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1 Introduction
In this paper, we study the coupled systems of the higher-order Hilfer fractional differential
equations

⎧
⎨

⎩

Dα,β
a+ u(t) = �(t, v, D1–(n–α)(1–β),β

a+ v, . . . , Dn–(n–α)(1–β)–1,β
a+ v), a < t < b,

Dα,β
a+ v(t) = �(t, u, D1–(n–α)(1–β),β

a+ u, . . . , Dn–(n–α)(1–β)–1,β
a+ u), a < t < b,

(1.1)

subject to the boundary conditions
⎧
⎨

⎩

Dn–(n–α)(1–β)–i,β
a+ u(a) = 0, Dn–(n–α)(1–β)–1,β

a+ u(a) = Dn–(n–α)(1–β)–1,β
a+ u(b),

Dn–(n–α)(1–β)–i,β
a+ v(a) = 0, Dn–(n–α)(1–β)–1,β

a+ v(a) = Dn–(n–α)(1–β)–1,β
a+ v(b),

(1.2)

for i = 2, 3, . . . , n.
The general assumptions of the coupled system (1.1)–(1.2) are as follows:
(A1) Dα,β

a+ stands for the Hilfer fractional derivative of order n – 1 < α ≤ n, n ∈ N2, and
type 0 ≤ β ≤ 1.

(A2) �,� : [a, b] ×R
n →R are continuous functions governing the nonlinearities.

(A3) Ij
a+ g(t) = 0, j = 1, 2, . . . , n, and I1–β(n–α)

a+ g(t) = 0, g = u, v, where Iμ

a+ stands for the
Riemann–Liouville fractional integral of order μ.
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Since the second half of the seventeenth century by now, almost over 370 years, appli-
cability potential of the differential/difference equations and their mutual inverses, in-
tegral/finite sum equations in description of the natural phenomena besides theoretical
sciences tied up with mathematics have been proved. Meanwhile, the fractional differen-
tial calculus that includes arbitrary-order differential/difference and integral/finite sum
operators, as a result of more rigorous frame to describe biological, chemical, and phys-
ical models of natural phenomena, possesses an elegant position in comparison with the
integer-order differential calculus. Reasonability of our claim can be verified in the mono-
graphs [4, 6, 7, 18, 26, 27, 33–38].

Restricting ourselves to the investigation of the solvability of fractional-order differen-
tial equations opens an independent wide research world in front of us. As some of the
generally known techniques to solve a given fractional differential equation, we may men-
tion the fixed point theory (via Green functions, controlling the growth of nonlinearities
or measures of noncompactness), the operational calculus, the approximation theory, and
the coincidence degree theory. Here we suggest (absolutely not comprehensive) a collec-
tion of the pioneering research papers [1–3, 5, 8–14, 17, 21, 23–25, 32, 40, 42–47], and
[19, 22, 28–31], respectively, and cited bibliography for more consultation of the inter-
ested followers.

Among this variety, we are interested in the investigation of solvability of higher-order
generalized fractional differential systems using coincidence degree theory due to Mawhin
[33]. More precisely, we are going to study fractional coupled systems at resonance. To
specify the concept of resonance, let us consider the differential system

Lu = F, BCu = 0, (1.3)

in which L, F, and BC denote a differential operator, nonlinearity, and boundary condi-
tions of the system, respectively. We say that the differential system (1.3) is of resonance
category if in the corresponding homogenous differential system

Lu = 0, BCu = 0, (1.4)

the differential operatorL is invertible with respect to the boundary conditionsBC, that is,
there is at least one nontrivial solution for the homogenous differential system (1.4). Oth-
erwise, we are concerned with the nonresonance case. For some of the most motivating
research works on the fractional-order resonance phenomenon, we refer to [22, 28–31].

The authors in [16] considered the coupled resonant system of the higher-order Caputo-
type fractional �-difference boundary value problems

⎧
⎪⎪⎨

⎪⎪⎩

�α∗y(t) = f (t + N – α – 2, z,�z,�2z, . . . ,�N–1z),

t = a, a + 1, . . . , b,

�α∗z(t) = g(t + N – α – 2, y,�y,�2y, . . . ,�N–1y),

(1.5)

⎧
⎨

⎩

�N–iy(a + N – α – 2) = 0, �N–1y(a + N – α – 2) = �N–1y(b + N – α – 1),

�N–iz(a + N – α – 2) = 0, �N–1z(a + N – α – 2) = �N–1z(b + N – α – 1),
(1.6)



Gholami Advances in Difference Equations        (2020) 2020:482 Page 3 of 25

where i = 2, 3, . . . , N , N – 1 < α ≤ N , N ∈ N2, and a ∈ Z1, b ∈ Z2 with a < b, �α∗ denotes
the Caputo-type fractional �-difference of order α > 0, and f , g : Nb+N–α–1

a+N–α–2 ×R
N → R are

continuous functions. Using the coincidence degree theory, the authors obtained some
existence and uniqueness criteria for the discrete fractional coupled system (1.5)–(1.6).

The authors in [19] studied the following higher-order Caputo fractional resonant sys-
tem:

⎧
⎨

⎩

Dα
0+ u(t) = f (t, v, v′, v′′, . . . , v(n–1)), 0 < t < 1,

Dα
0+ v(t) = g(t, u, u′, u′′, . . . , u(n–1)), 0 < t < 1,

(1.7)

subject to the boundary conditions

⎧
⎨

⎩

u(a) = u′(0) = u′′(0) = · · · = u(n–2)(0) = 0, u(n–1)(0) = u(n–1)(1),

v(a) = v′(0) = v′′(0) = · · · = v(n–2)(0) = 0, v(n–1)(0) = v(n–1)(1).
(1.8)

Thanks to the coincidence degree theory, they obtained existence criteria for at least one
solution of this fractional-order coupled system.

Also, the authors in [48] concentrated on the higher-order Riemann–Liouville fractional
resonant boundary value problem

⎧
⎨

⎩

Dα
0+ u(t) = f (t, u(t), Dα–n+1

0+ u(t), Dα–n+2
0+ u(t), . . . , Dα–1

0+ u(t)) + e(t), 0 < t < 1,

In–α
0+ u(0) = Dα–n+1

0+ u(0) = · · · = Dα–2
0+ u(0) = 0, u(1) = σu(η),

(1.9)

where n – 1 < α ≤ n, n ∈ N2, σ ∈ (0, +∞), and η ∈ (0, 1) with σηα–1 = 1, e ∈ L[0, 1], and
f : [0, 1] × R

n → R is a continuous function. Similarly to the discrete fractional coupled
system (1.5)–(1.6) and the Caputo fractional resonant system (1.7)–(1.8), some existence
and uniqueness criteria were obtained via coincidence degree theory. The aforementioned
research papers are the main motivation that led us to study the Hilfer fractional coupled
system (1.1)–(1.2).

The paper is organized as follows. Some standard definitions and technical lemmas re-
lated to the fractional calculus operators, a quick overview on the coincidence degree the-
ory, and demonstration why the Hilfer fractional differential system (1.1)–(1.2) is called a
resonant differential system are given in the Sect. 2. Section 3, the main body of the investi-
gation, includes some existence and uniqueness criteria for the Hilfer fractional resonant
system (1.1)–(1.2). In this section, combining the coincidence degree theory with some
controls on the nonlinearities � and � , we prove the existence of at least one solution
of the fractional coupled system (1.1)–(1.2), and imposing another conditions on these
nonlinearities, we present a uniqueness criterion. In Sect. 4, we present an illustrative ex-
ample to justify the obtained theoretical results. The last section of this paper deals with
the novelty and some advantages of studying the Hilfer fractional derivatives in differen-
tial equations. Furthermore, we suggest in this section some research lines for the future
work on the topic.
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2 Technical requirements
This section begins with a quick overview on those parts of the fractional calculus that
will be needed in this paper. So, we start with the definitions of the Riemann–Liouville
fractional integrals and derivatives.

Definition 2.1 ([26]) The left- and right-sided Riemann–Liouville fractional integrals of
order α ≥ 0 for a function f ∈ L1[a, b] are given by

Iα
a+(b–)f (t) =

⎧
⎪⎪⎨

⎪⎪⎩

Iα
a+ f (t) = 1

	(α)
∫ t

a (t – s)α–1f (s) ds, α > 0,

Iα
b–

f (t) = 1
	(α)

∫ b
t (s – t)α–1f (s) ds, α > 0,

f (t), α = 0.

(2.1)

Definition 2.2 ([26]) The left- and right-sided Riemann–Liouville fractional derivatives
of order α ≥ 0 for a function f ∈ ACn(a, b) are defined by

Dα
a+(b–)f (t)

=

⎧
⎪⎪⎨

⎪⎪⎩

Dα
a+ f (t) := ( dn

dtn )In–α
a+ f (t) = 1

	(n–α) ( dn

dtn )
∫ t

a (t – s)n–α–1f (s) ds, α > 0,

Dα
b–

f (t) := ( dn

dtn )In–α
b–

f (t) = (–1)n

	(n–α) ( dn

dtn )
∫ b

t (s – t)n–α–1f (s) ds, α > 0,

f (t), α = 0,

(2.2)

where n = [α] + 1.

Interchanging the affection position of the nth-order derivative dn

dtn as follows gives us
the left- and right-sided Caputo fractional derivatives

cDα
a+(b–)f (t)

=

⎧
⎪⎪⎨

⎪⎪⎩

cDα
a+ f (t) := In–α

a+ ( dn

dtn f )(t) = 1
	(n–α)

∫ t
a (t – s)n–α–1( dn

dtn f )(s) ds, α > 0,
cDα

b–
f (t) := In–α

b–
( dn

dtn f )(t) = (–1)n

	(n–α)
∫ b

t (s – t)n–α–1( dn

dtn f )(s) ds, α > 0,

f (t), α = 0.

(2.3)

The power rules of the Riemann–Liouville fractional operators are given in the following
lemma.

Lemma 2.3 ([26]) Let n – 1 < α ≤ n, n ∈N. Then for each β > –1, we have

(
Iα

a+ (t – a)β
)
(x) =

	(β + 1)
	(β + α + 1)

(x – a)β+α , (2.4)

(
Iα

b– (b – t)β
)
(x) =

	(β + 1)
	(β + α + 1)

(b – x)β+α , (2.5)

(
Dα

a+ (t – a)β
)
(x) =

	(β + 1)
	(β – α + 1)

(x – a)β–α , (2.6)

(
Dα

b– (b – t)β
)
(x) =

(–1)n	(β + 1)
	(β – α + 1)

(b – x)β–α . (2.7)

Now we are ready to define the Hilfer fractional derivatives and their basic properties.
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Definition 2.4 ([18, 41]) Let n – 1 < α ≤ n, n ∈N, and 0 ≤ β ≤ 1. Then the left- and right-
sided Hilfer fractional derivatives of order α and type β are defined as follows:

Dα,β
a+(b–)f (t) =

⎧
⎨

⎩

Dα,β
a+ f (t) := (Iβ(n–α)

a+ Dα+β(n–α)
a+ f )(t), t > a,

Dα,β
b–

f (t) := (Iβ(n–α)
b–

Dα+β(n–α)
b–

f )(t), t < b.
(2.8)

Note for β = 0, the left- and right-sided Hilfer fractional derivatives (2.8) reduce to the
left- and right-sided Riemann–Liouville fractional derivatives (2.2), whereas for β = 1, they
reduce to the left- and right-sided Caputo fractional derivatives (2.3).

Next, we present the inversion rules of the Hilfer fractional derivatives.

Lemma 2.5 ([41]) Let n – 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1, and let the assumption (A3) hold. If
f ∈ L(a, b) and I (n–α)(1–β)

a+ f ∈ ACn–1[a, b], then

(
Dα,β

a+ Iα
a+ f

)
(t) = f (t), (2.9)

(
Iα

a+Dα,β
a+ f

)
(t) = f (t) –

n–1∑

k=0

(t – a)k–(n–α)(1–β)

	(k – (n – α)(1 – β) + 1)
· ck , (2.10)

where

ck := lim
t→a+

dk

dxk

(
I (n–α)(1–β)

a+ f
)
(t).

Based on the power rules (2.4)–(2.7) in Lemma 2.3, we give the following power rules
for the Hilfer fractional derivatives without proof.

Lemma 2.6 Let n – 1 < α ≤ n, n ∈N, and 0 ≤ β ≤ 1. Then, for each γ > –1,

(
Dα,β

a+ (t – a)γ
)
(x) =

	(γ + 1)
	(γ – α + 1)

(x – a)γ –α , (2.11)

(
Dα,β

b–
(b – t)γ

)
(x) =

(–1)n	(γ + 1)
	(γ – α + 1)

(b – x)γ –α . (2.12)

Remark 2.7 Let n – 1 < α ≤ n, n ∈N, 0 ≤ β ≤ 1, k = 0, 1, . . . , n – 1, and i = 2, 3, . . . , n. Then,
we get

(
Dn–(n–α)(1–β)–i,β

a+ (t – a)k–(n–α)(1–β))(x) =
	(k – (n – α)(1 – β) + 1)

	(k + i – n + 1)
(x – a)k+i–n, (2.13)

(
In–α

a+ (t – a)k–(n–α)(1–β))(x) =
	(k – (n – α)(1 – β) + 1)

	(k + β(n – α) + 1)
(x – a)k+β(n–α). (2.14)

Note that these particular power rules will play crucial roles in what follows.

Here we begin the second part of this section, which includes a quick overview on the
coincidence degree theory. For detailed discussions, we refer to Chapters IV and V of
[15, 22], and [29].
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Definition 2.8 Let X and Y be real normed spaces. A linear mapping L : domL⊂ X → Y
is called a Fredholm mapping if the following conditions hold:

(i) kerL has a finite dimension,
(ii) ImL is closed and has a finite codimension.

Let L be a Fredholm mapping. Then its index is given by

IndL = dim kerL – codim ImL.

Let L is a Fredholm mapping with index zero and suppose that there exist continuous
projectors P : X → X and Q : Y → Y such that

Im P = kerL, ker Q = ImL, X = kerL⊕ ker P, Y = ImL⊕ Im Q.

It follows that the mapping

L|domL∩ker P : domL∩ ker P → ImL

is invertible. We denote this inverse by KP : ImL→ domL∩ker P. The generalized inverse
of L denoted by KP,Q : Z → domL∩ ker P is defined by KP,Q = KP(I – Q).

If L is a Fredholm mapping of index zero, then for every isomorphism J : Im Q → kerL,
the mapping JQ + KP,Q : Z → domL is an isomorphism, and for every u ∈ domL,

(JQ + KP,Q)–1u =
(
L + J–1P

)
u.

Definition 2.9 Let L : domL ⊂ X → Y be a Fredholm mapping, and let E be a metric
space. A mapping N : E → Y is called L-compact on E if QN : E → Y is continuous and
KP,QN : E → X is compact on E. In addition, we say that N is L-completely continuous if
it is L-compact on every bounded subset E ⊂ X.

Theorem 2.10 Let � ⊂ X be open and bounded, let L be a Fredholm mapping of index
zero, and let N be L-compact on �. Assume that the following conditions are satisfied:

(i) Lu �= λNu for every (u,λ) ∈ ((domL\kerL) ∩ ∂�) × (0, 1);
(ii) Nu /∈ ImL for every u ∈ kerL∩ ∂�;

(iii) deg(JQN |kerL∩∂�,� ∩ kerL, 0) �= 0 with a continuous projector Q : Y → Y such that
ker Q = ImL and J : Im Q → kerL is an isomorphism.

Then the equation Lu = Nu has at least one solution in domL∩ �.

At the end of this part, we reveal why the Hilfer fractional coupled system (1.1)–(1.2) is
of resonance category. Let us consider the homogeneous Hilfer fractional system

⎧
⎨

⎩

Dα,β
a+ u(t) = 0, a < t < b,

Dα,β
a+ v(t) = 0, a < t < b,

(2.15)

subject to the boundary conditions
⎧
⎨

⎩

Dn–(n–α)(1–β)–i,β
a+ u(a) = 0, Dn–(n–α)(1–β)–1,β

a+ u(a) = Dn–(n–α)(1–β)–1,β
a+ u(b),

Dn–(n–α)(1–β)–i,β
a+ v(a) = 0, Dn–(n–α)(1–β)–1,β

a+ v(a) = Dn–(n–α)(1–β)–1,β
a+ v(b),

(2.16)
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where i = 2, 3, . . . , n. Having identity (2.10) in hand and imposing the boundary conditions

Dn–(n–α)(1–β)–i,β
a+ u(a) = 0, i = 2, 3, . . . , n,

it follows that ck = 0, k = 0, 1, . . . , n – 3, whereas the coefficients cn–2 and cn–1 are arbitrary.
Now imposing the boundary condition

Dn–(n–α)(1–β)–1,β
a+ u(a) = Dn–(n–α)(1–β)–1,β

a+ u(b)

yields cn–2 = 0. So, we can conclude that the homogeneous Hilfer fractional system (2.15)–
(2.16) has a nontrivial solution of the form

(
u(t), v(t)

)
=

(
cn–1(t – a)n–(n–α)(1–β)–1, cn–1(t – a)n–(n–α)(1–β)–1).

Therefore our situation lies in the resonance category.
We finalize this section by presenting appropriate function spaces and their relevant

norms. We first define the following Banach spaces:

B :=
{

u|u, Dn–(n–α)(1–β)–i,β
a+ u ∈ C[a, b], i = 1, 2, . . . , n

}
,

‖u‖B := max
{‖u‖,

∥
∥Dn–(n–α)(1–β)–i,β

a+ u
∥
∥, i = 1, 2, . . . , n

}
,

E :=
{

y|y ∈ C[a, b]
}

, ‖y‖ := max
t∈[a,b]

∣
∣y(t)

∣
∣.

Accordingly, the appropriate Banach spaces in this paper are given as follows:

X := B ×B,
∥
∥(u, v)

∥
∥

X := max
{‖u‖B ,‖v‖B

}
,

Y := E × E ,
∥
∥(y, z)

∥
∥

Y := max
{‖y‖,‖z‖}.

(2.17)

3 Main results
In this section, we obtain some existence and uniqueness criteria for the Hilfer fractional
resonant system (1.1)–(1.2). To this aim, as explained in the previous section, we are going
to apply the coincidence degree theory. So, based on Theorem 2.10, we first transform the
Hilfer system (1.1)–(1.2) into an adequate abstract equation such asL(u, v) = N (u, v). Here
we construct required elements of this transformation:

L(u, v) := (L1u,L2v),

⎧
⎨

⎩

L1u := Dα,β
a+ u,

L2v := Dα,β
a+ v,

(3.1)

domL := (domL1, domL2), (3.2)

where

domL1 :=
{

u ∈ B|Dn–(n–α)(1–β)–i,β
a+ u(a) = 0,

Dn–(n–α)(1–β)–1,β
a+ u(a) = Dn–(n–α)(1–β)–1,β

a+ u(b), i ∈N
n
2
}

,

domL2 :=
{

v ∈ B|Dn–(n–α)(1–β)–i,β
a+ v(a) = 0,

Dn–(n–α)(1–β)–1,β
a+ v(a) = Dn–(n–α)(1–β)–1,β

a+ v(b), i ∈N
n
2
}

.

(3.3)
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Here we present the structure of the abstract nonlinearity N :

N (u, v) := (N1v,N2u),
⎧
⎨

⎩

N1v := �(t, v, D1–(n–α)(1–β),β
a+ v, D2–(n–α)(1–β),β

a+ v, . . . , Dn–(n–α)(1–β)–1,β
a+ v),

N2u := �(t, u, D1–(n–α)(1–β),β
a+ u, D2–(n–α)(1–β),β

a+ u, . . . , Dn–(n–α)(1–β)–1,β
a+ u).

(3.4)

Considering the setting (3.1)–(3.3), we come to the conclusion that the Hilfer resonant
system (1.1)–(1.2) is equivalent to the abstract problem L(u, v) = N (u, v). We further have
to implement the basis of the coincidence degree theory, step by step as follows.

In the first step, we prove that the operatorL(u, v) defined by (3.1) is a Fredholm operator
of index 0.

Lemma 3.1 The operator L : domL∩ X → Y is a Fredholm operator of index 0.

Proof Thanks to identity (2.10) in Lemma 2.6, focussing on the operator L defined by (3.1)
with domL defined by (3.3), we get that

kerL =
(
cn–1(t – a)n–(n–α)(1–β)–1, dn–1(t – a)n–(n–α)(1–β)–1),

which yields kerL ∼= R
2. Now let (x, y) ∈ ImL. So there is a pair (u, v) ∈ domL such that

L(u, v) = (x, y), that is,

u(t) = Iα
a+ x(t) + c0(t – a)–(n–α)(1–β) + c1(t – a)1–(n–α)(1–β)

+ · · · + cn–1(t – a)n–(n–α)(1–β)–1,

v(t) = Iα
a+ y(t) + d0(t – a)–(n–α)(1–β) + d1(t – a)1–(n–α)(1–β)

+ · · · + dn–1(t – a)n–(n–α)(1–β)–1.

According to the domL, we conclude that ci = di = 0, i = 0, 1, . . . , n – 2. Thus we arrive at

u(t) = Iα
a+ x(t) + cn–1(t – a)n–(n–α)(1–β)–1,

v(t) = Iα
a+ y(t) + dn–1(t – a)n–(n–α)(1–β)–1.

Equivalently, we have

Dn–(n–α)(1–β)–1,β
a+ u(t) = I1–β(n–α)

a+ x(t) + cn–1	
(
n – (n – α)(1 – β)

)
,

Dn–(n–α)(1–β)–1,β
a+ v(t) = I1–β(n–α)

a+ y(t) + dn–1	
(
n – (n – α)(1 – β)

)
.

(3.5)

Next, implementing the boundary conditions

Dn–(n–α)(1–β)–1,β
a+ u(a) = Dn–(n–α)(1–β)–1,β

a+ u(b),

Dn–(n–α)(1–β)–1,β
a+ v(a) = Dn–(n–α)(1–β)–1,β

a+ v(b)

into equalities (3.5) gives us the structure of the ImL as follows:

∫ b

a
(b – s)–β(n–α)x(s) ds = 0,

∫ b

a
(b – s)–β(n–α)y(s) ds = 0. (3.6)
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In other words,

ImL :=
{

(x, y)
∣
∣
∣

∫ b

a
(b – s)–β(n–α)x(s) ds = 0,

∫ b

a
(b – s)–β(n–α)y(s) ds = 0

}

.

To get the desired outcome, we define the operator Q : Y → Y with Q(x, y) = (Q1x, Q2y),
where

Q1 : E → E , Q1x(t) :=
1 – β(n – α)

(b – a)1–β(n–α)

∫ b

a
(b – s)–β(n–α)x(s) ds, (3.7)

Q2 : E → E , Q2y(t) :=
1 – β(n – α)

(b – a)1–β(n–α)

∫ b

a
(b – s)–β(n–α)y(s) ds. (3.8)

It is easy to check that ImL = ker Q and Q2
i = Qi, i = 1, 2. So, we deduce that Q2(u, v) =

Q(u, v). This is the expected opportunity to complete the proof. Since (x, y) = (x, y) –
Q(x, y)+Q(x, y), we have Y = ImL+Im Q. Furthermore ImL∩Im Q = {(0, 0)} leads us to the
fact that Y = ImL⊕ Im Q. Next, we define the operator P : X → X with P(u, v) = (P1u, P2v),
where

P1 : B → B, P1u(t) :=
Dn–(n–α)(1–β)–1,β

a+ u(a)
	(n – (n – α)(1 – β))

(t – a)n–(n–α)(1–β)–1, (3.9)

P2 : B → B, P2v(t) :=
Dn–(n–α)(1–β)–1,β

a+ v(a)
	(n – (n – α)(1 – β))

(t – a)n–(n–α)(1–β)–1. (3.10)

The definitions of the operators Pi, i = 1, 2, immediately give us P2
i = Pi, i = 1, 2, that is,

P2(u, v) = P(u, v).
Definitions (3.9) and (3.10) imply that

ker P :=
{

(u, v) ∈ X|Dn–(n–α)(1–β)–1,β
a+ u(a) = 0, Dn–(n–α)(1–β)–1,β

a+ v(a) = 0
}

. (3.11)

Since (u, v) = (u, v) – P(u, v) + P(u, v), we can derive that X := ker P + kerL. On the other
hand, since ker P ∩ kerL = {(0, 0)}, we have X := ker P ⊕ kerL. So, according to Defini-
tion 2.8, and the fact that ker Q = ImL, we conclude that

dim kerL := codim ImL = 2.

Now the proof is complete. �

In this position, we begin the second step proving the L-compactness of the operator N
defined by (3.4). Let us define the operator KP : ImL→ domL∩ ker P by

KP(x, y) :=
(
Iα

a+ x, Iα
a+ y

)
. (3.12)

So we directly get that for each (x, y) ∈ ImL,

LKP(x, y) :=
(
Dα,β

a+ Iα
a+ x, Dα,β

a+ Iα
a+ y

)
= (x, y). (3.13)
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Next, let (u, v) ∈ domL∩ ker P. Therefore, in the identities

u(t) = Iα
a+ Dα,β

a+ u(t) + c0(t – a)–(n–α)(1–β) + c1(t – a)1–(n–α)(1–β)

+ · · · + cn–1(t – a)n–(n–α)(1–β)–1,

v(t) = Iα
a+ Dα,β

a+ v(t) + d0(t – a)–(n–α)(1–β) + d1(t – a)1–(n–α)(1–β)

+ · · · + dn–1(t – a)n–(n–α)(1–β)–1,

all the coefficients ci and di vanish for i = 0, 1, . . . , n – 1, which yields

KPL(u, v) :=
(
Iα

a+ Dα,β
a+ u, Iα

a+ Dα,β
a+ v

)
= (u, v). (3.14)

Finally, relying on (3.13) and (3.14), we conclude that KP = (LdomL∩ker P)–1.
Here we prove the L-compactness of the operator N in the following lemma.

Lemma 3.2 Let � be an open bounded subset of X such that domL ∩ � �= ∅. Then the
operator N defined by (3.4) is L-compact.

Proof General assumption (A2) emphasizes that the nonlinearities � and � both are con-
tinuous, that is, the operator N is continuous. So, we immediately come to the conclusion
that both operators QN (�) and KP(I – Q)N (�) are bounded. To prove the L-compactness
of the operator N , according to the Arzelà–Ascoli theorem, it just remains to prove the
equicontinuity of the operator KP,Q := KP(I – Q)N (�). Recalling the continuity of � and �

once again, we get that there exist positive constants Mi, i = 1, 2, such that for all t ∈ [a, b]
and (u, v) ∈ �, we have |(I – Q)Nu(t)| ≤ M1 and |(I – Q)N v(t)| ≤ M2. Therefore, for each
a ≤ t1 < t2 ≤ b, (u, v) ∈ �, and i = 1, 2, . . . , n – 1, we have

∣
∣KP,Qu(t2) – KP,Qu(t1)

∣
∣

:=
∣
∣Iα

a+ u(t2) – Iα
a+ u(t2)

∣
∣

=
1

	(α)

∣
∣
∣
∣

∫ t2

a
(t2 – s)α–1(I – Q)Nu(s) ds –

∫ t1

a
(t1 – s)α–1(I – Q)Nu(s) ds

∣
∣
∣
∣

≤ M1

	(α)

∫ t1

a

{
(t2 – s)α–1 – (t1 – s)α–1}ds +

∫ t2

t1

(t2 – s)α–1 ds

=
M1

	(α + 1)
{

(t2 – a)α – (t1 – a)α
}

and, similarly,

∣
∣KP,Qv(t2) – KP,Qv(t1)

∣
∣ ≤ M2

	(α + 1)
{

(t2 – a)α – (t1 – a)α
}

.

In addition,

∣
∣Dn–(n–α)(1–β)–i,β

a+ KP,Qu(t2) – Dn–(n–α)(1–β)–i,β
a+ KP,Qu(t2)

∣
∣

:=
∣
∣Dn–(n–α)(1–β)–i,β

a+ Iα
a+ (I – Q)Nu(t2) – Dn–(n–α)(1–β)–i,β

a+ Iα
a+ (I – Q)Nu(t1)

∣
∣

=
∣
∣Ii–β(n–α)

a+ (I – Q)Nu(t2) – Ii–β(n–α)
a+ (I – Q)Nu(t1)

∣
∣
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=
1

	(i – β(n – α))

×
∣
∣
∣
∣

∫ t2

a
(t2 – s)i–β(n–α)–1(I – Q)Nu(s) ds –

∫ t1

a
(t1 – s)i–β(n–α)–1(I – Q)Nu(s) ds

∣
∣
∣
∣

≤ M1

	(i – β(n – α))

×
∫ t1

a

{
(t2 – s)i–β(n–α)–1 – (t1 – s)i–β(n–α)–1}ds +

∫ t2

t1

(t2 – s)i–β(n–α)–1 ds

=
M1

	(i – β(n – α) + 1)
{

(t2 – a)i–β(n–α) – (t1 – a)i–β(n–α)}

and, similarly,

∣
∣Dn–(n–α)(1–β)–i,β

a+ KP,Qv(t2) – Dn–(n–α)(1–β)–i,β
a+ KP,Qv(t2)

∣
∣

≤ M2

	(i – β(n – α) + 1)
{

(t2 – a)i–β(n–α) – (t1 – a)i–β(n–α)}.

At the and, because of the uniform continuity of the functions ρ(t) := (t – a)α and
ρi(t) := (t – a)i–β(n–α), i = 1, 2, . . . , n – 1 on [a, b], we can derive that KP,Q(�) ⊂ C[a, b] and
Dn–(n–α)(1–β)–i,β

a+ KP,Q(�) ⊂ C[a, b] are bounded and equicontinuous. This guarantees that
the operator KP,Q := KP(I – Q)N is compact on �, which yields the L-compactness of the
operator N . �

Remark 3.3 Let (u, v) ∈ X. So,

∥
∥P(u, v)

∥
∥

X =
∥
∥(P1u, P2v)

∥
∥

X := max
{‖P1u‖B ,‖P2v‖B

}
.

Equivalently, for each i = 1, 2, . . . , n – 1, we have

∥
∥P(u, v)

∥
∥

X = max
{
max

{‖P1u‖B ,
∥
∥Dn–(n–α)(1–β)–i,β

a+ P1u
∥
∥
B
}

,

max
{‖P2v‖B,

∥
∥Dn–(n–α)(1–β)–i,β

a+ P2v
∥
∥
B
}}

.

Now, using the power rule (2.11) and definitions (3.9) and (3.10), we conclude that

∥
∥P(u, v)

∥
∥

X ≤ �1 max
{∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣,

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣
}

, (3.15)

where

�1 :=
max{(b – a)n–(n–α)(1–β)–1, 	(n–(n–α)(1–β))

(i–1)! (b – a)i, i = 1, 2, . . . , n – 1}
	(n – (n – α)(1 – β))

.

Similarly, we have

∥
∥KP(u, v)

∥
∥

X ≤ �2 max
{‖u‖B ,‖v‖B

}
, (3.16)

where

�2 := max

{
(b – a)α

	(α + 1)
,

(b – a)i–β(n–α)

	(i – β(n – α) + 1)
, i = 1, 2, . . . , n – 1

}

.
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Turning to Theorem 2.10, we have just been proved that the operators L defined by (3.1)
and N defined by (3.4) are a Fredholm operator of index 0 and an L-compact operator,
respectively. In what follows, we are going to identify conditions (i)–(iii) in this theorem.
To this aim, we first consider the following hypotheses:

(H1) There exist positive real constants di, i = 1, 2, bk , ck , θk , and λk with θk ,λk ∈ [0, 1] for
k = 1, 2, . . . , n such that for each (x1, x2, . . . , xn) ∈R

n,

∣
∣�(t, x1, x2, . . . , xn)

∣
∣ ≤ d1 +

n∑

k=1

bk|xk|θk , t ∈ [a, b], (3.17)

∣
∣�(t, x1, x2, . . . , xn)

∣
∣ ≤ d2 +

n∑

k=1

ck|xk|λk , t ∈ [a, b]. (3.18)

(H2) For a positive real constant B, such that for each xi, yi ∈ R, i = 1, 2, . . . , n, if
min{|xn|, |yn|} > B, then we have either

xn · �(t, y1, y2, . . . , yn) > 0, or xn · �(t, y1, y2, . . . , yn) < 0, t ∈ [a, b], (3.19)

or

yn · �(t, x1, x2, . . . , xn) > 0, or yn · �(t, x1, x2, . . . , xn) < 0, t ∈ [a, b]. (3.20)

(H3)

(�1� + �2)
n∑

k=1

ξk < 1, ξ := b, c, (3.21)

�1�

n∑

k=1

bk + �2

n∑

k=1

ck < 1, (3.22)

�1�

n∑

k=1

ck + �2

n∑

k=1

bk < 1, (3.23)

where � is given by (3.28).
Here we define

�1 =
{

(u, v) ∈ domL\kerL|L(u, v) = λN (u, v),λ ∈ [0, 1]
}

, (3.24a)

�2 =
{

(u, v) ∈ kerL|N (u, v) ∈ ImL
}

, (3.24b)

�3 =
{

(u, v) ∈ kerL|λ(u, v) + (1 – λ)QN (u, v) = (0, 0),λ ∈ [0, 1]
}

, (3.24c)

�′
3 =

{
(u, v) ∈ kerL| – λ(u, v) + (1 – λ)QN (u, v) = (0, 0),λ ∈ [0, 1]

}
. (3.24d)

Indeed, if we prove that the subsets �i ⊂ X, i = 1, 2, 3, and �′
3 ⊂ X are bounded, then

relying on Theorem 2.10, we can directly conclude the existence of at least one solution
for the Hilfer fractional resonant system (1.1)–(1.2). So, we start to prove the boundedness
of these sets.

Lemma 3.4 �1 defined by (3.24a) is bounded subset of X.
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Proof For each (u, v) ∈ �1, (u, v) /∈ kerL. So, λ �= 0. Also, for each (u, v) ∈ �1, we have
L(u, v) = λN (u, v) ∈ ker Q, that is,

λ(1 – β(n – α))
(b – a)1–β(n–α)

×
∫ b

a
(b – s)–β(n–α)�

(
s, v, D1–(n–α)(1–β),β

a+ v, . . . , Dn–(n–α)(1–β)–1,β
a+ v

)
ds = 0,

λ(1 – β(n – α))
(b – a)1–β(n–α)

×
∫ b

a
(b – s)–β(n–α)�

(
s, u, D1–(n–α)(1–β),β

a+ u, . . . , Dn–(n–α)(1–β)–1,β
a+ u

)
ds = 0.

Thus there are t0, t1 ∈ [a, b] such that

�
(
t1, v, D1–(n–α)(1–β),β

a+ v, D2–(n–α)(1–β),β
a+ v, . . . , Dn–(n–α)(1–β)–1,β

a+ v
)

= 0,

�
(
t0, u, D1–(n–α)(1–β),β

a+ u, D2–(n–α)(1–β),β
a+ u, . . . , Dn–(n–α)(1–β)–1,β

a+ u
)

= 0.
(3.25)

In viewpoint of hypothesis (H2), equalities (3.25) imply that

Dn–(n–α)(1–β)–1,β
a+ u(t0) ≤ B, Dn–(n–α)(1–β)–1,β

a+ v(t1) ≤ B.

For (u, v) ∈ �1, we have that L(u, v) = λN (u, v), that is,

Dα,β
a+ u(t) = λN1v(t), Dα,β

a+ v(t) = λN2u(t).

So, we have

u(t) = λIα
a+N1v(t) +

n–1∑

k=0

(t – a)k–(n–α)(1–β)

	(k – (n – α)(1 – β) + 1)
Dk–(n–α)(1–β)

a+ u(a),

v(t) = λIα
a+N2u(t) +

n–1∑

k=0

(t – a)k–(n–α)(1–β)

	(k – (n – α)(1 – β) + 1)
Dk–(n–α)(1–β)

a+ v(a).

Now taking Dn–(n–α)(1–β)–1,β
a+ on both sides of these equalities, we get

Dn–(n–α)(1–β)–1,β
a+ u(t) = λI1–β(n–α)

a+ N1v(t) + Dn–(n–α)(1–β)–1,β
a+ u(a),

Dn–(n–α)(1–β)–1,β
a+ v(t) = λI1–β(n–α)

a+ N2u(t) + Dn–(n–α)(1–β)–1,β
a+ v(a).

Setting t = t0 in the first equality and t = t1 in the second equality gives us

∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣ ≤ B + λ

(b – a)1–β(n–α)

	(2 – β(n – α))
‖�‖,

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣ ≤ B + λ

(b – a)1–β(n–α)

	(2 – β(n – α))
‖�‖.
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Applying hypothesis (H1) to these inequalities, we get

∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣ ≤ B + λ�

(

d1 + b1‖v‖θ1 +
n∑

k=2

bk
∥
∥Dk–(n–α)(1–β)–1,β

a+ v
∥
∥θk

)

, (3.26)

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣ ≤ B + λ�

(

d2 + c1‖u‖λ1 +
n∑

k=2

ck
∥
∥Dk–(n–α)(1–β)–1,β

a+ u
∥
∥λk

)

, (3.27)

where

� :=
(b – a)1–β(n–α)

	(2 – β(n – α))
. (3.28)

Let (u, v) ∈ �1. Then (u, v) ∈ domL\kerL. Since P2 = P, (I – P)(u, v) ∈ domL ∩ ker P and
LP(u, v) = (0, 0). So, by inequality (3.16) it follows that

∥
∥(I – P)(u, v)

∥
∥

X =
∥
∥KPL(I – P)(u, v)

∥
∥

X =
∥
∥KP(L1u,L2v)

∥
∥

X

=
∥
∥
(
Iα

a+L1u, Iα
a+L2v

)∥
∥

X ≤ λ�2 max
{‖N1v‖B ,‖N2u‖B

}

≤ �2 max
{‖N1v‖B ,‖N2u‖B

}
. (3.29)

Accordingly, based on Remark 3.3 and (3.29), we have

∥
∥(u, v)

∥
∥

X =
∥
∥P(u, v) + (I – P)(u, v)

∥
∥

X ≤ ∥
∥P(u, v)

∥
∥

X +
∥
∥(I – P)(u, v)

∥
∥

X

≤ max
{{

�1
∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣ + �2‖N1v‖B

}
,

{
�1

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣ + �2‖N2u‖B

}
,

{
�1

∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣ + �2‖N2u‖B

}
,

{
�1

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣ + �2‖N1v‖B

}}
. (3.30)

To complete the proof, since the right-hand side of inequality (3.30) depends on four cases,
we will divide our boundedness estimation into four cases as follows:

Case i.

∥
∥(u, v)

∥
∥

X ≤ �1
∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣ + �2‖N1v‖B. (3.31)

So, properties (3.17) and (3.18) in hypothesis (H1) and (3.26)–(3.28) yield

∥
∥(u, v)

∥
∥

X ≤ �1B + (�1� + �2)

(

d1 + b1‖v‖θ1
B +

n∑

k=2

bk
∥
∥Dk–(n–α)(1–β)–1

a+ v
∥
∥θk
B

)

. (3.32)

Case ii.

∥
∥(u, v)

∥
∥

X ≤ �1
∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣ + �2‖N2u‖B . (3.33)

The resources of case i imply that

∥
∥(u, v)

∥
∥

X ≤ �1B + (�1� + �2)

(

d2 + c1‖u‖λ1
B +

n∑

k=2

ck
∥
∥Dk–(n–α)(1–β)–1

a+ u
∥
∥λk
B

)

. (3.34)



Gholami Advances in Difference Equations        (2020) 2020:482 Page 15 of 25

Case iii.

∥
∥(u, v)

∥
∥

X ≤ �1
∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣ + �2‖N2u‖B . (3.35)

We have

∥
∥(u, v)

∥
∥

X ≤ �1�

{

B +

(

d1 + b1‖v‖θ1
B +

n∑

k=2

bk
∥
∥Dk–(n–α)(1–β)–1

a+ v
∥
∥θk
B

)}

+ �2

(

d2 + c1‖u‖λ1
B +

n∑

k=2

ck
∥
∥Dk–(n–α)(1–β)–1

a+ u
∥
∥λk
B

)

. (3.36)

Case iv.

∥
∥(u, v)

∥
∥

X ≤ �1
∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣ + �2‖N1v‖B . (3.37)

We get that

∥
∥(u, v)

∥
∥

X ≤ �1�

{

B +

(

d2 + c1‖u‖λ1
B +

n∑

k=2

ck
∥
∥Dk–(n–α)(1–β)–1

a+ u
∥
∥λk
B

)}

+ �2

(

d1 + b1‖v‖θ1
B +

n∑

k=2

bk
∥
∥Dk–(n–α)(1–β)–1

a+ v
∥
∥θk
B

)

. (3.38)

Some simple manipulations on inequalities (3.32), (3.34), (3.36), and (3.38), help us to
reach the following results.

(i)

∥
∥(u, v)

∥
∥

X ≤ �1B + d1(�1� + �2)
1 – (�1� + �2)

∑n
k=1 bk

. (3.39)

(ii)

∥
∥(u, v)

∥
∥

X ≤ �1B + d2(�1� + �2)
1 – (�1� + �2)

∑n
k=1 ck

. (3.40)

(iii)

∥
∥(u, v)

∥
∥

X ≤ �1B + (�1�d1 + �2d2)
1 – {�1�

∑n
k=1 bk + �2

∑n
i=k ck} . (3.41)

(iv)

∥
∥(u, v)

∥
∥

X ≤ �1B + (�1�d2 + �2d1)
1 – {�1�

∑n
k=1 ck + �2

∑n
k=1 bk} . (3.42)

Inequalities (3.39)–(3.42) ensure that �1 ⊂ X is bounded. �

Lemma 3.5 �2 defined by (3.24b) is a bounded subset of X.
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Proof Let (u, v) ∈ �2. Then u(t) := cn–1(t –a)n–(n–α)(1–β)–1 and v(t) := dn–1(t –a)n–(n–α)(1–β)–1.
On the other hand,

N (u, v) = (N1v,N2u) ∈ ImL = ker Q.

So, we have

∫ b

a
(b – s)–β(n–α)

× �
(
s, cn–1(s – a)n–(n–α)(1–β)–1, cn–1D1–(n–α)(1–β)

a+ (s – a)n–(n–α)(1–β)–1,

. . . , cn–1Dn–(n–α)(1–β)–1
a+ (s – a)n–(n–α)(1–β)–1)ds = 0 (3.43)

and

∫ b

a
(b – s)–β(n–α)

× �
(
s, dn–1(s – a)n–(n–α)(1–β)–1, dn–1D1–(n–α)(1–β)

a+ (s – a)n–(n–α)(1–β)–1,

. . . , dn–1Dn–(n–α)(1–β)–1
a+ (s – a)n–(n–α)(1–β)–1)ds = 0. (3.44)

Now, according to hypothesis (H2), we come to the conclusion that

|cn–1|, |dn–1| ≤ B
	(n – (n – α)(1 – β))

,

that is, �2 is a bounded subset of X. �

The next case deals with the boundedness of the subset �3.

Lemma 3.6 �3 defined by (3.24c) is a bounded subset of X.

Proof Our proof basically depends on hypothesis (H2). Let (u, v) ∈ �3. Thus (u, v) ∈ kerL,
that is,

(u, v) =
(
cn–1(t – a)n–(n–α)(1–β)–1, dn–1(t – a)n–(n–α)(1–β)–1).

On the other hand, since kerL = Im Q, from λ(u, v) – (1 – λ)QN (u, v) = (0, 0) we deduce
that

λcn–1(t – a)n–(n–α)(1–β)–1 + (1 – λ)
∫ b

a
(b – s)–β(n–α)

× �
(
s, cn–1(s – a)n–(n–α)(1–β)–1, cn–1D1–(n–α)(1–β)

a+ (s – a)n–(n–α)(1–β)–1,

. . . , cn–1Dn–(n–α)(1–β)–1
a+ (s – a)n–(n–α)(1–β)–1)ds = 0 (3.45)
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and

λdn–1(t – a)n–(n–α)(1–β)–1 + (1 – λ)
∫ b

a
(b – s)–β(n–α)

× �
(
s, dn–1(s – a)n–(n–α)(1–β)–1, dn–1D1–(n–α)(1–β)

a+ (s – a)n–(n–α)(1–β)–1,

. . . , dn–1Dn–(n–α)(1–β)–1
a+ (s – a)n–(n–α)(1–β)–1)ds = 0. (3.46)

If in equalities (3.45) and (3.46), we take λ = 0, then the proof reduces to the proof of
Lemma 3.5. So, let λ ∈ (0, 1]. Similarly to the previous case, this case gives us the desired
outcome. The assumption |cn–1|, |dn–1| > B, together with the hypothesis (H2), leads us to

λc2
n–1(t – a)2(n–(n–α)(1–β)–1) + (1 – λ)cn–1

∫ b

a
(b – s)–β(n–α)(s – a)n–(n–α)(1–β)–1

× �
(
s, cn–1(s – a)n–(n–α)(1–β)–1, cn–1D1–(n–α)(1–β)

a+ (s – a)n–(n–α)(1–β)–1,

. . . , cn–1Dn–(n–α)(1–β)–1
a+ (s – a)n–(n–α)(1–β)–1)ds > 0

and

λd2
n–1(t – a)2(n–(n–α)(1–β)–1) + (1 – λ)dn–1

∫ b

a
(b – s)–β(n–α)(s – a)n–(n–α)(1–β)–1

× �
(
s, dn–1(s – a)n–(n–α)(1–β)–1, dn–1D1–(n–α)(1–β)

a+ (s – a)n–(n–α)(1–β)–1,

. . . , dn–1Dn–(n–α)(1–β)–1
a+ (s – a)n–(n–α)(1–β)–1)ds > 0,

which contradicts equalities (3.45) and (3.46). This completes the proof. �

Concentrating on the second parts of hypothesis (H2), that is, the right-hand side in-
equalities in (3.19) and (3.20), helps us to prove boundedness of �′

3 ⊂ X. So, we present
this result without proof in the next lemma.

Lemma 3.7 �′
3 defined by (3.24d) is a bounded subset of X.

Since all conditions of Theorem 2.10 are satisfied in the frame of Lemmas 3.1, 3.2, and
(3.4)–(3.7), we are ready to prove the existence of at least one solution of the Hilfer frac-
tional resonant system (1.1)–(1.2) as follows.

Theorem 3.8 Assume that hypotheses (H1)–(H3) are satisfied. Then the Hilfer fractional
resonant system (1.1)–(1.2) has at least one solution in X.

Proof Consider � ⊃ ⋃3
i=1 �i ∪ {0} (or � ⊃ ⋃2

i=1 �i ∪ �′
3 ∪ {0}) as a bounded open sub-

set of X. According to the Lemma 3.2, we know that N is an L-compact operator on �.
Besides, via Lemmas 3.4–3.7, we get the following:
� L(u, v) = λN (u, v) for every ((u, v),λ) ∈ [domL\kerL∩ ∂�] × (0, 1).
� N (u, v) /∈ ImL for every (u, v) ∈ kerL∩ ∂�.

So, it just remains to prove that

deg(JQN |kerL,� ∩ kerL, 0) �= 0.
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To prove this, we define the homotopy

H
(
(u, v),λ

)
= ±λ Id(u, v) + (1 – λ)JQN (u, v).

According to the degree property of invariance under a homotopy, if u ∈ kerL∩ ∂�, then

deg(JQN |kerL,� ∩ kerL, 0)

= deg
(
H(·, 0),� ∩ kerL, 0

)

= deg
(
H(·, 1),� ∩ kerL, 0

)

= deg(±Id,� ∩ kerL, 0) �= 0.

Therefore, since assumption (iii) in Theorem 2.10 is satisfied, we conclude that the Hilfer
fractional resonant system (1.1)–(1.2) has at least one solution in X. �

As explained before, our investigation is divided into the couple of stages including the
existence and uniqueness of solutions for the Hilfer fractional resonant system (1.1)–(1.2).
So far, the existence of at least one solution is proved. So, in what follows, we state and
prove a uniqueness criterion for the solutions of the coupled system (1.1)–(1.2). To do
this, we first need the following hypotheses.

(H ′
1) There exist positive constants (μi,νi) ∈ R

2, i = 1, . . . , n, and (ηi, ζi) ∈ [0, 1]2, i =
1, 2, . . . , n, such that for all ((xi)n

1, (yi)n
1) ∈R

n ×R
n,

∣
∣�(t, x1, x2, . . . , xn) – �(t, y1, y2, . . . , yn)

∣
∣ ≤

n∑

i=1

μi|xi – yi|ηi (3.47)

and

∣
∣�(t, x1, x2, . . . , xn) – �(t, y1, y2, . . . , yn)

∣
∣ ≤

n∑

i=1

νi|xi – yi|ζi . (3.48)

(H ′
2) There exist positive constants (ki, li) ∈R

2, i = 1, . . . , n, such that for all ((xi)n
1, (yi)n

1) ∈
R

n ×R
n,

∣
∣�(t, x1, x2, . . . , xn) – �(t, y1, y2, . . . , yn)

∣
∣ ≥ kn|xn – yn| –

n–1∑

i=1

ki|xi – yi| (3.49)

and

∣
∣�(t, x1, x2, . . . , xn) – �(t, y1, y2, . . . , yn)

∣
∣ ≥ ln|xn – yn| –

n–1∑

i=1

li|xi – yi|. (3.50)

(H ′
3)

�1

{ n–1∑

i=1

li

ln
+ �

n∑

i=1

μi

}

+ �2

n∑

i=1

bi > 1, (3.51)



Gholami Advances in Difference Equations        (2020) 2020:482 Page 19 of 25

�1

{ n–1∑

i=1

ki

kn
+ �

n∑

i=1

νi

}

+ �2

n∑

i=1

ci > 1, (3.52)

�1

{ n–1∑

i=1

li

ln
+ �

n∑

i=1

μi

}

+ �2

n∑

i=1

ci > 1, (3.53)

�1

{ n–1∑

i=1

ki

kn
+ �

n∑

i=1

νi

}

+ �2

n∑

i=1

bi > 1. (3.54)

Theorem 3.9 Assume that hypotheses (H2)–(H3) and (H ′
1)–(H ′

3) are satisfied. Then the
Hilfer fractional resonant system (1.1)–(1.2) has a unique solution on X.

Proof To prove the uniqueness of solutions, we first will prove the existence of solutions.
Since hypotheses (H2)–(H3) are satisfied, we just need to check hypothesis (H1). To do
this, for each i = 1, 2, . . . , n, assume that yi = 0. Also suppose that

d1 := �(t, 0, 0, . . . , 0
︸ ︷︷ ︸
n–1 tupled

), d2 := �(t, 0, 0, . . . , 0
︸ ︷︷ ︸
n–1 tupled

). (3.55)

In this case, hypothesis (H ′
1) reduces to hypothesis (H1). Having the hypotheses (H1)–

(H3) in hand, Theorem 3.8 guarantees the existence of at least one solution for the Hilfer
fractional resonant system (1.1)–(1.2). Now it is time to prove the uniqueness of solutions.
In the traditional way, we consider the solutions (uk , vk) ∈ X, k = 1, 2, of the coupled system
(1.1)–(1.2) and will prove that u1 = u2 and v1 = v2. As supposed, for k = 1, 2,

Dα,β
a+ uk(t) = �

(
t, vk , D1–(n–α)(1–β),β

a+ vk , D2–(n–α)(1–β),β
a+ vk , . . . , Dn–(n–α)(1–β)–1,β

a+ vk
)
,

Dα,β
a+ vk(t) = �

(
t, uk , D1–(n–α)(1–β),β

a+ uk , D2–(n–α)(1–β),β
a+ uk , . . . , Dn–(n–α)(1–β)–1,β

a+ uk
)
.

Let us consider u := u1 – u2 and v := v1 – v2. It follows that

Dα,β
a+ u(t) = �

(
t, v1, D1–(n–α)(1–β),β

a+ v1, D2–(n–α)(1–β),β
a+ v1, . . . , Dn–(n–α)(1–β)–1,β

a+ v1
)

– �
(
t, v2, D1–(n–α)(1–β),β

a+ v2, D2–(n–α)(1–β),β
a+ v2, . . . , Dn–(n–α)(1–β)–1,β

a+ v2
)

(3.56)

and

Dα,β
a+ v(t) = �

(
t, u1, D1–(n–α)(1–β),β

a+ u1, D2–(n–α)(1–β),β
a+ u1, . . . , Dn–(n–α)(1–β)–1,β

a+ u1
)

– �
(
t, u2, D1–(n–α)(1–β),β

a+ u2, D2–(n–α)(1–β),β
a+ u2, . . . , Dn–(n–α)(1–β)–1,β

a+ u2
)
. (3.57)

Since ImL = ker Q, we get that

∫ b

a
(b – s)–β(n–α)

× {
�

(
s, v1, D1–(n–α)(1–β),β

a+ v1, D2–(n–α)(1–β),β
a+ v1, . . . , Dn–(n–α)(1–β)–1,β

a+ v1
)

– �
(
s, v2, D1–(n–α)(1–β),β

a+ v2, D2–(n–α)(1–β),β
a+ v2, . . . , Dn–(n–α)(1–β)–1,β

a+ v2
)}

ds = 0 (3.58)
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and

∫ b

a
(b – s)–β(n–α)

× {
�

(
s, u1, D1–(n–α)(1–β),β

a+ u1, D2–(n–α)(1–β),β
a+ u1, . . . , Dn–(n–α)(1–β)–1,β

a+ u1
)

– �
(
s, u2, D1–(n–α)(1–β),β

a+ u2, D2–(n–α)(1–β),β
a+ u2, . . . , Dn–(n–α)(1–β)–1,β

a+ u2
)}

ds = 0. (3.59)

Equalities (3.58) and (3.59) imply that there are t2, t3 ∈ [a, b] such that

�
(
t2, v1, D1–(n–α)(1–β),β

a+ v1, D2–(n–α)(1–β),β
a+ v1, . . . , Dn–(n–α)(1–β)–1,β

a+ v1
)

= �
(
t2, v2, D1–(n–α)(1–β),β

a+ v2, D2–(n–α)(1–β),β
a+ v2, . . . , Dn–(n–α)(1–β)–1,β

a+ v2
)

(3.60)

and

�
(
t3, u1, D1–(n–α)(1–β),β

a+ u1, D2–(n–α)(1–β),β
a+ u1, . . . , Dn–(n–α)(1–β)–1,β

a+ u1
)

= �
(
t3, u2, D1–(n–α)(1–β),β

a+ u2, D2–(n–α)(1–β),β
a+ u2, . . . , Dn–(n–α)(1–β)–1,β

a+ u2
)
. (3.61)

So, in view of hypothesis (H ′
2), we get the following inequality:

0 =
∣
∣�

(
t2, v1, D1–(n–α)(1–β),β

a+ v1, D2–(n–α)(1–β),β
a+ v1, . . . , Dn–(n–α)(1–β)–1,β

a+ v1
)

– �
(
t2, v2, D1–(n–α)(1–β),β

a+ v2, D2–(n–α)(1–β),β
a+ v2, . . . , Dn–(n–α)(1–β)–1,β

a+ v2
)∣
∣

≥ kn
∣
∣Dn–(n–α)(1–β)–1,β

a+ v(t2)
∣
∣ – k1

∣
∣v(t2)

∣
∣ –

n–1∑

i=2

ki
∣
∣Dn–(n–α)(1–β)–i,β

a+ v(t2)
∣
∣.

Therefore this inequality gives us

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(t2)
∣
∣ ≤ k1

kn

∣
∣v(t2)

∣
∣ +

n–1∑

i=2

ki

kn

∣
∣Dn–(n–α)(1–β)–i,β

a+ v(t2)
∣
∣,

that is,

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(t2)
∣
∣ ≤ k1

kn

∥
∥v(t2)

∥
∥ +

n–1∑

i=2

ki

kn

∥
∥Dn–(n–α)(1–β)–i,β

a+ v(t2)
∥
∥.

From this inequality we immediately derive that

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(t2)
∣
∣ ≤

n–1∑

i=1

ki

kn
‖v‖B . (3.62)

Similarly, we can obtain

∣
∣Dn–(n–α)(1–β)–1,β

a+ u(t3)
∣
∣ ≤

n–1∑

i=1

li

ln
‖u‖B . (3.63)
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Let us reconsider equalities (3.56) and (3.57). Accordingly, we have

Dn–(n–α)(1–β)–1,β
a+ u(t)

= I1–β(n–α)
a+

{
�

(
t2, v1, D1–(n–α)(1–β),β

a+ v1, D2–(n–α)(1–β),β
a+ v1, . . . , Dn–(n–α)(1–β)–1,β

a+ v1
)

– �
(
t2, v2, D1–(n–α)(1–β),β

a+ v2, D2–(n–α)(1–β),β
a+ v2, . . . , Dn–(n–α)(1–β)–1,β

a+ v2
)}

+ Dn–(n–α)(1–β)–1,β
a+ u(a) (3.64)

and

Dn–(n–α)(1–β)–1,β
a+ v(t)

= I1–β(n–α)
a+

{
�

(
t3, u1, D1–(n–α)(1–β),β

a+ u1, D2–(n–α)(1–β),β
a+ u1, . . . , Dn–(n–α)(1–β)–1,β

a+ u1
)

– �
(
t3, u2, D1–(n–α)(1–β),β

a+ u2, D2–(n–α)(1–β),β
a+ u2, . . . , Dn–(n–α)(1–β)–1,β

a+ u2
)}

+ Dn–(n–α)(1–β)–1,β
a+ v(a). (3.65)

If we take t = t3 in (3.64) and t = t2 in (3.65), then (3.28), together with inequalities (3.62)
and (3.63), yields

∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣ ≤

n–1∑

i=1

li

ln
‖u‖B + �

n∑

i=1

μi‖v‖B , (3.66)

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣ ≤

n–1∑

i=1

ki

kn
‖v‖B + �

n∑

i=1

νi‖u‖B . (3.67)

Here we recall once again inequality (3.30):

∥
∥(u, v)

∥
∥

X =
∥
∥P(u, v) + (I – P)(u, v)

∥
∥

X ≤ ∥
∥P(u, v)

∥
∥

X +
∥
∥(I – P)(u, v)

∥
∥

X

≤ max
{{

�1
∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣ + �2‖N1v‖B

}
,

{
�1

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣ + �2‖N2u‖B

}
,

{
�1

∣
∣Dn–(n–α)(1–β)–1,β

a+ u(a)
∣
∣ + �2‖N2u‖B

}
,

{
�1

∣
∣Dn–(n–α)(1–β)–1,β

a+ v(a)
∣
∣ + �2‖N1v‖B

}}
.

Similarly to case i, (3.32), case ii, (3.34), case iii, (3.36), and case iv, (3.38), we conclude that

∥
∥(u, v)

∥
∥

X ≤ �2d1

1 – [�1{∑n–1
i=1

li
ln + �

∑n
i=1 μi} + �2

∑n
i=1 bi]

, (3.68)

∥
∥(u, v)

∥
∥

X ≤ �2d2

1 – [�1{∑n–1
i=1

ki
kn

+ �
∑n

i=1 νi} + �2
∑n

i=1 ci]
, (3.69)

∥
∥(u, v)

∥
∥

X ≤ �2d2

1 – [�1{∑n–1
i=1

li
ln + �

∑n
i=1 μi} + �2

∑n
i=1 ci]

, (3.70)

and

∥
∥(u, v)

∥
∥

X ≤ �2d1

1 – [�1{∑n–1
i=1

ki
kn

+ �
∑n

i=1 νi} + �2
∑n

i=1 bi]
. (3.71)
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Finally, if we impose conditions (3.51)–(3.54) into inequalities (3.68)–(3.71), respectively,
then it follows that u = v = 0. More precisely, we have proven that u1 = u2 and v1 = v2. This
completes the proof of uniqueness of the solutions of the Hilfer fractional resonant system
(1.1)–(1.2). �

4 An application
In this section, we present an application to illustrate the obtained theoretical existence
and uniqueness criteria in the frame of Theorems 3.8 and 3.9.

Example 4.1 Let us consider the Hilfer fractional resonant system

⎧
⎨

⎩

D
5
2 , 1

2
0+ u(t) = �(t, v, D

1
2 , 1

2
0+ v, D

3
2 , 1

2
0+ v), 0 < t < 1,

D
5
2 , 1

2
0+ v(t) = �(t, u, D

1
2 , 1

2
0+ u, D

3
2 , 1

2
0+ u), 0 < t < 1,

(4.1)

with nonlinearities

�(t, x1, x2, x3) :=
t + |x1| + |x2| + |x3|

10
,

�(t, x1, x2, x3) :=
t + | sin(x1)| + | sin(x2)| + | sin(x3)|

10
,

(4.2)

subject to the boundary conditions

⎧
⎨

⎩

I0.25,0.5
0+ u(0) = 0, D0.75,0.5

0+ u(0) = 0, D1.75,0.5
0+ u(0) = D1.75,0.5

0+ u(1),

I0.25,0.5
0+ v(0) = 0, D0.75,0.5

0+ v(0) = 0, D1.75,0.5
0+ v(0) = D1.75,0.5

0+ v(1).
(4.3)

Indeed, in the Hilfer fractional resonant system (1.1)–(1.2), we impose the following set-
ting to reach the fractional resonant system (4.1)–(4.3):

α := 2.5, β := 0.5, n = 3, a := 0, b := 1.

By a direct calculation we get that

�1 := 1, �2 = � := 0.100946.

Finally, taking B := 1, ηi = ζi := 1, i = 1, 2, 3, and ki = li := 0.1, i = 1, 2, 3, it is easy to check that
the hypotheses (H2)–(H3) and (H ′

1)–(H ′
3) are satisfied. So, the Hilfer fractional resonant

system (4.1)–(4.3) has a unique solution on X.

5 Discussion and concluding remarks
In this paper, we studied the higher-order Hilfer fractional resonant system (1.1)–(1.2).
Our aim in this investigation was to apply the coincidence degree theory to obtain at least
one solution for the resonant system (1.1)–(1.2). Besides, having certain conditions on the
nonlinearities, we presented a uniqueness criterion. One of the advantages of this inves-
tigation is that, to the best of our knowledge, this is the first time in the literature that
the Hilfer fractional differential equations have been considered to establish the fractional
resonant problems.
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At this position, we discuss other advantages of the Hilfer fractional derivatives. As men-
tioned in Definition 2.4, taking β = 0 gives us the Riemann–Liouville fractional resonant
system

⎧
⎨

⎩

Dα
a+ u(t) = �(t, v, Dα–n+1

a+ v, Dα–n+2
a+ v, . . . , Dα–1

a+ v), a < t < b,

Dα
a+ v(t) = �(t, u, Dα–n+1

a+ u, Dα–n+2
a+ u, . . . , Dα–1

a+ u), a < t < b,
(5.1)

subject to the boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

In–α
a+ u(a) = 0, Dα–i

a+ u(a) = 0,

Dα–1
a+ u(a) = Dα–1

a+ u(b), i = 2, 3, . . . , n – 1,

In–α
a+ v(a) = 0, Dα–i

a+ v(a) = 0,

Dα–1
a+ v(a) = Dα–1

a+ v(b), i = 2, 3, . . . , n – 1,

(5.2)

which generalizes all the Riemann–Liouville-based fractional resonant problems with
boundary conditions of the form (5.2).

Also, taking β := 1, we get the following Caputo fractional resonant system:

⎧
⎨

⎩

cDα
a+ u(t) = �(t, v, v′, v′′, . . . , v(n–1)), a < t < b,

cDα
a+ v(t) = �(t, u, u′, u′′, . . . , u(n–1)), a < t < b,

(5.3)

subject to the boundary conditions

⎧
⎨

⎩

u(a) = u′(a) = u′′(a) = · · · = u(n–2)(a) = 0, u(n–1)(a) = u(n–1)(b),

v(a) = v′(a) = v′′(a) = · · · = v(n–2)(a) = 0, v(n–1)(a) = v(n–1)(b),
(5.4)

which coincides with the main problem in [19], that is, (1.7)–(1.8), and it generalizes [20]
and [39].

We believe that due to the unifying characteristics of the Hilfer fractional derivatives,
differential equations equipped with this generalized derivatives have much more poten-
tial to reach new results both in the theory and in the applications of the fractional-order
problems. For instance, as a future research works, one may consider the half-linear Hil-
fer fractional differential equations and try to extract the corresponding Lyapunov-type
inequalities to describe the qualitative dynamics of these problems involving stability, dis-
conjugacy, nonexistence, algebraic properties of nontrivial solutions, and so on. Further-
more, applicability of the half-linear dynamical systems in the porous medium opens a
new research line to find more applications of the Hilfer fractional dynamical systems.
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