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Abstract
Let f and g be two nonconstant meromorphic functions. Shared value problems
related to f and g are investigated in this paper. We give sufficient conditions in terms
of weighted value sharing which imply that f is a linear transformation or inversion
transformation of g. We also investigate the uniqueness problem of meromorphic
functions with their difference operators and derivatives sharing some values.
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1 Introduction and main results
Throughout this paper, a meromorphic function is assumed to be meromorphic in the
whole complex plane. The basic notations and results of Nevanlinna value distribution
theory of meromorphic function are assumed to be known to the reader; see, e.g., [10, 21].
For a meromorphic function f (z), we define the order and the lower order of f (z) by

σ (f ) = lim sup
r→∞

log+ T(r, f )
log r

and μ(f ) = lim inf
r→∞

log+ T(r, f )
log r

,

while

λ(f ) = lim sup
r→∞

log+ N(r, 1
f )

log r
and δ(a, f ) = lim inf

r→∞
m(r, 1

f –a )
T(r, f )

= 1 – lim sup
r→∞

N(r, 1
f –a )

T(r, f )

stand for the exponents of convergence of zero sequence of f and the deficiency of f at the
point a, respectively. For a nonconstant meromorphic function h, we denote by T(r, h) the
Nevanlinna characteristic of h and by S(r, h) any quantity satisfying S(r, h) = o(T(r, h)), as
r runs to infinity outside of a set E ⊂ (0, +∞) of finite linear measure. We say that h is a
small function of f if T(r, h) = S(r, f ). In the following, we denote by I a set of infinite linear
measure not necessarily the same in all its occurrences.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02939-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02939-9&domain=pdf
http://orcid.org/0000-0003-1959-2192
mailto:alexehuang@sina.com


Wei and Huang Advances in Difference Equations        (2020) 2020:480 Page 2 of 14

We say that f and g share the value a IM (ignoring multiplicities), if f and g have the
same a point. If f and g have the same a point with the same multiplicities, then we say
f , g share the value a CM (counting multiplicities). Let k be a positive integer, we de-
note by Nk)(r, 1

f –a ) the counting function of a points of f with multiplicity ≤ k and by
N(k+1(r, 1

f –a ) the counting function of a points of f with multiplicity > k, where each a point
is counted according to its multiplicity. Similarly we define Nk)(r, 1

f –a ) and N (k+1(r, 1
f –a )

where in counting the a points of f we ignore the multiplicities.

Definition 1 ([12]) Let k be a nonnegative integer or infinity. For a ∈ C∪ {∞}, we denote
by Ek(a; f ) the set of all a points of f (z) where an a point of multiplicity m is counted m
times if m ≤ k and k + 1 times if m > k. If Ek(a; f ) = Ek(a; g), then we say that f , g share the
value a with weight k.

We write f and g share (a, k) to mean that f , g share the value a with weight k.

Definition 2 ([12]) If s is a positive integer, then we denote by N(r, 1
f –a | = s) the counting

function of those a points of f whose multiplicity is s, where each a point is counted ac-
cording to its multiplicity. For a positive integer m, denote by N(r, a; f | ≥ m) the counting
function of those a points of f whose multiplicities are not less than m where each a point
is counted according to its multiplicity.

Definition 3 ([13]) Denote by N2(r, 1
f –a ) the sum of N(r, 1

f –a ) + N(r, 1
f –a | ≥ 2).

The classical four point and five point theorems of Nevanlinna [15] show f is a Möbius
transformation of g if two meromorphic functions f and g share four distinct values CM,
and f = g if f and g share five distinct values IM. The assumption 4CM of the four-
point theorem and 5IM of the five-point theorem have been improved to 2CM+2IM and
3CM+1IM, while 1CM+3IM remains an open problem.

Some researchers also considered whether the conditions of shared values can be re-
placed by other conditions. Ozawa [16] obtained the following.

Theorem A Let f and g be nonconstant entire functions of finite order such that f and g
share 0 and 1 CM. If δ(0, f ) > 1

2 , then f · g = 1 or f = g .

Removing the order restriction Ueda [19] and Yi [22] obtained some improvements of
Theorem A. Especially, Yi [23] obtained the following.

Theorem B ([23]) Suppose that f (z) and g(z) are nonconstant meromorphic functions. If
f , g share 0, 1,∞ CM and N(r, 1

f ) + N(r, f ) < (d + o(1))T(r, f ) for r ∈ I and r ∈ ∞, where
d is a positive number satisfying 0 < d < 1

2 , while I ⊂ (0, +∞) is a subset of infinite linear
measure, then f = g or f · g = 1.

For the sake of relaxing the nature of sharing of values and improving Theorem B, Lahiri
in [12] obtained the following result in terms of the weighted value sharing.
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Theorem C ([12]) Suppose that f (z) and g(z) are nonconstant meromorphic functions. Let
f and g share (0, 1), (∞, 0), (1,∞). If

N
(

r,
1

f – a

∣∣∣ = 1
)

+ 4N(r, f ) <
(
d + o(1)

)
T(r, f ),

then either f = g or f · g = 1.

Our first result shall follow this direction and investigate the uniqueness of meromor-
phic functions in terms of weighted value sharing.

Theorem 1.1 Let f and g be meromorphic functions with finite order, and let c ∈ C \ {0}.
Suppose that f n and gn share (R(z), l), where R(z) is a rational function and l, n are integer.
If one of the following cases holds:

(1) l = 0, n ≥ 15;
(2) l = 1, n ≥ 10;
(3) l ≥ 2, n ≥ 9,

then f = tg or f · g = tα, where tn = 1, αn = R2.

Rubel and Yang [18] in 1977 initiated the study of entire functions sharing values with
their derivatives instead of studying the problem of sharing value of two meromorphic
functions f and g .

Theorem D Let f be a nonconstant entire function. If f shares two distinct finite values
CM with f ′, then f ≡ f ′.

More results on the uniqueness of f ′ with its nth derivative f (n) were obtained by sev-
eral authors; see [1, 8, 20]. In view of the progress on the difference analogues of classi-
cal Nevanlinna theory of meromorphic functions [4, 9], it is quite natural to investigate
the uniqueness problems of meromorphic functions and their difference operators; see
[3, 6, 11, 25]. So a natural question arises, that is, how about the uniqueness of the deriva-
tives and the difference operators of f (z)?

In 2018, Qi et al. [17] obtained some results in the case that f ′(z) shares values with �f
or f (z + c).

Theorem E Let f be a meromorphic function of finite order. Suppose that f ′ and �f share
a1, a2, a3, a4 IM, where a1, a2, a3, a4 are four distinct finite values. Then f ′ = �f .

Theorem F Let f be a transcendental entire function of finite order, and a be a nonzero
finite value. If f ′(z) and f (z + c) share 0, a CM, then f ′(z) = f (z + c) for all z ∈ C .

Regarding Theorems E and F, one may ask the following question:

Question 1 What can be said when the difference operators of f (z) shares some values
with its derivatives?

In this direction, we will prove the following results.
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Theorem 1.2 Let f be a nonconstant entire function of finite order with periodic η �= 0
such that μ(f ) > 1, where η is a finite nonzero value, and let a1 and a2 be two distinct finite
values, and k be a positive integer. If �f and f (k) share a1 CM, �f and f (k) share a2 IM,
then �f = f (k).

If we replace �f (z) by the shift f (z + c), we can obtain the following.

Theorem 1.3 Let f be a nonconstant meromorphic function of finite order, and let c be a
finite nonzero value, let k be a positive integer satisfying k ≥ 2, and let a1, a2, a3 be three
finite values such that a1 �= 0, a2 �= 0 and N(r, 1

f –a3
) = S(r, f ). If f (z + c) and f (k)(z) share a1

CM and a2 IM, then f (z + c) = f (k)(z) for all z ∈ C .

Remark The results obtained in this manuscript have many applications in the qualitative
analysis of differential equations with piecewise constant arguments and porous medium
problems; see [5, 14]. The following example shows that the assumption μ(f ) > 1 of The-
orem 1.2 is the best possible.

Example 1 Let f (z) = eAz , where A �= 0 is a constant. Then f (k) = AkeAz and �(f ) = f (z +
1) – f (z) = (eA – 1)eAz . Clearly, �(f ) and f (k) share 0 CM and ∞ IM, and that μ(f ) = 1. We
can choose A such that eA – 1 �= Ak , and so f ′ �≡ �(f ).

2 Preliminaries
First we denote by H the following function:

H =
(

F ′′

F ′ –
2F ′

F – 1

)
–

(
G′′

G′ –
2G′

G – 1

)
,

where and in what follows, F and G are some two distinct nonconstant meromorphic
functions.

Next we introduce some lemmas needed in the proofs of the main results of this paper.

Lemma 2.1 ([2]) Let F and G be two nonconstant meromorphic functions sharing (1, 0)
and H �= 0. Then

T(r, F) ≤ N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N2(r, F) + N2(r, G) + 2N

(
r,

1
F

)

+ N
(

r,
1
G

)
+ 2N(r, F) + N(r, G) + S(r, F) + S(r, G)

and the same inequality holds for T(r, G).

Lemma 2.2 ([2]) Let F and G be two nonconstant meromorphic functions sharing (1, 1)
and H �= 0. Then

T(r, F) ≤ N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N2(r, F) + N2(r, G) +

1
2

N
(

r,
1
F

)
+

1
2

N(r, F)

+ S(r, F) + S(r, G)

and the same inequality holds for T(r, G).
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Lemma 2.3 ([12]) Let f and g be two nonconstant meromorphic functions sharing (1, 2).
Then one of the following cases holds:

(i) T(r) ≤ N2(r, 1
f ) + N2(r, 1

g ) + N2(r, f ) + N2(r, g) + S(r),
(ii) f = g ,

(iii) fg = 1, where T(r) = max{T(r, f ), T(r, g)} and S(r) = o{T(r)}, as r /∈ E, where
E ⊂ (0, +∞) is a subset of finite linear measure.

Lemma 2.4 ([7]) Let f and g be two meromorphic functions, and let k be a positive integer.
If Ek(1; f ) = Ek(1; g), then one of the following cases must occur:

(i)
T(r, f ) + T(r, g)

≤ N2

(
r,

1
f

)
+ N2

(
r,

1
g

)
+ N2(r, f ) + N2(r, g)

+ N
(

r,
1

f – 1

)
+ N

(
r,

1
g – 1

)
– N11

(
r,

1
f – 1

)
+ N(k+1

(
r,

1
f – 1

)

+ N(k+1

(
r,

1
g – 1

)
+ S(r, f ) + S(r, g);

(ii) f = (b+1)g+(a–b–1)
bg+(a–b) , where a ( �= 0), b are two constants.

Lemma 2.5 ([21]) Let f be a meromorphic function. If

g =
af + b
cf + d

,

where a, b, c, d ∈ S(f ) and ad – bc �= 0, then T(r, g) = T(r, f ) + S(r, f ).

Lemma 2.6 ([4]) Let f be a nonconstant meromorphic function, let ε > 0 and let c ∈ C. If
f is of finite order, then there exists a set E = E(f , ε) ⊂ (0, +∞) satisfying

lim sup
r→∞

∫
E∩[1,r)

dt
t

log r
≤ ε,

i.e., of logarithmic density at most ε, such that

m
(

r,
f (z + c)

f (z)

)
= O

(
log r

r
T

(
r, f (z)

))

for all out of the set E. If ρ2 = ρ2 < 1 and ε > 0, then

m
(

r,
f (z + c)

f (z)

)
= o

(
T(r, f (z))

r1–ρ2–ε

)

for all r ∈ (0, +∞) outside of a set of finite logarithmic measure.

Lemma 2.7 ([1, Lemma 2.3]) Let k be a positive integer, and let f be a nonconstant mero-
morphic function such that f (k+1) �≡ 0. If N(r, 1

f ) = S(r, f ), then

kN1)
(
r, f (z)

) ≤ N (2(r, f ) + N1)

(
r,

1
f (k) – 1

)
+ N

(
r,

1
f (k+1)

)
+ S(r, f ).
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Lemma 2.8 ([24]) Let f be a meromorphic function such that f (k) is not constant. Then

T(r, f ) ≤ N
(

r,
1
f

)
+ N1)

(
r,

1
f (k) – 1

)
+ N(r, f ) – N

(
r,

1
f (k+1)

)
+ S(r, f ).

Lemma 2.9 ([24]) Let f be a transcendental meromorphic function. Then, for each positive
real number ε and for each positive integer n,

(n – 1)N(r, f ) ≤ (1 + ε)N
(

r,
1

f (n)

)
+ (1 + ε)

(
N(r, f ) – N(r, f )

)
+ S(r, f ).

Lemma 2.10 ([4]) Let f be a nonconstant meromorphic function of finite order and c ∈C.
Then

T(r, f (z + c) = T(r, f ) + S(r, f ),

N(r, f (z + c) = N(r, f ) + S(r, f ), N
(

r,
1

f (z + c)

)
= N

(
r,

1
f (z)

)
+ S(r, f )

and

N(r, f (z + c) = N(r, f ) + S(r, f ), N
(

r,
1

f (z + c)

)
= N

(
r,

1
f (z)

)
+ S(r, f ).

3 Proof of Theorem 1.1
Set F = f n

R , G = gn

R . Clearly, F and G share (1, l). Write T(r) = max{T(r, f (z)), T(r, g(z))} and
S(r) = o{T(r)} as r /∈ E and r → ∞, where E ⊂ (0, +∞) is a subset of finite linear measure.

Case 1. l = 0 and n ≥ 15.
Assume that H �= 0. By Lemma 2.1, we have

T(r, F) ≤ N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N2(r, F) + N2(r, G) + 2N

(
r,

1
F

)

+ N
(

r,
1
G

)
+ 2N(r, F) + N(r, G) + S(r, F) + S(r, G).

Clearly,

nT(r, f ) ≤ 4N
(

r,
1
F

)
+ 3N

(
r,

1
G

)
+ 4N(r, F) + 3N(r, G) + S(r, F) + S(r, G)

≤ 4N
(

r,
1
f

)
+ 3N

(
r,

1
g

)
+ 4N(r, f ) + 3N(r, g) + S(r, f ) + S(r, g)

≤ 8T(r, f ) + 6T(r, g) + S(r, f ) + S(r, g). (1)

Similarly, we have

nT(r, g) ≤ 8T(r, g) + 6T(r, f ) + S(r, f ) + S(r, g). (2)

Now (1) and (2) yield

(n – 14)
(
T(r, f ) + T(r, g)

) ≤ S(r, f ) + S(r, g).
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Hence

(n – 14)T(r) ≤ S(r),

which contradicts n ≥ 15.
Therefore, H ≡ 0 and we have

(
F ′′

F ′ –
2F ′

F – 1

)
–

(
G′′

G′ –
2G′

G – 1

)
= 0. (3)

It follows from (3) that

1
F – 1

=
A

G – 1
+ B, (4)

where A �= 0, B are constants.
Subcase 1.1. If B = 0, then (4) leads to F = G–1+A

A and G = AF – (A – 1). Suppose that
A = 1. Clearly, we have F = G, and thus f = tg , where tn = 1. If A �= 1, then we have N(r, 1

G ) =
N(r, 1

F– A–1
A

) and N(r, 1
F ) = N(r, 1

G+(A–1) ). By Nevanlinna’s second fundamental theorem,

T(r, F) ≤ N
(

r,
1
F

)
+ N

(
r,

1
F – A–1

A

)
+ N(r, F) + S(r, F)

≤ N
(

r,
1
F

)
+ N

(
r,

1
G

)
+ N(r, F) + S(r, F).

Thus,

nT(r, f ) ≤ N
(

r,
1
f

)
+ N(r, g) + N(r, f ) + S(r, f )

≤ 2T(r, f ) + T(r, g) + S(r, f ). (5)

Similarly, we have

nT(r, g) ≤ 2T(r, g) + T(r, f ) + S(r, g). (6)

Combining (7) and (8), we obtain

(n – 3)
(
T(r, f ) + T(r, g)

) ≤ S(r, f ) + S(r, g).

Clearly, it is a contradiction by n ≥ 15.
Subcase 1.2 B �= 0.
If A �= B, then we have F = (B+1)G–(B–A+1)

BG+(A–B) . Applying Nevanlinna’s second fundamental the-
orem to F with considering 0 point, 1 point, and ∞ point, we can also get a contradiction
by similar discussion as in Subcase 1.1.

Case 2. l = 1 and n ≥ 10.
Assume that H �= 0. By Lemma 2.2., we have

T(r, F) ≤ N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N2(r, F) + N2(r, G) +

1
2

N
(

r,
1
F

)
+

1
2

N(r, F)
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+ S(r, F) + S(r, G)

≤ 5
2

N
(

r,
1

f (z)

)
+ 2N

(
r,

1
g(z)

)
+

5
2

N(r, f ) + 2N(r, g) + S(r, f ) + S(r, g).

Thus,

nT(r, f ) ≤ 5T(r, f ) + 4T(r, g) + S(r, f ) + S(r, g). (7)

Similarly, we have

nT(r, g) ≤ 5T(r, g) + 4T(r, f ) + S(r, f ) + S(r, g). (8)

Combining (5) and (6) yields

(n – 9)
(
T(r, f ) + T(r, g)

) ≤ S(r, f ) + S(r, g),

which contradicts n ≥ 10.
Therefore, H ≡ 0. We can deduce the same conclusion by similar discussion as in Case 1.
Case 3. l ≥ 2 and n ≥ 9.
Subcase 3.1. l = 2.
From Lemma 2.3, if (i) holds, then we deduce that

max
{

T(r, F), T(r, G)
}

≤ N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N2(r, F) + N2(r, G) + S(r, F) + S(r, G). (9)

That is,

nT(r) = n max
{

T(r, F), T(r, G)
} ≤ 2N

(
r,

1
f

)
+ 2N

(
r,

1
g

)
+ 2N(r, f ) + 2N(r, g) + S(r)

≤ 8T(r) + S(r).

Therefore, (n – 8)T(r) ≤ S(r), which contradicts n ≥ 9. Thus we have F = G or FG = 1. If
F = G, then f n = gn, which yields f = tg , where tn = 1. If FG = 1, then (fg)n = (R)2, which
yields fg = tα, where tn = 1, αn = R2.

Subcase 3.2. l ≥ 3.
By Lemma 2.4, either (i) or (ii) holds. If (i) holds, then we obtain

T(r, F) + T(r, G)

≤ N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N2(r, F) + N2(r, G)

+ N
(

r,
1

F – 1

)
+ N

(
r,

1
G – 1

)
– N11

(
r,

1
F – 1

)
+ N(k+1

(
r,

1
F – 1

)

+ N(k+1

(
r,

1
G – 1

)
+ S(r, F) + S(r, G)

≤ N2(r, F) + N2(r, G) + N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+

1
2

N
(

r,
1

F – 1

)
+

1
2

N
(

r,
1

G – 1

)
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+ S(r, F) + S(r, G)

≤ N2(r, F) + N2(r, G) + N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ T(r, F) + T(r, G) + S(r, F) + S(r, G).

Therefore, we get

1
2

T(r, F) +
1
2

T(r, G) ≤ 2N(r, f ) + 2N(r, g) + 2N
(

r,
1
f

)
+ 2N

(
r,

1
g

)

+ S(r, f ) + S(r, g). (10)

Consequently,

1
2

n
{

T(r, f ) + T(r, g)
} ≤ 4

{
T(r, f ) + T(r, g)

}
+ S(r, f ) + S(r, g),

which leads to

(
1
2

n – 4
){

T(r, f ) + T(r, g)
} ≤ S(r, f ) + S(r, g).

This is a contradiction since n ≥ 9.
Hence, (ii) holds, which means

F =
(b + 1)G + (a – b – 1)

bG + (a – b)
,

where a �= 0, b are constants.
Suppose that b = 0. Then we have F = G when a – 1 = 0, that is, f = tg , where tn = 1.

If a – 1 �= 0, then we obtain F = G+a–1
a and G = a(F + 1–a

a ), and so N(r, 1
F ) = N(r, 1

G+a–1 ),
N(r, 1

G ) = N(r, 1
F+ 1–a

a
). By Nevanlinna’s second fundamental theorem we get

T(r, G) ≤ N
(

r,
1
G

)
+ N

(
r,

1
G + a – 1

)
+ N(r, G) + S(r, G).

This yields

nT(r, g) ≤ 2T(r, g) + T(r, f ) + S(r, f ).

Similarly, we have

nT(r, f ) ≤ 2T(r, f ) + T(r, g) + S(r, f ).

Thus we obtain (n – 3)(T(r, f ) + T(r, g)) ≤ S(r, f ) + S(r, g), which is a contradiction with
n ≥ 9. Suppose that b = –1. If a + 1 = 0, then F · G ≡ 1. Hence f · g = tα, where tn = 1,
αn = R2. If a + 1 �= 0, similarly to above, then we can obtain a contradiction. Suppose b �= 0
and b �= –1. By a similar reasoning to the case b = 0, we can also obtain a contradiction.

This completes the proof of Theorem 1.1.
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4 Proof of Theorem 1.2
Without loss of any generality, we can assume a1 = 0, a2 = 1. Since �f (z), f (k) share 0 CM,
we have

�f
f (k) = eQ, (11)

where Q is a polynomial.
Since the period of f is c ∈C \ {0}, we have eQ(z) = eQ(z+η).
Consequently, eQ(z+η)–Q(z) = 1, which leads to Q′(z + η) = Q′(z). Then Q′(z) has a period

η and Q′(z) must be a constant.
Now write

Q(z) = az + b,

where a, b are constants.
Since �f , f (k) share 1 IM, we get

�f – 1
f (k) – 1

= α(z), (12)

where α is a meromorphic function.
By (11), (12) and Q(z) = az + b, we deduce

α =
f (k)eaz+b – 1

f (k) – 1
. (13)

By Lemma 2.5, we obtain

T(r,α) = T
(
r, f (k)) + S(r, f ) = (k + 1)T(r, f ) + S(r, f ). (14)

Now we estimate the number of zeros, poles of α. From the assumption that μ(f ) > 1,
we know that T(r, eQ) = S(r, f ).

Since �f , f (k) share 1 IM, it follows from (13) that the zero of �f (z) – 1 and f (k) – 1 must
be the zero of eaz+b – 1. Noting that f (k) – 1 have the same poles with f (k)eaz+b – 1, then, by
(12), we have

N(r,α) = N
(

r,
1

f (k) – 1

)
≤ N

(
r,

1
eaz+b – 1

)
= S(r, f )

and

N
(

r,
1
α

)
= N

(
r,

1
�f – 1

)
≤ N

(
r,

1
eaz+b – 1

)
= S(r, f ).

Therefore, from the Nevanlinna second fundamental theorem, we obtain

T(r,α) ≤ N(r,α) + N
(

r,
1
α

)
+ N

(
r,

1
α – eQ

)
+ S(r,α). (15)
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Combining (11) and (12), we may write α – eQ = �f –f (k)

(f (k)–1)f (k) = eQ–1
f (k)–1 . Then, by (15), we

conclude that

T(r,α) ≤ 3N
(

r,
1

eaz+b – 1

)
+ S(r, f ) = S(r, f ). (16)

It contradicts (14).
Therefore, �f = f (k). This completes the proof of Theorem 1.2.

5 Proof of Theorem 1.3
Some ideas of our proof come from [1, 26]. Without loss of generality, we assume that
f (z + c) and f (k)(z) share 1 CM and ∞ IM, and N(r, 1

f ) = S(r, f ). For the general case, we
take the transformation T(z) = z–a3

z–a1
a2–a1
a2–a3

, and so T(a1) = ∞, T(a2) = 1, T(a3) = 0. Suppose
that f (z + c) �≡ f (k)(z). Set

G(z) =
1

f (z + c)

(
f (k+1)(z)

f (k)(z) – 1
–

f ′(z + c)
f (z + c) – 1

)
(17)

=
f (k)(z)

f (z + c)

(
f (k+1)(z)

f (k)(z) – 1
–

f (k+1)(z)
f (k)(z)

)
–

(
f ′(z + c)

f (z + c) – 1
–

f ′(z + c)
f (z + c)

)
. (18)

It follows from the lemma of the logarithmic derivative, Lemma 2.6 and (18) that m(r, G) =
S(r, f ).

By (17), we see that the possible poles of G can occur at the zeros of f (z + c), the 1 points
of f (z + c) and f (k)(z), and the poles of f (z + c) and f (k)(z). If z0 is a 1 point of f (z + c), then
by a short calculation with Laurent series and (17) we see that G(z) is analytic at z0. Since
f (z + c) and f (k)(z) share 1 CM, we know the 1 points of f (z + c) and f (k)(z) are not the poles
of G(z). If f (z + c) has a pole z0 with multiplicity p (≥ 1), we need to consider two cases:
(i) z0 is also a pole of f (k)(z), then by (17) G(z) = O((z – z0)p–1); (ii) z0 is not a pole of f (k)(z),
and hence z0 is not a pole of f (k+1)(z). Then we also have G(z) = O((z – z0)p–1). Similarly,
the poles of f (k)(z) are not also the poles of G(z). Therefore, the poles of F can only occur
at the zeros of f (z + c). By Lemma 2.7 and the hypothesis of Theorem 1.3, it follows that
N(r, 1

f (z+c) ) = N(r, 1
f ) + S(r, f ) = S(r, f ), and so we have N(r, G) = S(r, f ). Thus,

T(r, G) = S(r, f ). (19)

If G ≡ 0, then, by (17), we find that f (k)(z) – 1 = t(f (z + c) – 1), with t �= 0 constant. Thus,
(1 – t)m(r, 1

f ) ≤ m(r, f (k)(z)
f (z) ) + m(r, f (z+c)

f (z) ) = S(r, f ). Since N(r, 1
f ) = S(r, f ), we have T(r, 1

f ) =
S(r, f ). It is a contradiction. Then G �≡ 0. And so we deduce from (17) and (19) that

m
(
r, f (z + c)

) ≤ m
(

r,
1
G

)
+ m

(
r,

f (k+1)(z)
f (k)(z) – 1

–
f ′(z + c)

f (z + c) – 1

)
≤ T(r, G) + S(r, f )

= S(r, f ). (20)

If z0 is a pole of f (z + c) of multiplicity p ≥ 2, then by (17) we know that z0 is possible a
zero of G with multiplicity p – 1. Consequently, it follows from (19) that

N(2
(
r, f (z + c)

) ≤ 2N
(

r,
1
G

)
≤ 2T(r, G) + O(1) = S(r, f ). (21)
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Let z0 be a simple pole of f (z + c). Set

H(z) =
f (k+1)(z)(f (z + c) – 1)
f ′(z + c)(f (k)(z) – 1)

. (22)

By a short calculation with Laurent series, it follows that H(z0) = k + 1. If H(z) ≡ k + 1,
then we have f (k)(z) – 1 = t(f (z + c) – 1)k+1 with t �= 0 constant. This a contradiction, since
f (k)(z) and f (z + c) share 1 CM. Thus H �≡ k + 1, and so

N1)
(
r, f (z + c)

) ≤ N
(

r,
1

H – (k + 1)

)
≤ T(r, H) + O(1). (23)

We now estimate the poles of H . Clearly, the poles of H can only occur at the 1 points of
f (k)(z), the zeros of f ′(z + c), and the poles of f (z + c) and f (k+1)(z). Since f (k)(z), f (z + c) share
1 CM and ∞ IM, H is holomorphic at the 1 points of f (k)(z) and the poles of f (z + c) and
f (k+1)(z). Thus

N(r, H) ≤ N0

(
r,

1
f ′(z + c)

)
+ S(r, f ), (24)

where N0(r, 1
f ′(z+c) ) denotes the zeros of f ′(z + c) which are not zeros of f (z + c) – 1. Again

by (22), we see that

m(r, H) = S(r, f ), (25)

from this, (23) and (24) we find that

N1)
(
r, f (z + c)

) ≤ N0

(
r,

1
f ′(z + c)

)
+ S(r, f ). (26)

Combining this, Nevanlinna’s second fundamental theorem (see [10, Theorem 3.2])for
f (z + c), (21) and the hypothesis N(r, 1

f (z) ) = S(r, f ) we have

T
(
r, f (z + c)

) ≤ N
(

r,
1

f (z + c)

)
+ N

(
r,

1
f (z + c) – 1

)
+ N

(
r, f (z + c)

)

– N0

(
r,

1
f ′(z + c)

)
+ S

(
r, f (z + c)

)

≤ N
(

r,
1

f (z + c) – 1

)
+ S(r, f )

≤ N1)

(
r,

1
f (z + c) – 1

)
+ N (2

(
r,

1
f (z + c) – 1

)
+ S(r, f ). (27)

From this and Nevanlinna’s first fundamental theorem, it is easy to deduce that

m
(

r,
1

f (z + c) – 1

)
+ N(2

(
r,

1
f (z + c) – 1

)
≤ N (2

(
r,

1
f (z + c) – 1

)
+ S(r, f ), (28)

which implies

m
(

r,
1

f (z + c) – 1

)
+ N(2

(
r,

1
f (z + c) – 1

)
= S(r, f ). (29)
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From (29), we see that

T
(
r, f (z + c)

)
= m

(
r,

1
f (z + c) – 1

)
+ N1)

(
r,

1
f (z + c) – 1

)
+ N(2

(
r,

1
f (z + c) – 1

)

+ S(r, f )

= N1)

(
r,

1
f (z + c) – 1

)
+ S(r, f ). (30)

Since f (z + c) and f (k)(z) share 1 CM, it follows from Lemma 2.7 and (21) that

(k – 1)N1)
(
r, f (z + c)

) ≤ N
(

r,
1

f (k+1)(z)

)
+ S(r, f ). (31)

By Lemma 2.8, (29) (30) and (21), we have

N
(

r,
1

f (k+1)(z + c)

)
≤ N

(
r,

1
f (z + c

)
+ N1)

(
r, f (z + c)

)
) + N

(
r,

1
f (z + c) – 1

)

– T
(
r, f (z + c)

)
+ S

(
r, f (z + c)

)
≤ N1)

(
r, f (z + c)

)
+ S(r, f ). (32)

It follows from Lemma 2.10 that

N
(

r,
1

f (k+1)(z)

)
= N

(
r,

1
f (k+1)(z + c)

)
+ S(r, f ).

From this, (31) and (32), we see that (k – 2)N1)(r, f (z + c)) = S(r, f ). If k ≥ 3, then N1)(r, f (z +
c)) = S(r, f ). Combining this, (20) and (21), we have T(r, f (z + c)) = S(r, f ), which is a con-
tradiction.

Let k = 2.
Case 1. If f (z) is transcendental, then, by Lemma 2.9, for a positive constant ε < 1 we

have

2N1)
(
r, f (z + c)

) ≤ (1 + ε)N
(

r,
1

f (k+1)(z + c)

)
+ (1 + ε)

[
N

(
r, f (z + c)

)
– N

(
r, f (z + c)

)]

+ S(r, f ). (33)

From this and (21) we have

(1 – ε)N1)
(
r, f (z + c)

)
= S(r, f ).

Combining this, (20) and (21), we have T(r, f (z + c)) = S(r, f ). This is a contradiction.
Case 2. If f (z) is rational, then by N(r, 1

f ) = S(r, f ) we know that f has no zeros, and hence

we can write f (z + c) = 1
P(z) , where P(z) is a nonconstant polynomial. Set 
 = f (k+1)(z)

f (k)(z)–1 –
f ′(z+c)

f (z+c)–1 – 2 f ′(z+c)
f (z+c) . Clearly T(r,
) = S(r, f ). Combining this and (17), we have

2f ′(z + c) = Gf 2 – 
f . (34)
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Substituting f (z + c) = 1
P(z) into (34) we obtain –2P′ = G – 
P. This shows that T(r, P′) =

T(r, P) + S(r, f ) and so T(r, P) = S(r, f ). This is a contradiction.
Therefore, f (z + c) = f (k)(z). This completes the proof of Theorem 1.3.
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