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Abstract
We propose and study a stochastic delay single-species population system in
polluted environment with psychological effect and pulse toxicant input. We
establish sufficient conditions for the extinction, nonpersistence in the mean, weak
persistence, and strong persistence of the single-species population and obtain the
threshold value between extinction and weak persistence. Finally, we confirm the
efficiency of the main results by numerical simulations.
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1 Introduction
Along with fast development of agriculture and modern industry, a large number of toxic
pollutants are discharged into the ecosystem, and therefore it is an undeniable fact that en-
vironmental pollution becomes increasingly serious, such as pollution of pollutants from
burning agricultural plant straw, heavy metal pollution, water pollution caused by crop fer-
tilization and pesticide application. As it is well known, the existence of various poisons
are becoming a threat to the survival of unprotected populations, which has prompted
many scholars to investigate the impact of toxins on the population and assess the risk of
the population. An important tool to analyze the effects of toxins on population is estab-
lishing a mathematical model [1–7].

Wei and Chen [8] proposed a mathematical model for the first time to study the phys-
iological effects of vertebrates on population in a polluted environment. The so-called
“psychological” effect refers to: in the heavy pollution environment, because the organism
with spine has a good sensory nervous system, which can transmit the information of the
polluted environment to the area where the brain can explain the information, the effec-
tive contact between the organism and the live environment will be reduced, which plays
the role of self-protection; for instance, fish can identify the information in the polluted
environment through their own neurosensory system and make decisions to either escape
from the polluted area or bear the environmental toxicant [8]. Afterwards, Lan and Wei
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[9] considered that the exogenous input of toxins is regular in some practical situations.
They proposed the following single-species population model with psychological effect
and impulsive toxicant in a pollution environment:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)(r – r0c0(t) – ax(t) – λce(t)
1+αc2

e (t) ),

ċ0(t) = (kce(t) – (g + m + b)c0(t)),

ċe(t) = –hce(t), t �= nγ , n ∈ z+,

�x(t) = 0, �c0(t) = 0, �ce(t) = μ, t = nγ , n ∈ z+,

(1)

where x(t) represents the density of the population, c0(t) and ce(t) represent the concen-
tration of toxins in the organism and the concentration of toxins in the environment, re-
spectively, r and r0 stand for the net growth rate in nonpolluted environment and response
intensity of biological growth to toxins, kce(t) stands for the uptake of toxins in the envi-
ronment, gc0(t) represents the emission rate of toxins, mc0(t) represents the purification
rate of toxins because of metabolic process of organisms, bc0(t) is the loss due to giving
birth at time t, –hce(t) denotes the amount of reduction in the purification of toxins by
the environment itself, μ and γ denote the toxicant input amount and the period of pulse
input toxin, respectively, and �φ(t) = φ(t+) – φ(t).

In reality, population growth is more or less disturbed by environmental factors, such
as temperature, humidity, and seasonal climate change, and almost all the observed data
show that there are obvious random fluctuations in the growth process of organisms.
Therefore, in some practical cases, ignoring the randomness of the system and using de-
terministic models to describe and predict the system behavior are not always satisfactory;
especially, it is not suitable to use deterministic population model to study how to protect
endangered species [10]. May [11] pointed out that due to the impact of environmental
noises, the birth rate, death rate, carrying capacity, competition coefficients, and other pa-
rameters involved with the system exhibit random fluctuation to a greater or lesser extent
[12–17]. On the other hand, the influence of delay has played an important role in the
population dynamic [18–22].

In this paper, we suppose that the environmental noises affect all parameters of model
(1) (see e.g. [23, 24]). Considering the work of population psychological effect, we pro-
pose the following stochastic impulsive single-species population model with delay and
psychological effect in polluted environment:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = x(t)(r – r0c0(t) – ax(t) – cx(t – τ ) – λce(t)
1+αc2

e (t) ) dt

+ σ1x(t) dB1(t) + σ2c0(t)x(t) dB2(t) + σ3x2(t) dB3(t)

+ σ4x(t)x(t – τ ) dB4(t) + σ5x(t)ce(t)
1+αc2

e (t) dB5(t),

dc0(t) = (kce(t) – (g + m + b)c0(t)) dt,

dce(t) = –hce(t) dt, t �= nγ , n ∈ z+,

�x(t) = 0, �c0(t) = 0, �ce(t) = μ, t = nγ , n ∈ z+,

(2)

where τ represents the time delay, Bi(t) stands for a standard Brownian motion defined
on a complete probability space (Ω , F , P) with filtration {Ft}t∈R+ , and σ 2

i (i = 1, 2, 3, 4, 5)
represents the intensity of noise. Let ϕ(θ ) be a continuous function on [–τ , 0], and let the
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solution x(t) of system (2) satisfy the initial condition

x(θ ) = ϕ(θ ) > 0, θ ∈ [–τ , 0].

Remark 1.1 (see [7]) In model (2), since c0(t) and ce(t) denote the concentrations of tox-
icant, we must have 0 ≤ c0(t) ≤ 1 and 0 ≤ ce(t) ≤ 1 for all t ≥ 0. To this end, we need the
following constraints: k ≤ g + m and b ≤ 1 – e–hγ .

2 Preliminaries
Let R+ = {a ∈ R : a > 0}, and let C(Ω × [0, +∞); R+) denote the family of continuous func-
tions from Ω × [0, +∞) to R+. In addition, for convenience, we also introduce some nota-
tions:

〈
x(t)

〉
= t–1

∫ t

0
x(s) ds, x∗ = lim inf

t→+∞ x(t), x∗ = lim sup
t→+∞

x(t),

η =
–1

hγ
√

α

(

arctan

(
μ

√
αe–kγ

1 – e–kγ

)

– arctan

(
μ

√
α

1 – e–kγ

))

,

ξ =
μ2(1 – e–hγ )3(1 + e–hγ )

2hγ ((1 – e–hγ )2 + αμ2e–2hγ )((1 – e–hγ )2 + αμ2)
,

ν =
(

kμ

h – g – m – b

)2( 1 + e–(g+m+b)γ

2(g + m + b)γ (1 – e–(g+m+b)γ )
+

1 + e–hγ

2hγ (1 – e–hγ )

–
2(1 – e–(g+m+b+h)γ )

(1 – e–hγ )(1 – e–(g+m+b)γ )(g + m + b + h)γ

)

,

A = r –
r0kμ

h(g + m + b)γ
– λη – 0.5σ 2

1 – 0.5σ 2
2 ν – 0.5σ 2

5 ξ .

Definition 2.1
(1) population x(t) goes to extinction if limt→+∞ x(t) = 0 a.s.;
(2) population x(t) is nonpersistent in the mean if 〈x(t)〉∗ = 0;
(3) population x(t) is weakly persistent if x∗ > 0;
(4) population x(t) is strongly persistent in the mean if 〈x(t)〉∗ > 0.

Lemma 2.1 (see [25]) Consider the following subsystem of (2):
⎧
⎪⎪⎨

⎪⎪⎩

dc0(t) = (kce(t) – (g + m + b)c0(t)) dt,

dce(t) = –hce(t) dt, t �= nγ , n ∈ Z+,

�c0(t) = 0, �ce(t) = μ, t = nγ , n ∈ Z+.

(3)

Model (3) has a unique positive γ -periodic solution (̃c0(t), c̃e(t)), and for each solution
(c0(t), ce(t)) of model (2), c0(t) → c̃0(t) and ce(t) → c̃e(t) as t → +∞. Moreover, c0(t) > c̃0(t)
and ce(t) > c̃e(t), where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c̃0(t) = c̃0(0)e–(g+m+b)(t–nγ ) + kμ(e–(g+m+b)(t–nγ )–e–h(t–nγ ))
(h–g–m–b)(1–e–hγ ) ,

c̃e(t) = μe–h(t–nγ )

1–e–hγ ,

c̃0(0) = kμ(e–(g+m+b)γ –e–hγ )
(h–g–m–b)(1–e–(g+m+b)γ )(1–e–hγ )

,

c̃e(0) = μ

1–e–hγ

for t ∈ (nγ , (n + 1)γ ] and n ∈ z+.
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Lemma 2.2 The positive γ -periodic solution (c̃o(t), c̃e(t)) has the following properties:

lim
t→+∞ t–1

∫ t

0
c̃0(s) ds =

kμ

h(g + m + b)γ
,

lim
t→+∞ t–1

∫ t

0
c̃e(s) ds =

μ

hγ
, lim

t→+∞ t–1
∫ t

0

c̃e(s)
1 + α̃c2

e (s)
ds = η,

lim
t→+∞ t–1

∫ t

0
c̃2

0(s) ds = ω, lim
t→+∞ t–1

∫ t

0

(
c̃e(s)

1 + α̃c2
e (s)

)2

ds = ξ .

Proof By the lemma of Yang [26] and Lemma 2.1 of Lan [9] we get

lim
t→+∞ t–1

∫ t

0
c̃0(s) ds =

kμ

h(g + m + b)γ
,

lim
t→+∞ t–1

∫ t

0
c̃e(s) ds =

μ

hγ
,

lim
t→+∞ t–1

∫ t

0

c̃e(s)
1 + α̃c2

e (s)
ds = η.

Next, we will prove the last two limits. From

c̃0(t) = c̃0(0)e–(g+m+b)t +
kμ(e–(g+m+b)t – e–h(t–nγ ))
(h – g – m – b)(1 – e–hγ )

,

c̃e(t) =
μe–ht

1 – e–hγ

for all t ∈ (0,γ ] we have

γ –1
∫ γ

0
c̃2

0(t) dt

= γ –1
∫ γ

0

(

c̃0(0)e–(g+m+b)t +
kμ(e–(g+m+b)t – e–ht)

(h – g – m – b)(1 – e–hγ )

)2

dt

=
(

kμ

(h – g – m – b)(1 – e–(g+m+b)γ )

)2

γ –1
∫ γ

0
e–2(g+m+b)t dt

+
(

kμ

(h – g – m – b)(1 – e–hγ )

)2

γ –1
∫ γ

0
e–2hγ dt

– 2
(

(kμ)2

(h – g – m – b)2(1 – e–(g+m+b)γ )(1 – e–hγ )

)

γ –1
∫ γ

0
e–(g+m+b+h)t dt

=
(

kμ

(h – g – m – b)(1 – e–(g+m+b)γ )

)2 1 – e–2(g+m+b)γ

2(g + m + b)γ

–
(

kμ

(h – g – m – b)(1 – e–hγ )

)2 1 – e–2hγ

2hγ

– 2
(

(kμ)2

(h – g – m – b)2(1 – e–(g+m+b)γ )(1 – e–hγ )

)
1 – e–(g+m+b+h)γ

(g + m + b + h)γ

= ν.



Dai et al. Advances in Difference Equations        (2020) 2020:604 Page 5 of 16

Similarly,

γ –1
∫ γ

0

(
c̃e(s)

1 + αc̃2
e (s)

)2

ds =
–1
hγ

∫ γ

0

c̃e(s)(–hc̃e(s))
(1 + αc̃2

e (s))2 ds

=
–1

2hγα

∫ γ

0

1
(1 + αc̃e

2(s))2
d
(
1 + αc̃e

2(s)
)

=
1

2hγα

(
1

1 + αc̃e
2(γ )

–
1

1 + αc̃e
2(0)

)

= ξ .

In view of the periodicity of c̃0(t) and c̃e(t) we can observe that

lim
t→+∞ t–1

∫ t

0
c̃2

0(s) ds = γ –1
∫ γ

0
c̃2

0(s) ds = ν,

lim
t→+∞ t–1

∫ t

0

(
c̃e(s)

1 + αc̃2
e (s)

)2

ds = γ –1
∫ γ

0

(
c̃e(s)

1 + αc̃2
e (s)

)2

ds = ξ . �

Lemma 2.3 (see [27]) Suppose that x(t) ∈ C(Ω × [0, +∞); R+).
(1) If there are λ and positive constants λ0, T such that

ln x(t) ≤ λt – λ0

∫ t

0
x(s) ds +

n∑

i=1

βi dBi(t), t ≥ T ,

where βi (1 ≤ i ≤ n) are constants, then

⎧
⎨

⎩

lim supt→+∞ t–1 ∫ t
0 x(s) ds ≤ λ

λ0
a.s.,λ ≥ 0,

limt→+∞ x(t) = 0 a.s.,λ < 0.

(2) If there are positive constants λ, λ0, and T such that

ln x(t) ≥ λt – λ0

∫ t

0
x(s) ds +

n∑

i=1

βi dBi(t), t ≥ T ,

then lim inft→+∞ t–1 ∫ t
0 x(s) ds ≤ λ

λ0
a.s.

Lemma 2.4 (see[14]) Consider the stochastic differential equation

dx(t) = x(t)
(
r – ax(t)

)
dt + σx(t) dB(t),

where r, a, and σ are positive constants. If r – 0.5σ 2 > 0, then

lim
t→+∞

〈
x(t)

〉
=

r – 0.5σ 2

a
, lim

t→+∞
ln x(t)

t
= 0 a.s.

3 Main results
Lemma 3.1 For any given initial value x(θ ) = ϕ(θ ) ∈ C([–τ , 0]; R+), the first equation of
model (2) has a unique global positive solution x(t). Moreover, lim supt→+∞

ln x(t)
t ≤ 0 a.s.
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Proof Considering the stochastic differential equation

dx(t) = x(t)
(

r – r0c0(t) – ax(t) – cx(t – τ ) –
λce(t)

1 + αc2
e (t)

)

dt

+ σ1x(t) dB1(t) + σ2c0(t)x(t) dB2(t) + σ3x2(t) dB3(t)

+ σ4x(t)x(t – τ ) dB4(t) +
σ5x(t)ce(t)
1 + αc2

e (t)
dB5(t). (4)

The proof of the existence and uniqueness of the global positive solution of the equation
is similar to that of Dai et al. [24] by defining the nonnegative function

V1(x) =
√

x – 1 – 0.5 ln x +
1 + σ 2

4
4

∫ t

t–τ

x2(s) ds, x > 0.

Hence we omit it.
Next, we will focus on proving that limt→+∞ ln x(t)

t ≤ 0 a.s. Applying Itô’s formula to
ln x(t), we obtain

dln x(t) =
(

r – r0c0(t) – ax(t) – cx(t – τ ) –
λce(t)

1 + αc2
e (t)

)

dt

–
1
2

(

σ 2
1 + σ 2

2 C2
0(t) + σ 2

3 x2(t) + σ 2
4 x2(t – τ ) + σ 2

5

(
ce(t)

1 + αc2
e (t)

)2)

dt

+ σ1 dB1(t) + σ2c0(t) dB2(t) + σ3x(t) dB3(t)

+ σ4x(t – τ ) dB4(t) +
σ5ce(t)

1 + αc2
e (t)

dB5(t). (5)

Using Itô’s formula again, we get

det ln x(t) = et ln x(t) dt + et d
(
ln x(t)

)

= et ln x(t) + et
(

r – r0c0(t) – ax(t) – cx(t – τ ) –
λce(t)

1 + αc2
e (t)

)

dt

– 0.5et
(

σ 2
1 + σ 2

2 C2
0(t) + σ 2

3 x2(t) + σ 2
4 x2(t – τ ) + σ 2

5

(
ce(t)

1 + αc2
e (t)

)2)

dt

+ et
(

σ1 dB1(t) + σ2c0(t) dB2(t) + σ3x(t) dB3(t) + σ4x(t – τ ) dB4(t)

+
σ5ce(t)

1 + αc2
e (t)

dB5(t)
)

. (6)

Integrating both sides of equality (6) from 0 to t, we get

et ln x(t) =
∫ t

0
es

(

r – r0c0(s) – ax(s) – cx(s – τ ) –
λce(s)

1 + αc2
e (s)

)

ds

–
∫ t

0

es

2

(

σ 2
1 + σ 2

2 C2
0(s) + σ 2

3 x2(s) + σ 2
4 x2(s – τ ) + σ 2

5

(
ce(s)

1 + αc2
e (s)

)2)

ds

+ ln x(0) + M1(t) + M2(t) + M3(t) + M4(t) + M5(t), (7)
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where

M1(t) =
∫ t

0
σ1es dB1(s), M2(t) =

∫ t

0
σ2esc0(s) dB2(s),

M3(t) =
∫ t

0
σ3esx(s) dB3(s), M4(t) =

∫ t

0
σ4esx(s – τ ) dB4(s),

M5(t) =
∫ t

0

σ5esce(s)
1 + αc2

e (s)
dB5(s).

Note that Mi(t) (i = 1, 2, 3, 4, 5) is a local martingale. Therefore the quadratic variation of
Mi(t) is

〈
M1(t), M1(t)

〉
=

∫ t

0
σ 2

1 e2s ds,
〈
M2(t), M2(t)

〉
=

∫ t

0
σ 2

2 e2sc2
0(s) ds,

〈
M3(t), M3(t)

〉
=

∫ t

0
σ 2

3 e2sx2(s) ds,
〈
M4(t), M4(t)

〉
=

∫ t

0
σ 2

4 e2sx2(s – τ ) ds,

〈
M5(t), M5(t)

〉
=

∫ t

0
σ 2

5 e2s
(

ce(s)
1 + αc2

e (s)

)2

ds.

Using the exponential martingale inequality, for all δ > 0, β > 0, T > 0, and θ > 1, we have

P
{

sup
0≤t≤T

[

M1(t) –
δ

2
〈
M1(t), M1(t)

〉
]

> β

}

≤ e–αβ .

Taking δ = e–k , β = θek ln k, and T = k, we have

P
{

sup
0≤t≤k

[

M1(t) –
e–k

2
〈
M1(t), M1(t)

〉
]

> θek ln k
}

≤ k–θ .

By the Borel–Cantelli lemma there are an event Ω and positive integers k1 = k1(ω) such
that P(Ω) = 1 and for all ω ∈ Ω and k > k1, we have

M1(t) ≤ e–k

2
〈
M1(t), M1(t)

〉
+ θek ln k, 0 ≤ t ≤ k.

Similarly,

Mi(t) ≤ e–k

2
〈
Mi(t), Mi(t)

〉
+ θek ln k, 0 ≤ t ≤ k, i = 2, 3, 4, 5.

By (7) we get

et ln x(t) ≤
∫ t

0
es

(

r – r0c0(s) – ax(s) – cx(s – τ ) –
λce(s)

1 + αc2
e (s)

)

ds

–
∫ t

0

es

2

(

σ 2
1 + σ 2

2 C2
0(s) + σ 2

3 x2(s) + σ 2
4 x2(s – τ ) + σ 2

5

(
ce(s)

1 + αc2
e (s)

)2)

ds

+
∫ t

0

e2s–k

2

(

σ 2
1 + σ 2

2 C2
0(s) + σ 2

3 x2(s) + σ 2
4 x2(s – τ ) + σ 2

5

(
ce(s)

1 + αc2
e (s)

)2)

ds

+ ln x(0) + 5θek ln k, 0 ≤ t ≤ k. (8)
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Because a > 0, we can easily obtain that there is a positive constant K > 0 such that ln x +
r – ax ≤ K , and from (8) it follows that

et ln x(t) ≤ ln x(0) + K
(
et – 1

)
+ 5θek ln k, 0 ≤ t ≤ k.

For k – 1 ≤ t ≤ k,

ln x(t)
t

≤ ln x(0)
tet +

K(et – 1)
tet +

5θet ln k
(k – 1)ek–1 ,

and as t → +∞ (k → +∞), we have lim supt→+∞
ln x(t)

t ≤ 0 a.s. �

Theorem 3.2 Let x(t) be the solution of system (2).
(i) If A < 0, then the population x(t) will die out almost surely.

(ii) If A = 0, then the population x(t) is nonpersistent in the mean almost surely.
(iii) If A > 0, then the population x(t) is weakly persistent almost surely.

Proof Integrating from 0 to t both sides of equation (5), we get

ln x(t)/x(0) =
∫ t

0

(

r – r0c0(s) – ax(s) – cx(s – τ ) –
λce(s)

1 + αc2
e (s)

)

ds

–
∫ t

0

1
2

(

σ 2
1 + σ 2

2 C2
0(s) + σ 2

3 x2(s) + σ 2
4 x2(s – τ ) + σ 2

5

(
ce(s)

1 + αc2
e (s)

)2)

dt

+ N1(t) + N2(t) + N3(t) + N4(t) + N5(t), (9)

where

N1(t) =
∫ t

0
σ1 dB1(s), N2(t) =

∫ t

0
σ2c0(s) dB2(s),

N3(t) =
∫ t

0
σ3x(s) dB3(s), N4(t) =

∫ t

0
σ4x(s – τ ) dB4(s),

N5(t) =
∫ t

0

σ5ce(s)
1 + αc2

e (s)
dB5(s).

The quadratic variations of N2(t), N3(t), N4(t), and N5(t) are

〈
N2(t), N2(t)

〉
=

∫ t

0
σ 2

2 c2
0(s) ds,

〈
N3(t), N3(t)

〉
=

∫ t

0
σ 2

3 x2(s) ds,

〈
N4(t), N4(t)

〉
=

∫ t

0
σ 2

4 x2(s – τ ) ds,
〈
N5(t), N5(t)

〉
=

∫ t

0

(
σ5ce(s)

1 + αc2
e (s)

)2

ds.

For all t ∈ (nγ , (n + 1)γ ], n ∈ N+, we have

1
(n + 1)γ

∫ nγ

0
c2

0(s) ds ≤ 1
t

∫ t

0
c2

0(s) ds ≤ 1
nγ

∫ (n+1)γ

0
c2

0(s) ds.
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Noting that 0 ≤ c0(t) ≤ 1 and 0 ≤ ce(t) ≤ 1, by Lemmas 2.1 and 2.2 we get

lim
t→+∞

〈N2(t), N2(t)〉
t

= lim
t→+∞σ 2

2 t–1
∫ t

0
c2

0(s) ds

= σ 2
2 γ –1

∫ γ

0
c2

0(s) ds = νσ 2
2 < +∞. (10)

Similarly,

lim
t→+∞

〈N5(t), N5(t)〉
t

= σ 2
5 γ –1

∫ γ

0

(
ce(s)

1 + αc2
e (s)

)2

ds = σ 2
5 ξ < +∞. (11)

By the strong law of large numbers it follows that

lim
t→+∞

N1(t)
t

= 0, lim
t→+∞

N2(t)
t

= 0, lim
t→+∞

N5(t)
t

= 0 a.s. (12)

By the exponential martingale inequality, choosing δ = 1, β = 2 ln k, and T = k, have

P
{

sup
0≤t≤k

[

Ni(t) –
1
2
〈
Ni(t), Ni(t)

〉
]

> 2 ln k
}

≤ k–2, i = 3, 4.

It follows from Borel–Cantelli lemma that there exists a positive constant k1 such that, for
k > k1, we have

Ni(t) ≤ 0.5
〈
Ni(t), Ni(t)

〉
+ 2 ln k, i = 3, 4, 0 ≤ t ≤ k.

Substituting this inequality into (9), we obtain that

ln x(t)/x(0)
t

≤ r – 0.5σ 2
1 – r0

〈
c0(t)

〉
– a

〈
x(t)

〉
– c

〈
x(t – τ )

〉

– λ

〈
ce(t)

1 + αc2
e (t)

〉

– 0.5σ 2
2
〈
c2

0(t)
〉
– 0.5σ 2

5

〈(
ce(t)

1 + αc2
e (t)

)2〉

+
N1(t) + N2(t) + N5(t)

t
+

4 ln k
t

. (13)

For all t ∈ (nγ , (n + 1)γ ], we have

1
(n + 1)γ

∫ nγ

0
c0(s) ds ≤ 1

t

∫ t

0
c0(s) ds ≤ 1

nγ

∫ (n+1)γ

0
c0(s) ds,

1
(n + 1)γ

∫ nγ

0

ce(s)
1 + αce(s)

ds ≤ 1
t

∫ t

0

ce(s)
1 + αce(s)

ds ≤ 1
nγ

∫ (n+1)γ

0

ce(s)
1 + αce(s)

ds.

It follows from Lemmas 2.1 and 2.2 that

lim
t→+∞ t–1

∫ t

0
c0(s) ds = γ –1

∫ γ

0
c̃0(s) ds =

ku
h(g + m + b)γ

, (14)

lim
t→+∞ t–1

∫ t

0

ce(s)
1 + αc2

e (s)
ds = γ –1

∫ γ

0

c̃e(s)
1 + αc̃2

e (s)
ds = η. (15)
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Let k – 1 ≤ t ≤ k, k ∈ N+, A = r – 0.5σ 2
1 – r0ku

h(g+m+b)γ – λη – 0.5σ 2
2 ν – 0.5σ 2

5 ξ . By virtue of
(10), (11), (12), (14), and (15), for all ε > 0, there exists T > 0 such that for all t > T (i.e.,
k > T ), we have

–
ε

4
≤ ln x(0)

t
≤ ε

4
, –

ε

4
≤ 2 ln k

t
≤ ε

4
, –

ε

4
≤ N1(t) + N2(t) + N5(t)

t
≤ ε

4
,

A –
ε

4
≤ r –

σ 2
1

2
– r0

〈
c0(t)

〉
– λ

〈
ce(t)

1 + αc2
e (t)

〉

–
σ 2

2
2

〈
c2

0(t)
〉

(16)

–
σ 2

5
2

〈(
ce(t)

1 + αc2
e (t)

)2〉

≤ A +
ε

4
.

(i) If A < 0, then for ε small enough such that A + ε < 0, by (13) and (16) we get

ln x(t)
t

≤ A + ε – a
〈
x(t)

〉
+

B1(t)
t

, t ≥ T . (17)

Then by Lemma 2.3 we get limt→+∞ x(t) = 0 a.s.
(ii) If A = 0, then by (17) and Lemma 2.3 we have 〈x(t)〉∗ ≤ ε

a a.s. By the arbitrariness of
ε we have 〈x(t)〉∗ = 0 a.s.

(iii) If A > 0, then suppose the conclusion is not true, that is, P({ω|x∗(t,ω) = 0}) > 0. Then
for all ω ∈ {ω|x∗(t,ω) = 0}, we have limt→+∞ x(t,ω) = 0 a.s.

Because

t–1
∫ t

0
x(s – τ ) ds = t–1

[∫ 0

–τ

x(s) ds +
∫ t–τ

t
x(s) ds

]

+ t–1
∫ t

0
x(s) ds,

it follows from limt→+∞ x(ω, t) = 0 a.s. that

lim
t→+∞ t–1

[∫ 0

–τ

x(s) ds +
∫ t–τ

t
x(s) ds

]

= 0 a.s.,

lim
t→+∞

〈
x(t)

〉
= lim

t→+∞
〈
x2(t)

〉
= lim

t→+∞
〈
x(t – τ )

〉
= lim

t→+∞
〈
x2(t – τ )

〉
= 0.

(18)

It follows from (9) that

ln x(t)
t

=
ln x(0)

t
+ r – 0.5σ 2

1 – r0
〈
c0(t)

〉
– λ

〈
ce(t)

1 + αc2
e (t)

〉

– 0.5σ 2
2
〈
c2

0(t)
〉

– 0.5σ 2
5

〈(
ce(t)

1 + αc2
e (t)

)2〉

– a
〈
x(t)

〉
– c

〈
x(t – τ )

〉
– 0.5σ 2

3
〈
x2(t)

〉

– 0.5
〈
x2(t – τ )

〉
+

N1(t) + N2(t) + N3(t) + N4(t) + N5(t)
t

. (19)

For all ω ∈ {ω|x∗(t,ω) = 0}, by (18) we get that limt→+∞ Ni(t)
t = 0 a.s. (i = 1, 2, 3, 4, 5). Taking

the limit superior of both sides of (19), we obtain that

lim sup
t→+∞

ln x(t)
t

= A > 0 a.s.,

which is a contradiction to the result of Lemma 3.1. �



Dai et al. Advances in Difference Equations        (2020) 2020:604 Page 11 of 16

Theorem 3.3 Suppose that σ3 = σ4 = 0, and let x(t) be the positive solution of model (2)
with initial value x(θ ) = ϕ(θ ) ∈ C([–τ , 0], R+). Then:

(I) If A < 0, then the population x goes to die out a.s., that is, limt→+∞ x(t) = 0 a.s.
(II) If A > 0, then the population x is strongly persistent in the mean a.s.; moreover,

limt→+∞ t–1 ∫ t
0 x(s) ds = A

a+c a.s.

Proof If σ3 = σ4 = 0, then by (19) we have

ln x(t)
t

=
ln x(0)

t
+ r – 0.5σ 2

1 – r0
〈
c0(t)

〉
–

〈
λce(t)

1 + αc2
e (t)

〉

– 0.5σ 2
2
〈
c2

0(t)
〉

– 0.5σ 2
5

〈(
ce(t)

1 + αc2
e (t)

)2〉

– a
〈
x(t)

〉
– c

〈
x(t – τ )

〉
+

N1(t) + N2(t) + N5(t)
t

. (20)

It follows from (12) and (16) that for all ε > 0, there exists a positive constant T1 such that
for t > T1, we have

ln x(t)
t

≤ A + ε – a
〈
x(t)

〉
– c

〈
x(t – τ )

〉
+

B1(t)
t

, (21)

ln x(t)
t

≥ A – ε – a
〈
x(t)

〉
– c

〈
x(t – τ )

〉
+

B1(t)
t

. (22)

(I) If A < 0, then by Lemma 2.3 and (21) we have limt→+∞ x(t) = 0 a.s.
Now we will prove (II). Let us consider the following auxiliary equation:

dy(t) = y(t)
(

r – r0c0(t) – ay(t) –
λce(t)

1 + αc2
e (t)

)

dt + σ1y(t) dB1(t)

+ σ2c0(t)y(t) dB2(t) +
σ5y(t)ce(t)
1 + αc2

e (t)
dB5(t), (23)

where

y(θ ) = ϕ(θ ) > 0, θ ∈ [–τ , 0].

It follows from the stochastic comparison theorem [14] that x(t) ≤ y(t). Hence, for all
ε > 0, there is a positive constant T2 such that for all t > T2, we have

ln y(t)
t

≤ A + ε – a
〈
y(t)

〉
+

B1(t)
t

, (24)

ln y(t)
t

≥ A – ε – a
〈
y(t)

〉
+

B1(t)
t

. (25)

By (24), (25), and Lemma 2.3 this implies that

A – ε

a
≤ 〈

y(t)
〉

∗ ≤ 〈
y(t)

〉∗ ≤ A + ε

a
. (26)

Due to the arbitrariness of ε, from (26) we get

lim
t→+∞ t–1

∫ t

0
y(s) ds =

A
a

a.s.
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Consequently,

lim
t→+∞ t–1

[∫ 0

–τ

y(s) ds +
∫ t–τ

0
y(s) ds –

∫ t

0
y(s) ds

]

= 0 a.s. (27)

Since x(t) ≤ y(t), by (27) we easily see that

lim
t→+∞ t–1

[∫ 0

–τ

x(s) ds +
∫ t–τ

0
x(s) ds –

∫ t

0
x(s) ds

]

= 0 a.s. (28)

It follows from (28) that, for all ε > 0, there exists a positive constant T3 such that for t > T3,
have

–ε ≤ t–1
[∫ 0

–τ

x(s) ds +
∫ t–τ

0
x(s) ds –

∫ t

0
x(s) ds

]

≤ ε.

For all ε > 0, there exists T = max{T1, T3} such that, for t > T , have

ln x(t)
t

≤ A + 2ε – (a + c)
〈
x(t)

〉
+

B1(t)
t

, (29)

ln x(t)
t

≥ A – 2ε – (a + c)
〈
x(t)

〉
+

B1(t)
t

. (30)

By (29) and (30) we derive that

lim
t→+∞ t–1

∫ t

0
x(s) ds =

A
a + c

a.s. �

Remark 3.4 From Theorems 3.2 and 3.3 we easily see that A is the threshold of system (2)
for the single-species population extinction and weak persistence. If A < 0, then the pop-
ulation will be extinct, and if A > 0, then the population is weakly persistent. Particularly,
when σ3 = σ4 = 0, A is also the threshold of system (2) for the single-species population
extinction and strong persistence; moreover, if A > 0, then the single-species population
is stable in the mean.

Remark 3.5 Note that from the expression for A = r – r0kμ

h(g+m+b)γ – λη – 0.5σ 2
1 – 0.5σ 2

2 ν –
0.5σ 2

5 ξ we can find that the parameters μ and γ obviously affect the persistence and ex-
tinction of system (2), that is, we can control the persistence and extinction of population
x by controlling the toxicant input amount μ and the period of pulse input toxicant γ .

Remark 3.6 Theorems 3.2 and 3.3 show that the persistence population x of deterministic
system (1) may be extinct when σ1, σ2, and σ5 are large enough; however, τ , σ3, and σ4

have no effect on the persistence and extinction for population x.

4 Numerical simulations and discussion
Next, we show the numerical simulation results to illustrate the accuracy of analytical
results in the previous section by using the famous Milstein method [28]. We choose the
parameters of system (2) as follows:

r = 0.4, r0 = 0.3, a = 0.4, c = 0.4, λ = 0.8, k = 0.6,
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g = 0.3, m = 0.3, b = 0.1, h = 0.4, α = 0.4, τ = 1.

To understand the effects of white noise and pulse toxicant input on population dynam-
ics, we change the values of μ, γ , and σi (i = 1, 2, 3, 4, 5).

(1) We firstly adopt u = 0.3, σ1 = 0.3, σ2 = 0.2, σ3 = 0.2, σ4 = 0.4, σ5 = 0.4. If γ = 5, then
simple calculation shows that A = 0.1955 > 0. In view of the Theorem 3.2, we obtain that
the single-species population x is weakly persistent; see Fig. 1. If γ = 2, then by computing
we have A = –0.0439 < 0, so condition (i) of Theorem 3.2 holds, that is, the population x
of system (2) will extinct (see Fig. 2).

(2) Next, to analyze the effect of the toxicant input amount each time μ on the persis-
tence of the single species, we adopt u = 0.8, σ1 = 0.3, σ2 = 0.2, σ3 = 0.2, σ4 = 0.4, σ5 = 0.4,
and γ = 5. Simple calculation shows that A = –0.0555 < 0, and from Theorem 3.2 it follows
that the population x will die out a.s. (see Fig. 3). From Figs. 1 and 3 we can see that the
population x will die out when the environmental toxicant amount of each time μ is large
enough.

Figure 1 Solution of system (2) with σ1 = 0.3, σ2 = 0.2, σ3 = 0.2, σ4 = 0.4, σ5 = 0.4, u = 0.3, γ = 5

Figure 2 Solution of system (2) with σ1 = 0.3, σ2 = 0.2, σ3 = 0.2, σ4 = 0.4, σ5 = 0.4, u = 0.3, γ = 2
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Figure 3 Solution of system (2) with σ1 = 0.3, σ2 = 0.2, σ3 = 0.2, σ4 = 0.4, σ5 = 0.4, u = 0.8, γ = 5

Figure 4 Solution of system (2) with σ1 = 0.8, σ2 = 0.2, σ3 = 0.2, σ4 = 0.6, σ5 = 0.6, u = 0.3, γ = 5

(3) On the other hand, we will focus on the influence of the intensity of white noises on
the survival for the population x. We adopt u = 0.3 and γ = 5 and suppose that σ1 = 0.8,
σ2 = 0.2, σ3 = 0.2, σ4 = 0.6, and σ5 = 0.6. Simple calculation shows that A = –0.0823 < 0,
so that the population x will die out (see Fig. 4). Suppose σ1 = 0.3, σ2 = 0.2, σ3 = 0, σ4 = 0,
and σ5 = 0.4. Then A = 0.1955 > 0, and by Theorem 3.3 we obtain that the population x is
strongly persistent in the mean; moreover, limt→+∞ t–1 ∫ t

0 x(s) ds = 0.2443, that is, the pop-
ulation is stable in the mean (see Fig. 5). From Figs. 1 and 5 we can see that the population
x will die out when σ1, σ2, σ5 are large enough, but σ3 and σ4 have no effect on the survival
of the population x.

5 Conclusions
We studied a stochastic impulsive single-species population model with psychological
effect and delay in pollution environment. We obtained the threshold A between weak
persistence and extinction. Particularly, A is also a threshold of system (2) for the strong
persistence and extinction when σ3 = σ4 = 0. These results have revealed that the environ-
mental noise, the impulsive period, and the amount of toxicant input for each time have
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Figure 5 Solution of system (2) with σ1 = 0.3, σ2 = 0.2, σ3 = 0, σ4 = 0, σ5 = 0.4, u = 0.3, γ = 5

an influence on the persistence and extinction for the single-species population and show
that the delay τ and the intensities of the white noises σ 2

3 and σ 2
4 have no effect on the

persistence and extinction for the population x. Therefore Theorems 3.2 and 3.3 extend
the corresponding results in [8, 9].

However, there are still many interesting questions to be further studied. On the one
hand, we can propose more realistic and complex models, and the method used in this
paper can be also applied to study other interesting models, such as Gompertz models,
Gilpin–Ayala models, and so on. On the other hand, in recent years, optimal harvesting
problems have received a lot of attention [29], and hence we could add harvest items to
model (2) and discuss the optimal harvesting problem. We leave these investigations for
future work.
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