivative
order and investigate the effect of derivation order on the results.

The structure of the paper is as follows. In Sect. 2 some basic definitions and concepts
of fractional calculus are recalled. The SEIR model of fractional order for AH1N1/09 in-
fluenza transmission is presented in Sect. 3. In Sect. 4, the equilibrium points and the
reproduction number are calculated and the stability of the equilibrium points is investi-
gated. The existence of solution for the system is proved in Sect. 5. In Sect. 6, a numerical
method for solving the model is described and a numerical simulation is presented.

2 Preliminaries
In this section, we recall some of the fundamental concepts of fractional differential cal-
culus, which are found in many books and papers.

Definition 1 ([49]) For an integrable function g , the Caputo derivative of fractional order
ν ∈ (0, 1) is given by

CDνg(t) =
1

Γ (m – ν)

∫ t

0

g(m)(υ)
(t – υ)ν–m+1 dυ, m = [ν] + 1.
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Also, the corresponding fractional integral of order ν with Re(ν) > 0 is given by

CIνg(t) =
1

Γ (ν)

∫ t

0
(t – υ)ν–1g(υ) dυ.

Definition 2 ([41, 50]) For g ∈ H1(c, d) and d > c, the Caputo–Fabrizio derivative of frac-
tional order ν ∈ (0, 1) for g is given by

CF Dνg(t) =
M(ν)

(1 – ν)

∫ t

c
exp

(
–ν

1 – ν
(t – υ)

)
g ′(υ) dυ,

where t ≥ 0, M(ν) is a normalization function that depends on ν and M(0) = M(1) = 1. If
g /∈ H1(c, d) and 0 < ν < 1, this derivative for g ∈ L1(–∞, d) is given by

CF Dνg(t) =
νM(ν)
(1 – ν)

∫ d

–∞

(
g(t) – g(υ)

)
exp

(
–ν

1 – ν
(t – υ)

)
dυ.

Also, the corresponding CF fractional integral is presented by

CF Iνg(t) =
2(1 – ν)

(2 – ν)M(ν)
g(t) +

2ν

(2 – ν)M(ν)

∫ t

0
g(υ) dυ.

The Laplace transform is one of the important tools in solving differential equations that
are defined below for two kinds of fractional derivative.

Definition 3 ([49]) The Laplace transform of Caputo fractional differential operator of
order ν is given by

L
[CDνg(t)

]
(s) = sνLg(t) –

m–1∑
i=0

sν–i–1g(i)(0), m – 1 < ν ≤ m ∈ N ,

which can also be obtained in the form

L
[CDνg(t)

]
=

smL[g(t)] – sm–1g(0) – sm–1g ′(0) – · · · – g(m–1)

sm–ν
.

Definition 4 ([41]) The Laplace transform of the Caputo–Fabrizio derivative is defined
by

L
[CF D(α)f (t)

]
(s) =

M(α)(2 – α)
2(s + α(1 – s))

(
sL

[
f (t)

]
– f (0)

)
.

Since M(α) = 2
2–α

for 0 < α < 1, we get

L
[CF D(α)f (t)

]
(s) =

sL[f (t)] – f (0)
(s + α(1 – s))

.

Definition 5 ([51]) Let (X, d) be a metric space, a map g : X → X is called a Picard op-
erator whenever there exists x∗ ∈ X such that Fix(g) = {x∗} and the sequence (gn(x0))n∈N

converges to x∗ for all x0 ∈ X.
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3 Mathematical model of the AH1N1/09 influenza transmission
With the global outbreak of influenza AH1N1 virus in 2009, which killed more than 14,000
people worldwide, various mathematical models have been developed to study and sim-
ulate the spread of the virus. One of these models that have good results in epidemic
diseases is the SEIR model, which has been modeled and studied by Gilberto González-
Parra and his colleagues with the integer-order derivative [9]. Considering the good results
of fractional derivative order in modeling real phenomena in recent years, in this work
we investigate the SEIR model of AH1N1/09 influenza virus transmission with Caputo–
Fabrizio fractional-order derivative.

In this model, the total population N(t) is divided into four categories: the susceptible
individuals S(t), the exposed individuals E(t), the infectious individuals I(t), and the indi-
viduals who have recovered R(t). The desired SEIR model is as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dS
dt = κ – βS(t)I(t) – mS(t),
dE
dt = βS(t)I(t) – (m + δ)E(t),
dI
dt = δE(t) – (m + μ)I(t),
dR
dt = μI(t) – mR(t),

where κ : the birth rate of people, m: the death rate of people, β : the transmission rate of
infection from I to S, δ: the transmission rate of people from E to I , μ: the recovery rate
of infected people, with initial conditions S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, R(0) =
R0 ≥ 0.

In this section, we moderate the system by substituting the time derivative by the
Caputo–Fabrizio fractional derivative. With this change, the right- and left-hand sides
will not have the same dimension. To solve this problem, we use an auxiliary parameter θ ,
having the dimension of sec., to change the fractional operator so that the sides have the
same dimension [52]. According to the explanation presented, the fractional model of the
H1N1/09 influenza transmission for t ≥ 0 and ν ∈ (0, 1) is given as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ην–1CF Dν
t S(t) = κ – βS(t)I(t) – mS(t),

ην–1CF Dν
t E(t) = βS(t)I(t) – (m + δ)E(t),

ην–1CF Dν
t I(t) = δE(t) – (m + μ)I(t),

ην–1CF Dν
t R(t) = μI(t) – mR(t),

(1)

where the initial conditions are S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0.

4 Equilibrium points
To determine the equilibrium points of fractional order system (1), we solve the following
equations:

CF DνS(t) = CF DνE(t) = CF DνI(t) = CF DνR(t) = 0.

By solving the algebraic equations, we obtain equilibrium points of system (1). The
disease-free equilibrium point is obtained as E0 = ( κ

m , 0, 0, 0), and if R0 > 1 then the sys-
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tem has the endemic equilibrium point E1 = (S∗, E∗, I∗, R∗) so that

S∗ =
δ(m + μ) + m2 + mμ

βδ
,

E∗ =
βδκ – δm2 – δmμ – m3 – m2μ

δβ(m + δ)
,

I∗ =
βδκ – δm2 – δmμ – m3 – m2μ

β(δm + δμ + m2 + mμ)
,

R∗ =
μ(βδκ – δm2 – δmμ – m3 – m2μ)

βm(δm + δμ + m2 + mμ)
.

Also, R0 is the basic reproduction number and is obtained using the next generation
method [53]. To find R0, we first consider the system as follows:

CDνΨ (t) = F
(
Ψ (t)

)
– V

(
Ψ (t)

)
,

where

F
(
Ψ (t)

)
= η1–ν

[
βS(t)I(t)

0

]

and

V
(
Ψ (t)

)
= η1–ν

[
(m + δ)E(t)

–δE(t) + (m + μ)I(t)

]
.

At E0, the Jacobian matrix for F and V is obtained as follows:

JF (E0) = η1–ν

[
0 β κ

m
0 0

]
, Jv(E0) = η1–ν

[
m + δ 0

–δ m + μ

]
.

FV –1 is the next generation matrix for system (1), and the basic reproduction number
is obtained from R0 = ρ(FV –1). So we obtain the reproduction as R0 = βδκ

m . This basic
reproduction number R0 is an epidemiologic metric used to describe the contagiousness
or transmissibility of infectious agents.

4.1 Stability of equilibrium point
To investigate the stability of an equilibrium point, first consider the fractional-order linear
system

CF Dν
t y(t) = Ty(t), (2)

where y(t) ∈ Rn, T ∈ Rn×n, 0 < ν < 1.

Definition 6 ([54]) For system (2) with Caputo–Fabrizio fractional derivative, the char-
acteristic equation is given by

det
(
s
(
I – (1 – ν)T

)
– νT

)
= 0. (3)
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Theorem 7 ([54]) If (I – (1 – ν)T) is invertible, then system (2) is asymptotically stable if
and only if the roots to the characteristic equation of system (3) have negative real parts.

The Jacobian matrix associated with system (2) is given as follows:

J = η1–ν

⎡
⎢⎢⎢⎣

–(βI + m) 0 –βS 0
βI –(m + δ) βS 0
0 δ –(m + μ) 0
0 0 μ –m

⎤
⎥⎥⎥⎦ .

Then the Jacobian matrix at E0 is

J(E0) = η1–ν

⎡
⎢⎢⎢⎣

–m 0 –β κ
m 0

0 –(m + δ) β κ
m 0

0 δ –(m + μ) 0
0 0 μ –m

⎤
⎥⎥⎥⎦ .

The characteristic equation of J(E0) is

[
s
(
1 + m(1 – ν)

)
+ mν

]2[s
(
1 + (1 – ν)(m + δ)

)
+ ν(m + δ)

]

× [
s
(
1 + (1 – ν)(m + μ)

)
+ ν(m + μ)

]
= 0.

By computing the roots of the above equation, we obtain

s1 = s2 =
–mν

1 + m(1 – ν)
,

s3 =
–ν(m + δ)

1 + (1 – ν)(m + δ)
,

s4 =
–ν(m + μ)

1 + (1 – ν)(m + μ)
.

Since all of the parameters are positive and 0 < ν < 1, then the roots of characteristic equa-
tion are negative. Thus by using Theorem 7, the disease-free equilibrium point E0 of model
(1) is asymptotically stable.

5 Existence of solution
The system of differential equations for the AH1N1 disease model (1) using the Caputo–
Fabrizio fractional-order derivative is considered as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CF Dν
t S(t) = η1–ν[κ – βS(t)I(t) – mS(t)],

CF Dν
t E(t) = η1–ν[βS(t)I(t) – (m + δ)E(t)],

CF Dν
t I(t) = η1–ν[δE(t) – (m + μ)I(t)],

CF Dν
t R(t) = η1–ν[μI(t) – mR(t)].

(4)
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Applying the Losada and Nieto integral operator [41] on both sides of equations (4), we

obtain

S(t) – u1(t) = η1–ν

[
2(1 – ν)

(2 – ν)M(ν)
{
κ – βS(t)I(t) – mS(t)

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
κ – βS(τ )I(τ ) – mS(τ )

]
dτ

]
,

E(t) – u2(t) = η1–ν

[
2(1 – ν)

(2 – ν)M(ν)
{
βS(t)I(t) – (m + δ)E(t)

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
βS(τ )I(τ ) – (m + δ)E(τ )

]
dτ

]
,

I(t) – u3(t) = η1–ν

[
2(1 – ν)

(2 – ν)M(ν)
{
δE(t) – (m + μ)I(t)

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
δE(τ ) – (m + μ)I(τ )

]
dτ

]
,

R(t) – u4(t) = η1–ν

[
2(1 – ν)

(2 – ν)M(ν)
{
μI(t) – mR(t)

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
μI(τ ) – mR(τ )

]
dτ

]
.

(5)

We present the differential equations (5) as follows:

S0(t) = u1(t), E0(t) = u2(t),

I0(t) = u3(t), R0(t) = u4(t),

Sn+1(t) = η1–ν

[
2(1 – ν)

(2 – ν)M(ν)
{
κ – βS(t)I(t) – mS(t)

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
κ – βS(τ )I(τ ) – mS(τ )

]
dτ

]
,

En+1(t)) = η1–ν

[
2(1 – ν)

(2 – ν)M(ν)
{
βS(t)I(t) – (m + δ)E(t)

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
βS(τ )I(τ ) – (m + δ)E(τ )

]
dτ

]
,

In+1(t) = η1–ν

[
2(1 – ν)

(2 – ν)M(ν)
{
δE(t) – (m + μ)I(t)

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
δE(τ ) – (m + μ)I(τ )

]
dτ

]
,

Rn+1(t) = η1–ν

[
2(1 – ν)

(2 – ν)M(ν)
{
μI(t) – mR(t)

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
μI(τ ) – mR(τ )

]
dτ

]
.
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By taking the limit from above Picard’s repetitive series when n tends to ∞, we obtain the
solution of the equation as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

limn→∞ Sn(t) = S(t),

limn→∞ En(t) = E(t),

limn→∞ In(t) = I(t),

limn→∞ Rn(t) = R(t).

(6)

5.1 Existence of solution by the Picard–Lindelof approach
Using the Picard–Lindelof approach and the Banach fixed point theorem, we prove the
existence of solution. We define the following operators:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h1(t, S) = η1–ν[κ – βS(t)I(t) – mS(t)],

h2(t, E) = η1–ν[βS(t)I(t) – (m + δ)E(t)],

h3(t, I) = η1–ν[δE(t) – (m + μ)I(t)],

h4(t, R) = η1–ν[μI(t) – mR(t)].

Let L1 = supC[a,c1] ‖h1(t, S)‖, L2 = supC[a,c2] ‖h2(t, E)‖, L3 = supC[a,c3] ‖h3(t, I)‖, and L4 =
supC[a,c4] ‖h4(t, R)‖, where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C[a, c1] = |t – a, t + a| × |S – c1, S + c1| = A × C1,

C[a, c2] = |t – a, t + a| × |E – c2, E + c2| = A × C2,

C[a, c3] = |t – a, t + a| × |I – c3, I + c3| = A × C3,

C[a, c4] = |t – a, t + a| × |R – c4, R + c4| = A × C4.

Now, we assume a uniform norm on C[a, ci], (i = 1, 2, 3, 4) as follows:

∥∥Y (t)
∥∥∞ = sup

t∈[t–a,t+a]

∣∣Y (t)
∣∣.

Consider the Picard operator

Θ : C(A, C1, C2, C3, C4) → C(A, C1, C2, C3, C4)

given as follows:

Θ
(
Y (t)

)
= Y0(t) +

2(1 – ν)
2 – ν)M(ν)

H
(
t, Y (t)

)
+

2ν

(2 – ν)M(ν)

∫ t

0
H

(
τ , Y (τ )

)
dτ

so that Y (t) = {S(t), E(t), I(t), R(t)}, Y0(t) = {S(0), E(0), I(0), R(0)} and

H
(
t, Y (t)

)
=

{
h1(t, S), h2(t, E), h3(t, I), h4(t, R)

}
.

We assume that the solutions of system (1) are bounded within a time period,

∥∥Y (t)
∥∥∞ ≤ max{c1, c2, c3, c4} = C.
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Let L = max{L1, L2, L3, L4} and there exist t0 so that t0 ≥ t, then

∥∥ΘY (t) – Y0(t)
∥∥

=
∥∥∥∥ 2(1 – ν)

(2 – ν)M(ν)
H

(
t, Y (t)

)
+

2ν

(2 – ν)M(ν)

∫ t

0
H

(
τ , Y (τ )

)
dτ

∥∥∥∥,

≤ 2(1 – ν)
(2 – ν)M(ν)

∥∥H(t, Y )
∥∥ +

2ν

(2 – ν)M(ν)

∫ t

0

∥∥H(τ , Y )
∥∥dτ ,

≤
(

2(1 – ν)
(2 – ν)M(ν)

+
2νt

(2 – ν)M(ν)

)
L

≤
(

2(1 – ν)
(2 – ν)M(ν)

+
2νt0

(2 – ν)M(ν)

)
L ≤ γ L ≤ C,

where we demand that

γ <
C
L

.

Also we evaluate the following equality:

‖ΘY1 – ΘY2‖ = sup
t∈A

∣∣Y1(t) – Y2(t)
∣∣.

By our Picard’s operator, we obtain

‖ΘY1 – ΘY2‖ =
∥∥∥∥ 2(1 – ν)

(2 – ν)M(ν)
{

H(t, Y1(t) – H(t, Y2(t)
}

+
2ν

(2 – ν)M(ν)

∫ t

0

{
H(τ , Y1(τ ) – H(τ , Y2(τ )

}
dτ

∥∥∥∥,

≤ 2(1 – ν)
(2 – ν)M(ν)

∥∥H(t, Y1(t) – H(t, Y2(t)
∥∥

+
2ν

(2 – ν)M(ν)

∫ t

0

∥∥H(τ , Y1(τ ) – H(τ , Y2(τ )
∥∥dτ ,

≤ 2(1 – ν)
(2 – ν)M(ν)

ρ
∥∥Y1(t) – Y2(t)

∥∥

+
2νρ

(2 – ν)M(ν)

∫ t

0

∥∥Y1(τ ) – Y2(τ )
∥∥dτ ,

≤
(

2(1 – ν)λ
(2 – ν)M(ν)

+
2νρt0

(2 – ν)M(ν)

)∥∥Y1(t) – Y2(t)
∥∥

≤ γρ
∥∥Y1(t) – Y2(t)

∥∥

with ρ < 1. Since H is a contraction, then γρ < 1, this proves that Θ is a contraction and
completes the proof.

6 Numerical results
Using the fractional Euler method for Caputo–Fabrizio derivative, we present the approxi-
mate solutions for a fractional-order SEIR model of the AH1N1/09 influenza transmission
model.
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6.1 Numerical method
We consider system (1) in a compact form as follows:

ην–1CDν
t w(t) = g

(
t, w(t)

)
, w(0) = w0, 0 ≤ t ≤ T < ∞, (7)

where w = (S, E, I, R) ∈ R4
+, w0 = (S0, E0, I0, R0) is the initial vector, and g(t) ∈ R is a contin-

uous vector function satisfying the Lipschitz condition

∥∥g
(
w1(t)

)
– g

(
w2(t)

)∥∥ ≤ k
∥∥w1(t) – w2(t)

∥∥, k > 0.

Applying a fractional integral operator corresponding to Caputo derivative to equation
(7), we obtain

w(t) = η1–ν
[
w0 + Iνg

(
w(t)

)]
, 0 ≤ t ≤ T < ∞.

Set h = T–0
N and tn = nh, where t ∈ [0, T] and N is a natural number and n = 0, 1, 2, . . . , N .

Let wn be the approximation of w(t) at t = tn. Using the fractional Euler method [55, 56],
we get

wn+1 = η1–ν

[
w0 + (1 – ν)g(tn+1, wn+1) + νh

n∑
j=0

g(tj, wj)

]
, n = 0, 1, 2, . . . , N – 1, (8)

the stability analysis of the obtained scheme has been proved in Theorem (3.1) in [55].
Thus, the solution of system (1) is written as follows:

Sn+1 = η1–ν

[
S0 + (1 – ν)f1(tn+1, wn+1) + νh

n∑
j=0

f1(tj, wj)

]
,

En+1 = η1–ν

[
E0 + (1 – ν)f2(tn+1, wn+1) + νh

n∑
j=0

f2(tj, wj)

]
,

In+1 = η1–ν

[
I0 + (1 – ν)f3(tn+1, wn+1) + νh

n∑
j=0

f3(tj, wj)

]
,

Rn+1 = η1–ν

[
R0 + (1 – ν)f4(tn+1, wn+1) + νh

n∑
j=0

f4(tj, wj)

]
,

where f1(t, w(t)) = κ – βS(t)I(t) – mS(t), f2(t, w(t)) = βS(t)I(t) – (m + δ)E(t), f3(t, w(t)) =
δE(t) – (m + μ)I(t), f4(t, w(t)) = μI(t) – mR(t).

6.2 Numerical simulation
To check the behavior of the model, we use the parameters obtained by Gonzalez-Parra
et al. [9]. The reported incubation period for the AH1N1/09 virus is 2 – –10 days. So the
assumed mean time in E(t) is δ = 1

5 days–1. The reported infectious period is 4–7 days, so
it has been assumed μ = 1

7 . Since the used time period is short, then the population size is
assumed to be constant, and thus κ = m = 0.015

52 days–1. Also, by fitting the data technique
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Figure 1 Dynamics of S(t), E(t), I(t), R(t) for ν = 0.98

Figure 2 Dynamics of S(t) and E(t) for different values of ν = 1, 0.95, 0.9, 0.85, 0.8

and confirmed cases of pandemic AH1N1/09 influenza for Bogota D.C, it is obtained β =
3.58. Also, the initial conditions are S(0) = 1 – 0.001, E(0) = 0, I(0) = 0.001, R(0) = 0.

In this simulation, the reproduction number is R0 = 0.716 and the endemic equilibrium
point is

E1 =
(
S∗, E∗, I∗, R∗) = (0.04004248, 0.00138256, 0.00193168, 0.95664328).

In Fig. 1, the answers of the fractional-order model for AH1N1 influenza with ν = 0.98 are
plotted. In this simulation, the value of R0 is equal to 0.716 which is smaller than 1 and,
as you can see, the spread of the disease is controlled and the number of infected people
is reduced to zero. We also see that each of the functions tends to its equilibrium point
and the system in equilibrium points becomes stable. In Figs. 2 and 3, we have plotted
the results of model (1) for different fractional orders ν = 1, 0.95, 0.9, 0.85, 0.8. Given that
disease propagation models are usually used in predicting disease progression and making
controlling decisions, it is important to determine the exact order of derivation of the
model, as shown in Fig. 3, while in model 1 after the disease is controlled for 60 days. But
in the model, with the order of 0.9 or 0.8 the disease still persists and it takes several days to
be controlled. The results of the AH1N1 influenza transmission model (1) are plotted for
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Figure 3 Dynamics of S(t) and E(t) for different values of ν = 1, 0.95, 0.9, 0.85, 0.8

Figure 4 Plots of S(t) and R(t) for integer order ν = 1 and fractional order ν = 0.94

fractional-order Caputo–Fabrizio derivatives ν = 0.94 and integer-order derivative ν = 1
in Figs. 4–5. Comparison of the graphs shows that the resulting values are different, but
the behavior of the functions derived from both types of derivatives is the same.

7 Conclusion
In this work, the SEIR epidemic model for the transmission of AH1N1 influenza using
the Caputo–Fabrizio fractional-order derivative has been presented. The reproduction
number of the system and equilibrium points have been calculated and the stability of
a disease-free equilibrium point has been investigated. The existence of solution for the
model by using fixed point theory has been proved. Using the fractional Euler method,
an approximate answer to the model has been calculated. Also, with a numerical simu-
lation, the values of reproduction number and equilibrium points are calculated, and the
results show that the system is stable at equilibrium points and each of the obtained func-
tions converges to its equilibrium point. According to the obtained reproduction number
R0 = 0.716 < 1, the epidemic has been controlled and the number of infected people has
reduced to zero. To investigate the effect of derivative order on the model results, the func-
tions obtained from the model are plotted for different degrees of fraction, and the results
show that the general behavior of the functions is the same in small changes of derivative
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Figure 5 Plots of E(t) and I(t) for integer order ν = 1 and fractional order ν = 0.94

order but the numerical results are different. In future studies, the effect of each of the
coefficients in Model 1 on the disease transmission process can be investigated. Also, re-
search can be done to optimally control the disease spread model and the effect of drugs
and vaccination on the current model.
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