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Abstract
In this paper, we establish some new integral inequalities involving general kernels.
We obtain the related broad range of fractional integral inequalities. Also, we apply
the Young inequality to find new forms of inequalities for generalized kernels. These
new and motivated results generalize the results for fractional integrals such that
fractional integral of a function with respect to an increasing function,
Riemann–Lioville fractional integrals, Erdélyi–Kober fractional integrals, Hadamard
fractional integrals, generalized factional integral integrals in addition to the
corresponding k-fractional integrals.
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1 Introduction
Fractional calculus deals with the study of derivative and integral operators of fractional
order. This field is as important as calculus itself. In the last few decades, it attracted many
researchers, who produced remarkable work (see, e.g., [1–3, 6, 7, 9–13, 18]). In particular,
the uniqueness of solutions for fractional partial differential equations can be established
by using fractional integral inequalities.

The Grüss inequality connects the integral of the product of two functions with the
product of their integrals. Our main purpose in this paper is showing some new modifi-
cations of the Grüss inequality by using a general kernel. The Grüss inequality is one of
the most fascinating inequalities and stated in the following theorem.

Theorem 1.1 ([5]) Let � be a set of real numbers, let m, M, n, N ∈ �, and let Ω ,Υ :
[τ1, τ2] → � be two positive functions such that m ≤ Ω(μ) ≤ M and n ≤ Υ (μ) ≤ N for
μ ∈ [τ1, τ2]. Then
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∣
∣
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1
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Ω(μ) dμ
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≤ 1
4

(M – m)(N – n), (1.1)

where the constant 1
4 cannot be improved.

Let (�,Σ ,μ) be a measure space with positive σ -finite measure, let k : � × � →R be a
nonnegative function, and let

Θ(x) =
∫

�

k(x, y) dμ(y), x ∈ �. (1.2)

Throughout this paper, we suppose Θ(x) > 0 a.e. on �.
Let U(k) denote the class of functions Λ : � → R with the representation

Λ(x) =
∫

�

k(x, y)Λ(y) dμ(y),

where Λ : � →R is a measurable function.

Definition 1.2 Let f ∈ L1([a, b]) (the Lebesgue measure). The left-sided and right-sided
Riemann–Liouville fractional integrals Iα

a+ f and Iα
b– f of order α > 0 are defined by

Iα
a+ f (x) =

1
Γ (α)

∫ x

a
f (y)(x – y)α–1 dy (x > a)

and

Iα
b– f (x) =

1
Γ (α)

∫ b

x
f (y)(y – x)α–1 dy (x < b),

where Γ is the gamma function.

Diaz et al. [4] defined the gamma k-function as follows.

Definition 1.3 The function Γk , a generalization of the classical gamma function, is de-
fined as follows:

Γk(t) = lim
n→∞

n!kn(nk)
t
k –1

(t)n,k
, k > 0,R(t) > 0,

where (t)n,k = t(t + k)(t + 2k) . . . , (t + (n – 1)k), n ≥ 1, is the Pochhammer k symbol. Its
integral representation is given by

Γk(t) =
∫ ∞

0
xt–1e

–xk
k dx, R(t) > 0. (1.3)

In particular, for k = 1, Γ1(t) = Γ (t).

Definition 1.4 ([12]) Let f ∈ L1([a, b]) (the Lebesgue measure). The left-sided and right-
sided Riemann–Liouville fractional integrals Iα,k

a+ f and Iα,k
b– f of order α, k > 0 are defined
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by

Iα,k
a+ f (x) =

1
kΓk(α)

∫ x

a
f (y)(x – y)

α
k –1 dy (x > a)

and

Iα,k
b– f (x) =

1
kΓk(α)

∫ b

x
f (y)(y – x)

α
k –1 dy (x < b),

where Γk(α) is the k-gamma function.

Definition 1.5 ([10]) Let (a, b), –∞ ≤ a < b ≤ ∞, be a finite or infinite interval of the real
line �, and let α > 0. Let g be an increasing and positive monotone function on (a, b]. The
left- and right-sided fractional integrals of a function f with respect to g in [a, b] are given
by

Iα
a+;g f (x) =

1
Γ (α)

∫ x

a

g ′(t)f (t) dt
[g(x) – g(t)]1–α

, x > a,

and

Iα
b–;g f (x) =

1
Γ (α)

∫ b

x

g ′(t)f (t) dt
[g(t) – g(x)]1–α

, x < b.

A more general form of Definition 1.5 is as follows.

Definition 1.6 Let k > 0, let (a, b), –∞ ≤ a < b ≤ ∞, be a finite or infinite interval of the
real line �, and let α > 0. Let g be an increasing and positive monotone function on (a, b].
The left- and right-sided fractional integrals of a function f with respect to g of order
α, k > 0 in [a, b] are given by

Iα,k
a+;g f (x) =

1
Γk(α)

∫ x

a

g ′(t)f (t) dt
[g(x) – g(t)]1– α

k
, x > a,

and

Iα,k
b–;g f (x) =

1
Γ (α)

∫ b

x

g ′(t)f (t) dt
[g(t) – g(x)]1– α

k
, x < b.

Now we continue with the definition of Hadamard-type fractional integrals.

Definition 1.7 Let (a, b) be a finite or infinite interval of the half-axis �+, and and α > 0.
The left-sided and right-sided Hadamard-type fractional integrals of order α > 0 are given
by

Jα
a+ f (x) =

1
Γ (α)

∫ x

a

(

log
x
y

)α–1 f (y) dy
y

, x > a,
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and

Jα
b– f (x) =

1
Γ (α)

∫ b

x

(

log
y
x

)α–1 f (y) dy
y

, x < b,

respectively.

The generalized Hadamard-type fractional integrals are defined as follows.

Definition 1.8 Let (a, b) be a finite or infinite interval of R+, and let α > 0. The left- and
right-sided Hadamard-type fractional integrals of order α > 0 are given by

Jα
a+ f (x) =

1
Γk(α)

∫ x

a

(

log
x
y

) α
k –1 f (y) dy

y
, x > a,

and

Jα
b– f (x) =

1
Γk(α)

∫ b

x

(

log
y
x

) α
k –1 f (y) dy

y
, x < b,

respectively.

Note that Hadamard fractional integrals of order α are a particular case of the left- and
right-sided fractional integrals of a function f with respect to the function g(x) = log(x) in
[a, b], where 0 ≤ a < b ≤ ∞.

Now we present the definition of the Erdélyi–Kober-type fractional integrals. Some of
these definitions and results were presented in Samko et al. [16].

Definition 1.9 Let (a, b) (0 ≤ a < b ≤ ∞) be a finite or infinite interval of the half-axis R+.
Let α > 0,σ > 0, and η ∈ R. We consider the left- and right-sided integrals of order α ∈ R

defined by

Iα
a+;σ ;ηf (x) =

σx–σ (α+η)

Γ (α)

∫ x

a

tση+σ–1f (t) dt
(xσ – tσ )1–α

(1.4)

and

Iα
b–;σ ;ηf (x) =

σxση

Γ (α)

∫ b

x

tσ (1–η–α)–1f (t) dt
(tσ – xσ )1–α

, (1.5)

respectively. Integrals (1.4) and (1.5) are called the Erdélyi–Kober-type fractional integrals.

2 Main results
The first main result is given in the following:

Theorem 2.1 Let (�,Σ ,μ) be a measure space with positive σ -finite measure, let k :
� × � → R be a nonnegative function, and let Ω ∈ U(k) be a positive function on [0,∞).
Suppose that the exist integrable functions Ψ1,Ψ2 on [0,∞), such that

Ψ1(ξ ) ≤ Ω(ξ ) ≤ Ψ2(ξ ) (2.1)
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for all ξ ∈ [0,∞). Then

Ψ 1(ξ )Ω(ξ ) + Ψ 2(ξ )Ω(ξ ) ≥ Ψ 1(ξ )Ψ 2(ξ ) + Ω(ξ )Ω(ξ ). (2.2)

Proof Using (2.1), for all γ ≥ 0 and δ ≥ 0, we have

[Ψ2(γ ) – Ω(γ )]
[

Ω(δ) – (Ψ1)(δ)
] ≥ 0.

Then

Ψ2(γ )Ω(δ) + Ψ1(δ)Ω(γ ) ≥ Ψ1(δ)Ψ2(γ ) + Ω(γ )Ω(δ). (2.3)

Multiplying both sides of (2.3) by k(ξ ,γ ) and integrating the resulting identity with respect
to γ over �, we get

Ω(δ)
∫

�

k(ξ ,γ )Ψ2(γ ) dμ(γ ) + Ψ1(δ)
∫

�

k(ξ ,γ )Ω(γ ) dμ(γ )

≥ Ψ1(δ)
∫

�

k(ξ ,γ )Ψ2(γ ) dμ(γ ) + Ω(δ)
∫

�

k(ξ ,γ )Ω(γ ) dμ(γ ),

which can be written as

Ω(δ)Ψ 2(ξ ) + Ψ1(δ)Ω(ξ ) ≥ Ψ1(δ)Ψ 2(ξ ) + Ω(δ)Ω(ξ ). (2.4)

Now multiplying both sides of (2.4) by k(ξ , δ) and integrating the resulting identity with
respect to δ over �, we get

Ψ 1(ξ )Ω(ξ ) + Ψ 2(ξ )Ω(ξ ) ≥ Ψ 1(ξ )Ψ 2(ξ ) + Ω(ξ )Ω(ξ ).

This completes the proof. �

Corollary 2.2 Let m, M ∈ �, with m < M, and let ξ > 0. Let Ω be a positive function such
that m ≤ Ω(ξ ) ≤ M. Then

mΘ(ξ )Ω(ξ ) + MΘ(ξ )Ω(ξ ) ≥ mMΘ(ξ )Θ(ξ ) + Ω(ξ )Ω(ξ ),

where

Θ(ξ ) =
∫

�

k(ξ ,γ ) dμ2(γ ), ξ ∈ �. (2.5)

Remark 2.3 Applying Theorem 2.1 and Corollary 2.2 with � = (a, b), dμ(γ ) = dγ , and
dμ(δ) = dδ, we have

k(x, y) =

⎧

⎨

⎩

g′(y)

kΓk (α)(g(x)–g(y))1– α
k

, a ≤ y ≤ x,

0, x < y ≤ b.
(2.6)
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We get that Θ(x) = 1
Γk (α+k) (g(x) – g(a))

α
k . Substituting Ψ 1 = Iα,k

a+;gΨ1, Ψ 2 = Iα,k
a+;gΨ2, and Ω =

Iα,k
a+;gΩ , we get Theorem 2.1 and Corollary 2.3 of [15], respectively. In particular, taking

k = 1, we get Theorem 2.11 and Corollary 2.14 of [8], respectively.

Remark 2.4 Applying Theorem 2.1 and Corollary 2.2 with � = (a, b), dμ(γ ) = dγ , and
dμ(δ) = dδ, we have

k(x, y) =

⎧

⎨

⎩

1
kΓk (α)(x–y)1– α

k
, a ≤ y ≤ x,

0, x < y ≤ b.
(2.7)

We get that Θ(x) = 1
Γk (α+k) (x – a)

α
k . Substituting Ψ 1 = Iα,k

a+ Ψ1, Ψ 2 = Iα,k
a+ Ψ2, and Ω = Iα,k

a+ Ω

in Corollary 2.2, we get Corollary 2.2 of [15], respectively. Moreover, taking k = 1, we get
Theorem 2 and Corollary 3 of [17], respectively.

Remark 2.5 Applying Theorem 2.1 and Corollary 2.2 with � = (a, b), dμ(γ ) = dγ , and
dμ(δ) = dδ, we have

k(x, y) =

⎧

⎨

⎩

1
ykΓk (α)(log x–log y)1– α

k
, a ≤ y ≤ x,

0, x < y ≤ b.
(2.8)

We get that Θ(ξ ) = 1
Γk (α+k) (log ξ – log a)

α
k . Substituting Ψ 1 = Jα

a+Ψ1, Ψ 2 = Jα
a+Ψ2, and Ω =

Jα
a+Ω , we get the results for the Hadamard-type fractional integrals.

Remark 2.6 Applying Theorem 2.1 and Corollary 2.2 with � = (a, b), dμ(γ ) = dγ , and
dμ(δ) = dδ, we have

k(x, y) =

⎧

⎨

⎩

1
Γ (α)

σx–σ (α+η)

(xσ –yσ )1–α yση+σ–1, a ≤ y ≤ x,

0, x < y ≤ b.
(2.9)

We get that Θ(x) = 1
Γ (α+1) (1 – ( a

x )σ )α2 F1(α, –η;α + 1; 1 – ( a
x )σ ). Substituting Ψ 1 = Iα

a+;σ ;ηΨ1,
Ψ 2 = Iα

a+;σ ;ηΨ2, and Ω = Iα
a+;σ ;ηΩ , we get the results for Erdélyi–Kober fractional integral.

Theorem 2.7 Let (�,Σ ,μ) be a measure space with positive σ -finite measure, let k :
� × � → R be a non-egative function, let Ω ,Ψ1,Ψ2,ϕ1,ϕ2,Υ ∈ U(k), and let Ω and Υ

be positive functions on [0, ξ ). Suppose that (2.1) holds and there exist integrable functions
ϕ1 and ϕ2 on [0, ξ ) such that

ϕ1(ξ ) ≤ Υ (ξ ) ≤ ϕ1(ξ ). (2.10)

Then the following inequalities hold:

(a) ϕ1(ξ )Ω(ξ ) + Ψ 2(ξ )Υ (ξ ) ≥ ϕ2(ξ )Ψ 2(ξ ) + Ω(ξ )Υ (ξ ),

(b) Ψ 1(ξ )Υ (ξ ) + ϕ2(ξ )Ω(ξ ) ≥ Ψ 1(ξ )ϕ2(ξ ) + Ω(ξ )Υ (ξ ),

(c) Ψ 2(ξ )ϕ2(ξ ) + Ω(ξ )Υ (ξ ) ≥ Ψ 2(ξ )Υ (ξ )2(ξ ) + Ω(ξ )ϕ(ξ ),

(d) Ψ 1(ξ )ϕ1(ξ ) + Ω(ξ )Υ (ξ ) ≥ Ψ 1(ξ )Υ (ξ ) + ϕ1(ξ )Ω(ξ ).
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Proof For all ξ ∈ [0,∞), from (2.1) and (2.10) it follows that

[

Ψ2(γ ) – Ω(γ ))
][

(Υ )(δ) – ϕ1(δ))
] ≥ 0.

Then

Ψ2(γ )(Υ )(δ) + ϕ1(δ)Ω(γ ) ≥ ϕ1(δ)Ψ2(γ ) + Ω(γ )Υ (δ).

Multiplying both sides by k(ξ ,γ ) and integrating the resulting identity with respect to γ

over the interval �, we have that

Υ (δ)
∫

�

k(ξ ,γ )Ψ2(γ ) dμ(γ ) + ϕ1(δ)
∫

�

k(ξ ,γ )Ω(γ ) dμ(γ )

≥ ϕ1(δ)
∫

�

k(ξ ,γ )Ψ2(γ ) dμ(γ ) + Υ (δ)
∫

�

k(ξ ,γ )Ω(γ ) dμ(γ ),

which can be written as

Υ (δ)Ψ 2(ξ ) + ϕ1(δ)Ω(ξ ) ≥ ϕ1(δ)Ψ 2(ξ ) + Υ (δ)Ω(ξ ).

Again multiplying both sides by k(ξ , δ) and integrating the resulting identity with respect
to δ over �, we have that

ϕ1(ξ )Ω(ξ ) + Ψ 2(ξ )Υ (ξ ) ≥ ϕ1(ξ )Ψ 2(ξ ) + Ω(ξ )Υ (ξ )

This completes the proof of part (a).
To prove parts (b)–(d), we will use the following inequalities:

(

ϕ2(γ ) – Υ (γ )
)(

Ω(δ) – Ψ1(δ)
) ≥ 0,

(

Ψ2(γ ) – Ω(γ )
)(

Υ (δ) – ϕ2(δ)
) ≥ 0,

(

Ψ1(γ ) – Ω(γ )
)(

Υ (δ) – ϕ1(δ)
) ≥ 0. �

Corollary 2.8 Let the assumptions of Theorem 2.7 be satisfied. Suppose that there exist
real constants m, M, n, N such that m ≤ Ω(ξ ) ≤ M and n ≤ Υ (ξ ) ≤ N for all ξ ∈ [0,∞).
Then

(a) nΘ(ξ )Ω(ξ ) + MΘ(ξ )Υ (ξ ) ≥ nMΘ(ξ )Θ(ξ ) + Ω(ξ )Υ (ξ ),

(b) mΘ(ξ )Υ (ξ ) + NΘ(ξ )Ω(ξ ) ≥ mNΘ(ξ )mΘ(ξ ) + Ω(ξ )Υ (ξ ),

(c) NMΘ(ξ )Θ(ξ ) + Ω(ξ )Υ (ξ ) ≥ MΘ(ξ )Υ (ξ ) + NΘ(ξ )Ω(ξ ),

(d) nmΘ(ξ )Θ(ξ )ϕ1(ξ ) + Ω(ξ )Υ (ξ ) ≥ mΘ(ξ )Υ (ξ ) + nmΘ(ξ )Ω(ξ ),

where Θ(ξ ) is defined by (2.5).

Remark 2.9 Choosing the kernel k(x, y) defined by (2.6) and substituting Ψ 1 = Iα,k
a+;gΨ1,

Ψ 2 = Iα,k
a+;gΨ2, and Ω = Iα,k

a+;gΩ in Theorem 2.7 and Corollary 2.8, we get Theorem 2.5 and
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Corollary 2.6 of [15], respectively. In particular, taking k = 1, we get Theorem 2.15 and
Corollary 2.16 of [8], respectively.

Remark 2.10 Choosing the kernel k(x, y) defined by (2.7) and substituting Ψ 1 = Iα,k
a+ Ψ1,

Ψ 2 = Iα,k
a+ Ψ2, and Ω = Iα,k

a+ Ω in Theorem 2.7 and Corollary 2.8, we get Theorem 2.5 and
Corollary 2.6 of [15], respectively. In particular, by taking k = 1 Theorem 2.7 leads to The-
orem 2.15 of [17].

Remark 2.11 Choosing the kernel k(x, y) defined by (2.8) and Θ(ξ ) = 1
Γk (α+k) (log ξ – log a)

α
k

and substituting Ψ 1 = Jα
a+Ψ1, Ψ 2 = Jα

a+Ψ2, and Ω = Jα
a+Ω in Theorem 2.7 and Corollary 2.8,

we get the inequalities for Haadmard-type fractional integrals.

Remark 2.12 Choosing the kernel k(x, y) defined by (2.9) and

Θ(ξ ) =
1

Γ (α + 1)

(

1 –
(

a
x

)σ )α

2
F1

(

α, –η;α + 1; 1 –
(

a
x

)σ )

and substituting Ψ 1 = (Iα
a+;σ ;ηΨ1), Ψ 2 = (Iα

a+;σ ;ηΨ2), and Ω = (Iα
a+;σ ;ηΩ) in Theorem 2.7 and

Corollary 2.8, we get the result for the Erdélyi–Kober fractional integral.

Lemma 2.13 Let (�,Σ ,γ ) be a measure space with positive σ -finite measure, let k : � ×
� → R be a nonnegative function, and let Ω ,Ψ1,Ψ2 ∈ U(k) be such that Ω is positive on
[0,∞) and Ψ1,Ψ2 are integrable on [0,∞). Then

Θ(ξ )Ω2(ξ ) –
(

Ω(ξ )
)2

=
(

Ψ 2(ξ ) – Ω(ξ )
)(

Ω(ξ ) – Ψ 1(ξ )
)

– Θ(ξ )
(

Ψ 2(ξ ) – Ω(ξ )
)(

Ω(ξ ) – Ψ 1(ξ )
)

+ Θ(ξ )Ψ1(ξ )Ω(ξ ) – Ψ 1(ξ )Ω(ξ ) + Θ(ξ )Ψ2(ξ )Ω(ξ ) – Ψ 2(ξ )Ω(ξ )

– Θ(ξ )Ψ1(ξ )Ψ2(ξ ) + Ψ 1(ξ )Ψ 2(ξ ),

where Θ(ξ ) is defined by (2.5).

Proof Since γ , δ > 0, we have

(

Ψ2(δ) – Ω(δ)
)(

Ω(γ ) – Ψ1(γ )
)

+
(

Ψ2(γ ) – Ω(γ )
)(

Ω(δ) – Ψ1(δ)
)

–
(

Ψ2(γ ) – Ω(γ )
)(

Ω(δ) – Ψ1(δ)
)

–
(

Ψ2(δ) – Ω(δ)
)(

Ω(δ) – Ψ1(δ)
)

= Ω2(γ ) +
(

Ω(δ)
)2 – 2Ω(γ )Ω(δ) + Ψ2(δ)Ω(γ ) + Ψ1(γ )Ω(δ)

– Ψ1(γ )Ψ2(δ) + Ψ2(δ)Ω(δ) + Ψ1(δ)Ω(γ ) – Ψ1(δ)Ψ2(γ )

– Ψ2(δ)Ω(γ ) + Ψ1(γ )Ψ2(γ ) – Ψ1(γ )Ω(γ ) – Ψ2(δ)Ω(δ)

+ Ψ1(δ)Ψ2(δ) – Ψ1(δ)Ω(δ).

Multiplying both sides by k(ξ ,γ ) and integrating with respect to the variable γ over �, we
get

(

Ψ2(δ) – Ω(δ)
)(

Ω(ξ ) – Ψ 1(ξ )
)

+
(

Ψ 2(ξ ) – Ω(ξ )
)(

Ω(δ) – Ψ1(δ)
)



Iqbal et al. Advances in Difference Equations        (2020) 2020:468 Page 9 of 15

–
(

Ψ2(γ ) – Ω(γ )
)(

Ω(δ) – Ψ1(δ)
)

–
(

Ψ2(δ) – Ω(δ)
)(

Ω(δ) – Ψ1(δ)
)

Θ(ξ )

= Ω2(γ ) + Θ(ξ )Ω2(δ) – 2Ω(ξ )Ω(δ) + Ψ2(δ)Ω(ξ ) + Ψ 1(ξ )Ω(δ)

– Ψ 1(ξ )Ψ2(δ) + Ψ 2(ξ )Ω(δ) + Ψ1(δ)Ω(ξ ) – Ψ1(δ)Ψ 2(ξ )

– Ψ2(ξ )Ω(ξ ) + Ψ1(ξ )Ψ2(ξ )Θ(ξ ) – Ψ1(ξ )Ω(ξ ) – Ψ2(δ)Ω(δ)Θ(ξ )

+ Θ(ξ )Ψ1(δ)Ψ2(δ) – Ψ1(δ)Ω(δ)Θ(ξ ).

Again multiplying both sides by k(ξ , δ) and integrating with respect to the variable δ over
�, we get

(

Ψ 2(ξ ) – Ω(ξ )
)(

Ω(ξ ) – Ψ 1(ξ )
)

+
(

Ψ 2(ξ ) – Ω(ξ )
)(

Ω(ξ ) – Ψ 1(ξ )
)

– Θ(ξ )
(

Ψ2(ξ ) – Ω(ξ )
)(

Ω(ξ ) – Ψ1(ξ )
)

–
(

Ψ 2(ξ ) – Ω(ξ )
)(

Ω(ξ ) – Ψ 1(ξ )
)

Θ(ξ )

= Ω2(ξ )Θ(ξ ) + Θ(ξ )Ω2(ξ ) – 2Ω(ξ )Ω(ξ ) + Ψ 2(ξ )Ω(ξ ) + Ψ 1(γ )Ω(ξ )

– Ψ 1(ξ )Ψ 2(ξ ) + Ψ 2(ξ )Ω(ξ ) + Ψ 1(ξ )Ω(ξ ) – Ψ 1(ξ )Ψ 2(ξ )

– Θ(ξ )Ψ2(ξ )Ω(ξ ) + Ψ1(ξ )Ψ2(ξ )Θ(ξ ) – Θ(ξ )Ψ1(ξ )Ω(ξ ) – Ψ2(ξ )Ω(ξ )Θ(ξ )

+ Θ(ξ )Ψ1(ξ )Ψ2(ξ ) – Ψ1(ξ )Ω(ξ )Θ(ξ ).

This completes the proof. �

Corollary 2.14 Let m < M, k > 0, and let Ω be a positive function on [0, ξ ) such that m ≤
Ω(ξ ) ≤ M. Then

Θ(ξ )
(

Ω2(ξ )
)

–
(

Ω(ξ )
)2

=
(

MΘ(ξ ) – Ω(ξ )
)(

Ω(ξ ) – mΘ(ξ )
)

– Θ(ξ )
((

M – Ω(ξ )
)(

Ω(ξ ) – m
))

,

where Θ(ξ ) is defined by (2.5).

Remark 2.15 Taking the kernel k(x, y) defined by (2.6) and substituting Ψ 1 = Iα,k
a+;gΨ1,

Ψ 2 = Iα,k
a+;gΨ2, Ω = Iα,k

a+;gΩ , Ψ1Ω = Iα,k
a+;gΨ1Ω , Ψ2Ω = Iα,k

a+;gΨ2Ω , Ψ1Ψ2 = Iα,k
a+;gΨ1Ψ2, and

(Ψ2(ξ ) – Ω(ξ ))(Ω(ξ ) – Ψ1(ξ )) = Iα,k
a+;g(Ψ2(ξ ) – Ω(ξ ))(Ω(ξ ) – Ψ1(ξ )) in Theorem 2.13 and

Corollary 2.14, we get Lemma 2.9 and Corollary 2.11 of [15], respectively. In particular, by
taking k = 1 we get Theorem 2.19 and Corollary 2.11 of [8], respectively.

Remark 2.16 Taking the kernel k(x, y) defined by (2.7) and substituting Ψ 1 = Iα,k
a+ Ψ1,

Ψ 2 = Iα,k
a+ Ψ2, Ω = Iα,k

a+ Ω , Ψ1Ω = Iα,k
a+ Ψ1Ω , Ψ2Ω = Iα,k

a+ Ψ2Ω , Ψ1Ψ2 = Iα,k
a+ Ψ1Ψ2, and

(Ψ2(ξ ) – Ω(ξ ))(Ω(ξ ) – Ψ1(ξ )) = Iα,k
a+ (Ψ2(ξ ) – Ω(ξ ))(Ω(ξ ) – Ψ1(ξ )) in Lemma 2.13, we get

Corollary 2.10 of [15]. In particular, by taking k = 1 Lemma 2.13 and Corollary 2.14 be-
come Lemma 7 and Corollary 8 of [17], respectively.

Remark 2.17 Taking the kernel k(x, y) defined by (2.8) and substituting Θ(ξ ) = 1
Γk (α+k) ×

(log ξ – log a)
α
k , Ψ 1 = Jα

a+Ψ1, Ψ 2 = Jα
a+Ψ2, Ω = Jα

a+Ω , and (Ψ2(ξ ) – Ω(ξ ))(Ω(ξ ) – Ψ1(ξ )) =
Jα
a+ (Ψ2(ξ ) – Ω(ξ ))(Ω(ξ ) – Ψ1(ξ )) in Theorem 2.7 and Corollary 2.8, we get the inequalities

for Hadamard fractional integrals.
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Remark 2.18 Taking the kernel k(x, y) defined by (2.9) and substituting Θ(x) =
1

Γ (α+1) (1 – ( a
x )σ )α2 F1(α, –η;α + 1; 1 – ( a

x )σ ), Ψ 1 = Iα
a+;σ ;ηΨ1, Ψ 2 = Iα

a+;σ ;ηΨ2, Ω = Iα
a+;σ ;ηΩ , and

(Ψ2(ξ ) – Ω(ξ ))(Ω(ξ ) – Ψ1(ξ )) = Iα
a+;σ ;η(Ψ2(ξ ) – Ω(ξ ))(Ω(ξ ) – Ψ1(ξ )) in Theorem 2.7 and

Corollary 2.8, we get the result for the Erdélyi–Kober fractional integral.

Theorem 2.19 Let (�,Σ ,γ ) be a measure spaces with positive σ -finite measure, let k :
� × � → R be a nonnegative function, and let Ω ,Ψ1,Ψ2,ϕ1,ϕ2,Υ ∈ U(k) be integrable
functions on [0, ξ ). If conditions (2.1) and (2.10) are satisfied, then

∣
∣Θ(ξ )Ω(ξ )Υ (ξ ) – Ω(ξ )Υ (ξ )

∣
∣ ≤ √

T(Ω ,Ψ1,Ψ2)T(Υ ,ϕ1,ϕ2), (2.11)

where

T(Ω ,Ψ1,Ψ2) =
(

Ψ 2(ξ ) – Ω(ξ )
)(

Ω(ξ ) – Ψ 1(ξ )
)

+ Θ(ξ )Ψ1(ξ )Ω(ξ ) – Ψ 1(ξ )Ω(ξ )

+ Θ(ξ )Ψ2(ξ )Ω(ξ ) – Ψ 2(ξ )Ω(ξ ) + Ψ 1(ξ )Ψ 2(ξ ) – Θ(ξ )Ψ1(ξ )Ψ2(ξ ),

and

T(Υ ,ϕ1,ϕ2) =
(

ϕ2(ξ ) – Υ (ξ )
)(

Υ (ξ ) – ϕ1(ξ )
)

+ Θ(ξ )ϕ1(ξ )Υ (ξ ) – ϕ1(ξ )Υ (ξ )

+ Θ(ξ )ϕ2(ξ )Υ (ξ ) – ϕ2(ξ )Υ (ξ ) + ϕ1(ξ )ϕ2(ξ ) – Θ(ξ )ϕ1(ξ )ϕ2(ξ ),

with Θ(ξ ) defined by (2.5).

Proof Let ξ > 0, γ , δ ∈ [0, ξ ], let Ω , Υ be two positive functions on [0,∞) such that con-
ditions (2.1) and (2.10) are satisfied, and let T(γ , δ) be defined by

T(γ , δ) =
(

Ω(γ ) – Ω(δ)
)(

Υ (γ ) – Υ (δ)
)

. (2.12)

Multiplying both sides (2.12) by 1
2 k(ξ ,γ )k(ξ , δ) and integrating with respect to the vari-

ables γ and δ over � and �, we get

1
2

∫

�

∫

�

k(ξ , δ)k(ξ ,γ )T(γ , δ) dμ(γ ) dμ(δ) = Θ(ξ )Ω(ξ )Υ (ξ ) – Ω(ξ )Υ (ξ ). (2.13)

Applying the Cauchy–Schwarz inequality, we get

(
1
2

∫

�

∫

�

k(ξ ,γ )k(ξ , δ)
(

Ω(γ ) – Ω(δ)
)(

Υ (γ ) – Υ (δ)
)

dμ(γ ) dμ(δ)
)2

≤
∫

�

∫

�

k(ξ ,γ )k(ξ , δ)
(

Ω(γ ) – Ω(δ)
)2 dμ(γ ) dμ(δ)

×
∫

�

∫

�

k(ξ ,γ )k(ξ , δ)
(

Υ (γ ) – Υ (δ)
)2 dμ(γ ) dμ(δ). (2.14)

From (2.13) and (2.14) we get

(

Θ(ξ )Ω(ξ )Υ (ξ ) – Ω(ξ )Υ (ξ )
)2 ≤ (

Θ(ξ )Ω2(ξ ) –
(

Ω(ξ )
)2)(

Θ(ξ )Υ 2(ξ ) – Υ (ξ )2).
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Since (Ψ2(ξ ) – Ω(ξ ))(Ω(ξ ) – Ψ1(ξ )) ≥ 0 and (ϕ2(ξ ) – Υ (ξ ))(Υ (ξ ) – ϕ1(ξ )) ≥ 0, we have

Θ(ξ )
(

Ψ2(ξ ) – Ω(ξ )
)(

Ω(ξ ) – Ψ1(ξ )
) ≥ 0

and

Θ(ξ )
(

ϕ2(ξ ) – Υ (ξ )
)(

Υ (ξ ) – ϕ1(ξ )
) ≥ 0.

Thus from Lemma 2.13 we have

Θ(ξ )Ω2(ξ ) –
(

Ω(ξ )
)2

≤ (

Ψ 2(ξ ) – Ω(ξ )
)(

Ω(ξ ) – Ψ 1(ξ )
)

+ Θ(ξ )Ψ1(ξ )Ω(ξ )Ψ 1(ξ )Ω(ξ )

+ Θ(ξ )Ψ2(ξ )Ω(ξ ) – Ψ 2(ξ )Ω(ξ ) + Ψ 1(ξ )Ψ 2(ξ ) – Θ(ξ )Ψ1(ξ )Ψ2(ξ )

= T(Ω ,Ψ1,Ψ2) (2.15)

and

Θ(ξ )Υ 2(ξ ) –
(

Υ (ξ )
)2

≤ (

ϕ2(ξ ) – Υ (ξ )
)(

Υ (ξ ) – ϕ1(ξ )
)

+ Θ(ξ )ϕ1(ξ )Υ (ξ ) – ϕ1(ξ )Υ (ξ )

+ Θ(ξ )ϕ2(ξ )Υ (ξ ) – ϕ2(ξ )Υ (ξ ) + ϕ1(ξ )ϕ2(ξ ) – Θ(ξ )ϕ1(ξ )ϕ2(ξ )

= T(Υ ,ϕ1,ϕ2). (2.16)

Therefore inequality (2.11) follows from (2.15) and (2.16). This completes the proof. �

Corollary 2.20 Let m, M, n, N ∈ �, T(Ω ,Ψ1,Ψ2) = T(Ω , m, M), and T(Υ ,ϕ1,ϕ2) =
T(Υ , n, N). Then inequality (2.11) reduces to

∣
∣Θ(ξ )Ω(ξ )Υ (ξ ) – Ω(ξ )Υ (ξ )

∣
∣ ≤ (

Θ(ξ )
)2(M – m)(N – n).

Remark 2.21 Taking the kernel k(x, y) defined by (2.6) and substituting Ω = Iα,k
a+;gΩ , Υ =

Iα,k
a+;gΥ , and ΩΥ = Iα,k

a+;gΩΥ in Theorem 2.19 and Corollary 2.20, we get Theorem 2.13 and
Corollary 2.14 of [15], respectively. In particular, choosing k = 1, Theorem 2.13 and and
Corollary 2.14 lead to Theorem 2.23 and Corollary 2.26 of [8], respectively.

Remark 2.22 Taking the kernel k(x, y) defined by (2.7) and substituting Ω1 = Iα,k
a+ Ω , Υ =

Iα,k
a+ Υ , and ΩΥ = Iα,k

a+ ΩΥ in Theorem 2.19 and Corollary 2.20, we get the results for the
Riemann–Liouville integral. In particular, taking k = 1, Theorem 2.19 gives Theorem 9 of
[17], and Corollary 2.20 gives Remark 10 of [17].

Remark 2.23 Taking the kernel k(x, y) defined by (2.8) and substituting Θ(ξ ) = 1
Γk (α+k) ×

(log ξ – log a)
α
k , Ω = Jα

a+Ω , Υ = Jα
a+Ψ2, and ΩΥ = Jα

a+ΩΥ in Theorem 2.19 and Corol-
lary 2.20, we get the inequalities for Hadamard fractional integrals.
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Remark 2.24 Taking the kernel k(x, y) defined by (2.9) and substituting Θ(x) = 1
Γ (α+1) (1 –

( a
x )σ )α2 F1(α, –η;α + 1; 1 – ( a

x )σ ), Ψ 1 = (Iα
a+;σ ;ηΨ1) Ψ 2 = (Iα

a+;σ ;ηΨ2), and Ω = (Iα
a+;σ ;ηΩ) in The-

orem 2.19 and Corollary 2.20, we get the result for the Erdélyi–Kober-type fractional in-
tegral.

Theorem 2.25 Let k > 0, and let Ω and Υ be positive functions defined on [0,∞). Then
the following inequalities hold:

1. qΩp(ξ ) + pΥ q(ξ ) ≥ pq
1

Θ(ξ )
Υ (ξ )Ω(ξ ),

2. qΩp(ξ )Υ p(ξ ) + pΩq(ξ )Υ q(ξ ) ≥ pq
(

Ω(ξ )Υ (ξ )
)2,

3. qΩp(ξ )Υ p(ξ ) + pΩq(ξ )Υ q(ξ ) ≥ pqΩ(ξ )Υ p–1(ξ )Ω(ξ )Υ q–1(ξ ),

4. qΩp(ξ )Υ q(ξ ) + pΩp(ξ )Υ q(ξ ) ≥ pqΩp–1(ξ )Υ q–1(ξ )Ω(ξ )Υ (ξ ),

5. qΩp(ξ )Υ 2(ξ ) + pΩ2(ξ )Υ q(ξ ) ≥ pqΩ(ξ )Υ (ξ )Ω
2
q (ξ )Υ

2
p (ξ ),

6. qΩ2(ξ )Υ q(ξ ) + pΩp(ξ )Υ 2(ξ ) ≥ pqΩ
2
p (ξ )Υ

2
q (ξ )Ωp–1(ξ )Υ q–1(ξ ),

7. qΩ2(ξ )Υ q(ξ ) + pΩ2(ξ )Υ p(ξ ) ≥ pq
1

Θ(ξ )
Ω

2
p (ξ )Υ q–1(ξ )Ω

2
q (ξ )Υ p–1(ξ ),

where Θ(ξ ) is defined by (2.5).

Proof By Young’s inequality we have

ap

p
+

aq

q
≥ ab

(

a, b ≥ 0, p, q > 1,
1
p

+
1
q

= 1
)

.

Taking a = Ω(γ ) and b = Υ (δ), we have

(Ω(γ ))p

p
+

(Υ (δ))q

q
≥ Ω(γ )Υ (δ)

for all Ω(γ ),Υ (δ) ≥ 0.
Multiplying by k(ξ ,γ ) and integrating with respect to γ over the interval �, we get

∫

�

k(ξ ,γ )
Ωp(γ )

p
dμ(γ ) +

∫

�

k(ξ ,γ )
Υ q(δ)

q
dμ(γ ) ≥

∫

�

k(ξ ,γ )Ω(γ )Υ (δ) dμ(γ ),

which becomes

1
p
Ωp(ξ ) +

1
q
Υ q(δ)Θ(ξ ) ≥ Υ (δ)Ω(ξ ).

Again multiplying by k(ξ , δ) and integrating with respect to the variable δ over the interval
�, we get

1
p
Ωp(ξ )Θ(ξ ) +

1
q
Υ q(ξ )Θ(ξ ) ≥ Υ (ξ )Ω(ξ ),
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which implies that

1
p
Ωp(ξ ) +

1
q
Υ q(δ) ≥ 1

Θ(ξ )
Υ (ξ )Ω(ξ ).

This completes the proof of part (a).
The remaining inequalities can be proved using Young’s inequality in a similar manner

by taking:

2. a = Ω(γ )(Υ )(δ) and b = Ω(δ)Υ (γ ),

3. a =
Ω(γ )
Υ (γ )

and b =
Ω(δ)
Υ (δ)

, Υ (γ )Υ (δ) 	= 0,

4. a =
Ω(δ)
Ω(γ )

and b =
Υ (δ)
Υ (γ )

, Ω(γ )Υ (δ) 	= 0,

5. a = Ω(γ )Υ
2
p (δ) and b = Ω

2
q (δ)Υ (γ ),

6. a =
Ω

2
p (γ )

Ω(δ)
and b =

Υ
2
q (γ )

Υ (γ )
, Ω(δ)Υ (δ) 	= 0,

7. a =
Ω

2
p (γ )

Υ (δ)
and b =

Ω
2
q (δ)

Υ (γ )
, Υ (γ )Υ (δ) 	= 0. �

Example 2.26 Let k > 0, and let ϕ2(γ ) be a positive function on [0,∞), and let m =
min0≤γ≤ξ

Ω(γ )
Υ (γ ) and M = max0≤γ≤ξ

Ω(γ )
Υ (γ ) . Then we have

0 ≤ Ω2(ξ )Υ 2(ξ ) ≤ (m + M)2

4mM
(

Ω(ξ )Υ (ξ )
)2. (2.17)

Proof From the min and max conditions we have that

(
Ω(γ )
Υ (γ )

– m
)(

M –
Ω(γ )
Υ (γ )

)

Υ 2(γ ) ≥ 0

and

Ω2(γ ) + mMΥ 2(γ ) ≤ (m + M)Ω(γ )Υ (γ ).

Multiplying by k(ξ ,γ ) and integrating with respect to the variable γ over the interval �,
we get

∫

�

k(ξ ,γ )Ω2(γ ) dμ(γ ) + mM
∫

�

k(ξ ,γ )Υ 2(γ ) dμ(γ )

≤ (m + M)
∫

�

k(ξ ,γ )Ω(γ )Υ (γ ) dμ(γ ).

This implies that

Ω2(ξ ) + mMΥ 2(ξ ) ≤ (m + M)Ω(ξ )(Υ )(ξ ). (2.18)
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Alternatively, it follows from

(
√

Ω2(ξ ) –
√

mMΥ 2(ξ )
)2 ≥ 0

that

2
√

Ω2(ξ )
√

mMΥ 2(ξ ) ≤ Ω2(γ ) + mMΥ 2(γ ). (2.19)

Therefore from (2.18) and (2.19) it follows that

4mMΩ2(ξ )Υ 2(ξ ) ≤ (m + M)2(Ω(ξ )(Υ )(ξ )
)2,

and the proof is complete. �

Remark 2.27 Applications for the discussed fractional integrals can be given, but we omit
the details.

3 Concluding remarks
Recently, Rahman [14], Rashid [15], and Kacar [8] studied a broad range of Grüss-type
inequalities for different kinds of fractional integrals. Although papers [14, 15], and [8]
are connected in the sense that one generalizes another, we observe that there may be
a great generalization that covers all possible kinds of fractional integrals mentioned in
these papers. Therefore we introduced a special class of transformations that involve gen-
eral kernels over σ -finite measure and prove all the results. Motivated by the above, we
successfully presented certain elegant inequalities, which generalize all the previous re-
sults.
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