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Abstract
The present work investigates the applicability and effectiveness of generalized
proportional fractional integral (GPFI) operator in another sense. We aim to derive
novel weighted generalizations involving a family of positive functions n (n ∈ N) for
this recently proposed operator. As applications of this operator, we can generate
notable outcomes for Riemann–Liouville (RL) fractional, generalizedRL-fractional
operator, conformable fractional operator, Katugampola fractional integral operator,
and Hadamard fractional integral operator by changing the domain. The proposed
strategy is vivid, explicit, and it can be used to derive new solutions for various
fractional differential equations applied in mathematical physics. Certain remarkable
consequences of the main theorems are also figured.
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1 Introduction
Fractional calculus [1–20] is genuinely viewed to be the real-world framework, and it has
wide applications in mathematics, physics, biology, medicine, and many other natural and
social sciences [21–35], for instance, a correspondence structure that contains indulgent
interfacing, dependent parts that are used to accomplish a bound together with a goal of
transmitting and getting signals, can be depicted using complex framework models [36–
43]. This structure is considered as a stunning framework, and the units that make the
entire system are seen as the centers of the complex framework. An attracting particu-
larization of this field is that there are various fractional operators, and this allows the
scientists to pick out the most suitable operator for the purpose of displaying the issue
under scrutiny [44–47]. Moreover, due to its effortlessness in applications, analysts have
paid more noteworthy enthusiasm to fractional operators without singular kernels [48–
50], after which numerous articles considering these sorts of fractional operators have as
of late become visible. These methods had been created by various mathematicians with a
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scarcely explicit definition, as in the case of RL, Weyl, Erdelyi–Kober, Hadamard integral,
Liouville and Katugampola fractional operator [44–46, 48–52].

Recently, Jarad et al. [53] explored the idea of GPFI operators which have been ap-
plied to characterize certain probability density functions and have fertile applications in
statistics. In [54, 55], Rashid et al. proposed a different novel fractional approach having
an exponential function in its kernel which comes into existence in the theory of fractional
calculus, which is known as GPFI operators in another sense. The significant character-
ization of the GPFI operator in another sense is that it can discover the bulk of com-
plex problems in one direction, and then again the generalized proportional fractional
derivative in the sense of another function can catch various sorts of complexities, hence
assembling these two ideas can help us to comprehend the complexities of existing na-
ture in a vastly improved manner. The GPFI operators have captivated the interest of
many researchers from several areas of science. This novel concept provides an avenue
for interested readers towards various scientific fields of research, including control the-
ory, engineering, fluid dynamics, meteorology, analysis, aerodynamics, and many more.

Inequalities are an important part of the whole field of mathematical research [56–69],
fractional calculus can be applied on many equalities and inequalities that have been ex-
plored by many authors, such as the Hardy, Ostrowski, Gagliardo–Nirenberg, Olsen, and
trapezoidal-type inequalities, which are utilized in imperative significant systems among
scientists and amass prolific utilitarian applications in different regions of science [70–
72]. Fractional integral inequalities have potential applications in several areas of science,
such as technology, mathematics, chemistry, plasma physics, and so on. Particularly, we
bring up the initial value problem, the stability of linear transformation, integrodifferential
equations, and transform equations [44–46]. Such utilizations of fractional integral oper-
ators constrained us to show the speculation by utilizing a group of n positive functions
including GPFI operators in another sense.

In the present study, we introduce new weighted versions of several generalizations and
enunciate a new generalized fractional proportional integrals, which we name GPFI op-
erator in another sense. To be more precise, we establish a new version for a class of family
of n (n ∈N) continuous positive decreasing functions in the frame of the GPFI operator
in another sense and also provide some of its trendy splendor consequences observing
Remark 2.2. New findings are introduced and new theorems which relate to GPFI and
RL are derived that correlate with the earlier results.

2 Prelude
This section consists of some useful preliminaries from fractional calculus used in our
subsequent discussion. The major subtleties are given in the monograph by Kilbas et al.
[73].

Now, we demonstrate a novel fractional operator which is known as the GPFI oper-
ator of a function in another sense proposed by Jarad et al. [54] and Rashid et al. [55],
independently.

Definition 2.1 (see [54, 55]) Let ζ > 0, (μ1,μ2) (–∞ ≤ μ1 < μ2 ≤ ∞) be a finite or infinite
real interval, and ϕ(y1) an increasing and positive monotone function on (μ1,μ2]. Then
the left- and right-sided GPFI operators of a function P with respect to another function
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ϕ of order ζ > 0 are defined by (2.1) and (2.2) as follows:

ϕKζ ,σ
μ1 P(ς ) =

1
σ ζΓ (ζ )

∫ ς

μ1

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)P(y1) dy1 (μ1 < ς ), (2.1)

ϕKζ ,σ
μ2 P(ς ) =

1
σ ζΓ (ζ )

∫ μ2

ς

exp[ σ–1
σ

(ϕ(y1) – ϕ(ς ))]
(ϕ(y1) – ϕ(ς ))1–ζ

ϕ′(y1)P(y1) dy1 (ς < μ2), (2.2)

where the proportionality index σ ∈ (0, 1], ς ∈ C with R(ς ) > 0 and Γ (ς ) =
∫ ∞

0 yς–1
1 e–y1 dy1

is the Gamma function.

Remark 2.2 From Definition 2.1 we clearly see that
(1) If ϕ(y1) = y1, then the left- and right-sided GPFI operator reduces to the operator

given in [53].
(2) If σ = 1, then the left- and right-sided generalized RL-fractional integral operator

reduces to the operator defined in [73].
(3) If σ = 1 and ϕ(y1) = y1, then the left- and right-sided RL-fractional integral operator

reduces to the operator given in [73].
(4) If ϕ(y1) = ln y1, then the left- and right-sided generalized proportional Hadamard

fractional integral operator reduces to the operator given in [74].
(5) If ϕ(y1) = ln y1 and σ = 1, then the left- and right-sided Hadamard fractional integral

operator reduces to the operator defined in [75].

Next, we present the definition of the one-sided GPFI operator with respect to another
function ϕ.

Definition 2.3 Let (μ1,μ2) (–∞ ≤ μ1 < μ2 ≤ ∞) be a finite or infinite real interval, ζ > 0,
and ϕ(y1) an increasing and positive monotone function on (μ1,μ2]. Then the one-sided
GPFI operator of a functionP with respect to another function ϕ of order ζ > 0 is defined
by

ϕKζ ,σ
0+ P(ς ) =

1
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)P(y1) dy1 (ς > 0). (2.3)

3 Main results
In what follows, we suppose that ϕ(y1) a continuous, increasing, and positive function on
[0,∞) with ϕ(0) = 0.

Throughout this paper, we suppose that ϕ(y1) is an increasing, positive monotone func-
tion on [0,∞), and also ϕ(y1) is continuous on [0,∞) with ϕ(0) = 0.

Next, we provide certain inequalities for a class of family of continuous, positive and
decreasing functions via GPFI defined in (2.3).

Theorem 3.1 Assume that there are two positive and continuous functions P and Q de-
fined on [0,∞) with the assumption that R : [0,∞) → R is positive and continuous. Then
for all ς > 0, the following inequality holds:

ϕKζ ,σ
0+

[
R(ς )Pβ+ρ(ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Pρ+η(ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]
, (3.1)

where β ≥ η > 0, ρ > 0, σ ∈ (0, 1], and ζ ∈ C (R(ζ ) > 0).
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Proof Since P and Q are positive and continuous functions defined on [0,∞), therefore
for all y1, z1 ∈ (0,ς ), ς > 0 and for any ρ > 0, β ≥ η > 0, we have

(
Qρ(z1)Pρ(y1) – Qρ(y1)Pρ(z1)

)(
Pβ–η(y1) – Pβ–η(z1)

) ≥ 0.

It follows that

Qρ(z1)Pρ+β–η(y1) + Qρ(y1)Pρ+β–η(z1)

≥Qρ(z1)Pρ(y1)Pβ–η(z1) + Qρ(y1)Pρ(z1)Pβ–η(y1). (3.2)

Multiplying both sides of (3.2) by 1
σζ Γ (ζ )

exp[ σ–1
σ (ϕ(ς )–ϕ(y1))]

(ϕ(ς )–ϕ(y1))1–ζ ϕ′(y1)R(y1)Pη(y1) and then inte-
grating the obtained inequality with respect to y1 over (0,ς ), we get

Qρ(z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)Pη(y1)Pρ+β–η(y1) dy1

+
Pρ+β–η(z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)Pη(y1)Qρ(y1) dy1

≥ Qρ(z1)Pβ–η(z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)Pη(y1)Pρ(y1) dy1

+
Pρ(z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)Pη(y1)Qρ(y1)Pβ–η(y1) dy1.

In view of Definition 2.3, we have

Qρ(z1)ϕKζ ,σ
0+

[
R(ς )Pβ+ρ(ς )

]
+ Pρ+β–η(z1)ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

≥Qρ(z1)Pβ–η(z1)ϕKζ ,σ
0+

[
R(ς )Pρ+η(y1)

]
+ Pρ(z1)Kζ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]
. (3.3)

Again, if we multiply both sides of (3.3) by 1
σζ Γ (ζ )

exp[ σ–1
σ (ϕ(ς )–ϕ(z1))]

(ϕ(ς )–ϕ(z1))1–ζ ϕ′(z1)R(z1)Pη(z1) and
integrate the obtained inequality with respect to z1 over (0,ς ), then, by using (2.3), we
obtain

ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pη(ς )

]
ϕKζ ,σ

0+
[
R(ς )Pρ+β(ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Pρ+β (ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ (ς )

]
ϕKζ ,σ

0+
[
R(ς )Pρ+η(ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Pρ+η(ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]
,

which gives the desired inequality (3.1). �

Theorem 3.2 Assume that there are two positive and continuous functions P and Q de-
fined on [0,∞) with the assumption that R : [0,∞) → R is positive and continuous. Then
for all ς > 0, we have the following inequality:

ϕKζ ,σ
0+

[
R(ς )Pρ+β (ς )

]
ϕKϑ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pη(ς )

]
ϕKϑ ,σ

0+
[
R(ς )Pρ+β (ς )

]
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≥ ϕKζ ,σ
0+

[
R(ς )Pρ+η(ς )

]
ϕKϑ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ (ζ )

]
ϕKζ ,σ

0+
[
R(ς )Pρ+η(ς )

]
, (3.4)

where β ≥ η > 0, ρ > 0, σ ∈ (0, 1], ζ ∈ C , R(ζ ) > 0.

Proof Multiplying both sides of (3.3) by 1
σϑΓ (ϑ)

exp[ σ–1
σ (ϕ(ς )–ϕ(z1))]

(ϕ(ς )–ϕ(z1))1–ϑ ϕ′(z1)R(z1)Pη(z1), where
ϑ ,η > 0 and z1 ∈ (0,ς ), ς > 0, and then integrating the obtained inequality with respect to
z1 over (0,ς ), we have

ϕKζ ,σ
0+ [R(ς )Pρ+β (ς )]

σϑΓ (ϑ)

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)Pη(z1)Qρ(z1) dz1

+
ϕKζ ,σ

0+ [R(ς )Qρ(ς )Pη(ς )]
σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)Pη(z1)Pρ+β–η(z1) dz1

≥
ϕKζ ,σ

0+ [R(ς )Pρ+η(ς )]
σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)Pη(z1)Qρ(z1)Pβ–η(z1) dz1

+
ϕKζ ,σ

0+ [R(ς )Qρ(ς )Pβ (ς )]
σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)Pη(z1)Pρ(z1) dz1.

It follows from Definition 2.3 that

ϕKζ ,σ
0+

[
R(ς )Pρ+β (ς )

]
ϕKϑ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pη(ς )

]
ϕKϑ ,σ

0+
[
R(ς )Pρ+β (ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Pρ+η(ς )

]
ϕKϑ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ (ς )

]
ϕKϑ ,σ

0+
[
R(ς )Pρ+η(ς )

]
,

which is the desired inequality (3.4). �

Remark 3.3 Applying Theorem 3.2 for ζ = ϑ , we get Theorem 3.1.

Theorem 3.4 Assume that there are two positive and continuous functions P and Q de-
fined on [0,∞) with the assumption that R : [0,∞) → R is positive and continuous. Then
for all ς > 0, we have the inequality

ϕKζ ,σ
0+

[
R(ς )Pβ (ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Pη(ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]
, (3.5)

where β ≥ η > 0, ρ > 0, σ ∈ (0, 1], ζ ∈ C , R(ζ ) > 0.
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Proof Since P and Q are positive and continuous functions defined on [0,∞) such that a
decreasing function P and an increasing function Q defined on [0,∞), hence for all ρ > 0,
β ≥ η > 0, y1, z1 ∈ (0,ς ), ς > 0, we have

(
Qρ(z1) – Qρ(y1)

)(
Pβ–η(y1) – Pβ–η(z1)

) ≥ 0. (3.6)

Inequality (3.6) leads to

Qρ(z1)Pβ–η(y1) + Qρ(y1)Pβ–η(z1) ≥Qρ(z1)Pβ–η(z1) + Qρ(y1)Pρ(z1)Pβ–η(y1). (3.7)

Multiplying both sides of (3.7) by 1
σζ Γ (ζ )

exp[ σ–1
σ (ϕ(ς )–ϕ(y1))]

(ϕ(ς )–ϕ(y1))1–ζ ϕ′(y1)R(y1)Pη(y1) and then inte-
grating the obtained inequality with respect to y1 over (0,ς ), we get

Qρ(z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)Pη(y1)Pβ–η(y1) dy1

+
Pβ–η(z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)Pη(y1)Qρ dy1

≥ Qρ(z1)Pβ–η(z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)Pη(y1)(y1) dy1

+
1

σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)Pη(y1)Qρ(y1)Pβ–η(y1) dy1.

From Definition 2.3 we clearly see that

Qρ(z1)ϕKζ ,σ
0+

[
R(ς )Pβ (ς )

]
+ Pβ–η(z1)ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

≥Qρ(z1)Pβ–η(z1)ϕKζ ,σ
0+

[
R(ς )Pη(ς )

]
+ ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]
. (3.8)

Further, if we multiply both sides of (3.8) by 1
σζ Γ (ζ )

exp[ σ–1
σ (ϕ(ς )–ϕ(z1))]

(ϕ(ς )–ϕ(z1))1–ζ ϕ′(z1)R(z1)Pη(z1) and
integrate the obtained inequality with respect to z1 over (0,ς ), and then employ (2.3), we
obtain

ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pη(ς )

]
ϕKζ ,σ

0+
[
R(ς )Pβ (ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Pβ (ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ (ς )

]
ϕKζ ,σ

0+
[
R(ς )Pη(ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Pη(ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]
,

which gives the desired inequality (3.5). �

Theorem 3.5 Assume that there are two positive and continuous functions P and Q de-
fined on [0,∞), function P is decreasing and function Q is an increasing [0,∞), with the
assumption that the function R : [0,∞) →R is positive and continuous. Then for all ς > 0,
one has

ϕKζ ,σ
0+

[
R(ς )Pβ (ς )

]
ϕKϑ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

+ ϕKϑ ,σ
0+

[
R(ς )Pβ (ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]
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≥ ϕKζ ,σ
0+

[
R(ς )Pη(ς )

]
ϕKϑ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]

+ ϕKϑ ,σ
0+

[
R(ς )Pη(ς )

]
ϕKζ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]
, (3.9)

where β ≥ η > 0, ρ > 0, σ ∈ (0, 1], ζ ∈ C , R(ζ ) > 0.

Proof Multiplying both sides of (3.8) by 1
σϑΓ (ϑ)

exp[ σ–1
σ (ϕ(ς )–ϕ(z1))]

(ϕ(ς )–ϕ(z1))1–ϑ ϕ′(z1)R(z1)Pη(z1), where
ϑ ,η > 0 and z1 ∈ (0,ς ), ς > 0, and then integrating the previous inequality with respect to
z1 over (0,ς ), we have

ϕKζ ,σ
0+ [R(ς )Pβ (ς )]

σϑΓ (ϑ)

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)Pη(z1)Qρ(z1) dz1

+
ϕKζ ,σ

0+ [R(ς )Qρ(ς )Pη(ς )]
σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)Pη(z1)Pβ–η(z1) dz1

≥
ϕKζ ,σ

0+ [R(ς )Pρ(ς )]
σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)Pη(z1)Qρ(z1)Pβ–η(z1) dz1

+
ϕKζ ,σ

0+ [R(ς )Qρ(ς )Pβ (ς )]
σϑΓ (ϑ)

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)Pη(z1) dz1.

From (2.3) we clearly see that the above inequality can be rewritten as

ϕKζ ,σ
0+

[
R(ς )Pβ (ς )

]
ϕKϑ ,σ

0+
[
R(ς )Qρ(ς )Pη(ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pη(ς )

]
ϕKϑ ,σ

0+
[
R(ς )Pβ (ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Pη(ς )

]
ϕKϑ ,σ

0+
[
R(ς )Qρ(ς )Pβ (ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ (ς )

]
ϕKϑ ,σ

0+
[
R(ς )Pη(ς )

]
,

which is the desired inequality (3.9). �

Remark 3.6 Applying Theorem 3.5 for ζ = ϑ , we get Theorem 3.4.

Theorem 3.7 Assume that there are two functions Ps (s = 1, 2, . . . , n) and Q which are pos-
itive and continuous, defined on [0,∞), with the assumption that the function R : [0,∞) →
R is positive and continuous. Then for all ς > 0, we have

ϕKζ ,σ
0+

[
R(ς )Pβ+ρ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs (ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Pρ

p (ς )
n∏

s=1

Pηs (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )Uβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
, (3.10)

where β ≥ ηp > 0, ρ > 0 (p = 1, 2, . . . , n), σ ∈ (0, 1], ζ ∈ C , R(ζ ) > 0.
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Proof SincePs andQ are positive and continuous functions on [0,∞), for all y1, z1 ∈ (0,ς ),
ς > 0 and for any ρ > 0, β ≤ ηp > 0, we have

(
Qρ(z1)Pρ

p (y1) – Qρ(y1)Pρ(z1)
)(
Pβ–ηp

p (y1) – Pβ–ηp
p (z1)

) ≥ 0. (3.11)

It follows from (3.11) that

Qρ(z1)Pρ+β–ηp
p (y1) + Qρ(y1)Pρ+β–ηp

p (z1)

≥Qρ(z1)Pρ
p (y1)Pβ–ηp

p (z1) + Qρ(y1)Pρ
p (z1)Pβ–ηp

p (y1). (3.12)

Multiplying both sides of (3.12) by 1
σζ Γ (ζ )

exp[ σ–1
σ (ϕ(ς )–ϕ(y1))]

(ϕ(ς )–ϕ(y1))1–ζ ϕ′(y1)R(y1)
∏n

s=1 P
ηs
s (y1) (ηs > 0,

s = 1, 2, . . . , n and y1 ∈ (0,ς )) and then integrating the obtained inequality with respect to
y1 over (0,ς ), we have

Qρ(z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)
n∏

s=1

Pηs
s (y1)Pρ+β–ηp

p (y1) dy1

+
Pρ+β–ηp

p (z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)
n∏

s=1

Pηs
s (y1)Qρ(y1) dy1

≥ Qρ(z1)Pβ–ηp
p (z1)

σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)
n∏

s=1

Pηs
s (y1)Pρ

p (y1) dy1

+
Pρ

p (z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)

×
n∏

s=1

Pηs
s (y1)Qρ(y1)Pβ–ηp

p (y1) dy1.

In view of Definition 2.3, we have

Qρ(z1)ϕKζ ,σ
0+

[
R(ς )Pβ+ρ

p (ς )
n∏

s �=p

Pηs
s (ς )

]

+ Pρ+β–η
p (z1)Hζ ,ρ

1,ς

[
R(ς )Qρ(ς )Pηp

p (ς )
n∏

s �=p

Pηs
s (ς )

n∏
s=1

Pηs
s (ς )

]

≥Qρ(z1)Pβ–ηp
p (z1)ϕKζ ,σ

0+

[
R(ς )Pρ+η(y1)

n∏
s �=p

Pηs
s (ς )

]

+ Pρ
p (z1)ϕKζ ,σ

0+

[
R(ς )Qρ(ς )Pβ (ς )

n∏
s=1

Pηs
s (ς )

]
. (3.13)

Again, if we multiply both sides of (3.13) by 1
σζ Γ (ζ )

exp[ σ–1
σ (ϕ(ς )–ϕ(z1))]

(ϕ(ς )–ϕ(z1))1–ζ ϕ′(z1)R(z1)
∏n

s=1 P
ηs
s (z1)

(ηs > 0, s = 1, 2, . . . , n and z1 ∈ (0,ς )) and integrate the obtained inequality with respect to
z1 over (0,ς ), then, by using (2.3), we obtain

ϕKζ ,σ
0+

[
R(ς )Pρ+β

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs
s (ς )

]
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+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Pρ+β

p (ς )
n∏

s �=p

Pηs
s (ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Pρ

p (ς )
n∏

s=1

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Pρ

p (ς )
n∏

s=1

Pηs
s (ς )

]
,

which is the desired inequality (3.10). �

Theorem 3.8 Assume that there are two functions Ps (s = 1, 2, . . . , n) and Q which are pos-
itive and continuous, defined on [0,∞), with the assumption that the function R : [0,∞) →
R is positive and continuous. Then for all ς > 0, we have the inequality

ϕKζ ,σ
0+

[
R(ς )Pρ+β

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKϑ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs
p (ς )

]

+ ϕKϑ ,σ
0+

[
R(ς )Pρ+β

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs
p (ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Pρ

p (ς )
n∏

s=1

Pηs
p (ς )

]
ϕKϑ ,σ

0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Pρ

p (ς )
n∏

s=1

Pηs
p (ς )

]
ϕKϑ ,σ

0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
, (3.14)

where β ≥ ηp > 0, ρ > 0 (p = 1, 2, . . . , n), σ ∈ (0, 1], ζ ∈ C , R(ζ ) > 0.

Proof Multiplying both sides of (3.13) by 1
σϑΓ (ϑ)

exp[ σ–1
σ (ϕ(ς )–ϕ(z1))]

(ϕ(ς )–ϕ(z1))1–ϑ ϕ′(z1)R(z1) ×∏n
s=1 Pη(ς )(z1), where ϑ ,ηs > 0 (s = 1, 2, . . . , n), z1 ∈ (0,ς ), ς > 0 and integrating the ob-

tained inequality with respect to z1 over (0,ς ), we have

ϕKζ ,σ
0+ [R(ς )Pρ+β

p (ς )
∏n

s �=p P
ηs
s (ς )]

σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)
n∏

s=1

Pη
s (z1)Qρ(z1) dz1

+
ϕKζ ,σ

0+ [R(ς )Qρ(ς )
∏n

s=1 P
ηs
s (ς )]

σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)
n∏

s=1

Pη
s (z1)Pρ+β–ηp

p (z1) dz1

≥
ϕKζ ,σ

0+ [R(ς )Pρ(ς )
∏n

s=1 P
ηs
s (ς )]

σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)
n∏

s=1

Pη
s (z1)Qρ(z1)Pβ–ηp

p (z1) dz1
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+
ϕKζ ,σ

0+ [R(ς )Qρ(ς )Pρ+β
p (ς )

∏n
s �=p P

ηs
s (ς )]

σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)
n∏

s=1

Pη
s (z1)Pρ

p (z1) dz1.

It follows from Definition 2.3 that

ϕKζ ,σ
0+

[
R(ς )Pρ+β

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKϑ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs
p (ς )

]

+ ϕKϑ ,σ
0+

[
R(ς )Pρ+β

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs
p (ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Pρ

p (ς )
n∏

s=1

Pηs
p (ς )

]
ϕKϑ ,σ

0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Pρ

p (ς )
n∏

s=1

Pηs
p (ς )

]
ϕKϑ ,σ

0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
,

which is the required inequality (3.14). �

Remark 3.9 Applying Theorem 3.8 for ζ = ϑ , we get Theorem 3.7.

Theorem 3.10 Assume that there are two functions Ps (s = 1, 2, . . . , n) and Q which
are positive and continuous, defined on [0,∞), with the assumption that the function
R : [0,∞) → R is positive and continuous, function Q is increasing and function Ps

(s = 1, 2, . . . , n) is decreasing on [0,∞). Then for all ς > 0, the following inequality holds:

ϕKζ ,σ
0+

[
R(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs (ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )

n∏
s=1

Pηs (ς )

]
, (3.15)

where β ≥ ηp > 0, ρ > 0 (p = 1, 2, . . . , n), σ ∈ (0, 1], ζ ∈ C , R(ζ ) > 0.

Proof Utilizing hypothesis mentioned in Theorem 3.10, one obtains

(
Qρ(z1) – Qρ(y1)

)(
Pβ–ηp

p (y1) – Pβ–ηp
p (z1)

) ≥ 0, (3.16)

for any y1, z1 ∈ (0,ς ), ς > 0, ρ > 0, β ≥ η > 0, and p = 1, 2, . . . , n.
It follows from (3.16) that

Qρ(z1)Pβ–ηp
p (y1) + Qρ(y1)Pβ–ηp

p (z1) ≥Qρ(z1)Pβ–ηp
p (z1) + Qρ(y1)Pβ–ηp

p (z1). (3.17)
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Multiplying both sides of (3.17) by 1
σζ Γ (ζ )

exp[ σ–1
σ (ϕ(ς )–ϕ(y1))]

(ϕ(ς )–ϕ(y1))1–ζ ϕ′(y1)R(y1)
∏n

s=1 P
ηs
s (y1) and in-

tegrating the obtained inequality with respect to y1 over (0,ς ), we have

Qρ(z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)
n∏

s=1

Pηs
s (y1)Pβ–ηp

p (y1) dy1

+
Pβ–ηp

p (z1)
σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)
n∏

s=1

Pηs
s (y1)Qρ(y1) dy1

≥ Qρ(z1)Pβ–ηp
p (z1)

σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)
n∏

s=1

Pηs
s (y1) dy1

+
1

σ ζΓ (ζ )

∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(y1))]
(ϕ(ς ) – ϕ(y1))1–ζ

ϕ′(y1)R(y1)

×
n∏

s=1

Pηs
s (y1)Qρ(y1)Pβ–ηp

p (z1) dy1.

Now, in view of Definition 2.3, we get

Qρ(z1)ϕKζ ,σ
0+

[
R(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]

+ Pβ–ηp
p (z1)ϕKζ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs
s (ς )

]

≥Qρ(z1)Pβ–ηp
p (z1)ϕKζ ,σ

0+

[
R(ς )

n∏
s �=p

Pηs
s (ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Uβ

p (ς )
n∏

s=1

Pηs
s (ς )

]
. (3.18)

Again, multiplying both sides of (3.18) by 1
σζ Γ (ζ )

exp[ σ–1
σ (ϕ(ς )–ϕ(z1))]

(ϕ(ς )–ϕ(z1))1–ζ ϕ′(z1)R(y1)
∏n

s=1 P
ηs
s (z1),

integrating the obtained inequality with respect to z1 over (0,ς ), and then using (2.3), we
obtain

ϕKζ ,σ
0+

[
R(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs (ς )

]

≥ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )

n∏
s=1

Pηs (ς )

]
,

which is the desired inequality (3.15). �

Theorem 3.11 Assume that two functions Ps (s = 1, 2, . . . , n) and Q defined on [0,∞) are
positive and continuous with the assumption that the function R : [0,∞) → R is positive
and continuous, function Q is increasing and function Ps (s = 1, 2, . . . , n) is decreasing on
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[0,∞). Then for all ς > 0, the following inequality holds:

ϕKζ ,σ
0+

[
R(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKϑ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs
s (ς )

]

+ ϕKϑ ,σ
0+

[
R(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs (ς )

]

≥ ϕKϑ ,σ
0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )

n∏
s=1

Pηs (ς )

]

+ ϕKϑ ,σ
0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )

n∏
s=1

Pηs (ς )

]
, (3.19)

where β ≥ ηp > 0, ρ > 0, p = 1, 2, . . . , n and σ ∈ (0, 1], ζ ∈ C , R(ζ ) > 0.

Proof To obtain the desired assertion (3.19), we multiply (3.18) by 1
σϑΓ (ϑ)

exp[ σ–1
σ (ϕ(ς )–ϕ(z1))]

(ϕ(ς )–ϕ(z1))1–ϑ ×
ϕ′(z1)R(z1)

∏n
s=1 P

ηs
s (z1), where ϑ ,ηs > 0 (s = 1, 2, . . . , n), z1 ∈ (0,ς ), ς > 0, and then inte-

grate the obtained inequality with respect to z1 over (0,ς ) to get

ϕKζ ,σ
0+ [R(ς )Pβ

p (ς )
∏n

s �=p P
ηs
s (ς )]

σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)
n∏

s=1

Pη
s (z1)Qρ(z1) dz1

+
ϕKζ ,σ

0+ [R(ς )Qρ(ς )
∏n

s=1 P
ηs
s (ς )]

σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)
n∏

s=1

Pη
s (z1)Pβ–ηp

p (z1) dz1

≥
ϕKζ ,σ

0+ [R(ς )
∏n

s=1 P
ηs
s (ς )]

σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)
n∏

s=1

Pη
s (z1)Qρ(z1)Pβ–ηp

p (z1) dz1

+
ϕKζ ,σ

0+ [R(ς )Qρ(ς )Pβ (ς )
∏n

s �=p P
ηs
s (ς )]

σϑΓ (ϑ)

×
∫ ς

0

exp[ σ–1
σ

(ϕ(ς ) – ϕ(z1))]
(ϕ(ς ) – ϕ(z1))1–ϑ

ϕ′(z1)R(z1)
n∏

s=1

Pη
s (z1) dz1.

It follows from Definition 2.3 that

ϕKζ ,σ
0+

[
R(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKϑ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs (ς )

]

+ ϕKϑ ,σ
0+

[
R(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKζ ,σ

0+

[
R(ς )Qρ(ς )

n∏
s=1

Pηs (ς )

]
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≥ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKϑ ,σ

0+

[
R(ς )

n∏
s=1

Pηs
s (ς )

]

+ ϕKζ ,σ
0+

[
R(ς )Qρ(ς )Pβ

p (ς )
n∏

s �=p

Pηs
s (ς )

]
ϕKϑ ,σ

0+

[
R(ς )

n∏
s=1

Pηs
s (ς )

]
,

which completes the proof of Theorem 3.11. �

Remark 3.12 Applying Theorem 3.11 for ζ = ϑ , we get Theorem 3.10.

4 Conclusions
In the article, we have derived certain variants by the use of the newly defined GPFI with
respect to another function ϕ related to a class of n positive continuous and decreasing
functions defined on [μ1,μ2]. In [76], Liu et al. investigated thought-provoking variants for
continuous functions. Recently, Dahmani [77] has presented more generalizations of the
work in [76] by utilizing the RL-fractional integral operators. Therefore our findings in
the present article are generalizations of integral inequalities involving the RL-fractional
integral operators. If we take into account R(ς ) = μ = 1 and ϕ(x) = x, then our findings de-
rived in the present paper will become variants associated with the RL-fractional integral
operators introduced by Dahmani [77]. Particular cases of our consequences could be ob-
served in [76]. The consequences acquired in this paper deliver some contributions to the
direction of the idea of integral inequalities, fractional calculus, and anticipated results in
some applications for establishing the uniqueness of solutions of integrodifferential equa-
tions and for finding the analytical solutions of some space-time fractional differential
equations.
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