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Abstract
In this paper, a fast collocation method is developed for a two-dimensional
variable-coefficient linear nonlocal diffusion model. By carefully dealing with the
variable coefficient in the integral operator and then analyzing the structure of the
coefficient matrix, we can reduce the computational operations in each Krylov
subspace iteration from O(N2) to O(N logN) and the memory requirement for the
coefficient matrix from O(N2) to O(N). Numerical experiments are carried out to show
the utility of the fast collocation method.
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1 Introduction
Recently, nonlocal models such as fractional partial differential equations (FPDEs) and
nonlocal diffusion and peridynamic models have been applied in many research fields.
These models can be regarded as a generalization of classical PDEs [1–4] and have shown
the utility in modeling some challenging phenomena including anomalous diffusion and
long-range spatial interactions [5–13]. These phenomena cannot be modeled properly
by classical integer-order PDEs. Especially speaking, nonlocal diffusion and peridynamic
models provide a more natural method to describe physical problems especially near sin-
gularities and discontinuities [14]. However, because of the nonlocality, the numerical al-
gorithms usually yield dense or full coefficient matrices, which can cause significantly in-
creased computational complexity and memory storage. For example, widely used direct
solvers need O(N3) operations to solve the linear system and O(N2) computer memory
space to store the coefficient matrix in which N is the number of unknowns.

To date, there have been many papers aimed to develop fast numerical schemes for
nonlocal models to reduce the computational complexity and the memory requirement
[13, 15–21]. Among these papers, in [18], the authors developed a fast collocation method
for a two-dimensional linear nonlocal diffusion model. We developed a fast-method in [19]
and a preconditioned fast collocation method in [20] for two-dimensional linear bond-
based peridynamic model, respectively. All these papers are based on the Toeplitz-like
structure of the coefficient matrix. This structure can help us to reduce the computational
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work from O(N2) to O(N log N) in each Krylov subspace iteration and the memory stor-
age from O(N2) to O(N). Numerical examples in these papers show the utility of the fast
methods.

In [22], a variable-coefficient peridynamic model was developed to account for the het-
erogeneity of the elastic material. However, because the variable coefficient occurs inside
the integral operator, the coefficient matrix resulting from the numerical discretization
does not maintain the Toeplitz-like structure as in [18, 19]. Therefore the fast methods de-
veloped before do not apply to the variable-coefficient peridynamic model. To overcome
this difficulty, [23] developed a fast collocation method to a one-dimensional variable-
coefficient nonlocal diffusion model based on a piecewise-constant approximation to the
variable coefficient.

In this paper, a fast collocation method is developed for the two-dimensional variable-
coefficient linear nonlocal diffusion model based on Taylor expansion of the variable co-
efficient. The rest of the paper is organized as follows:. In Sect. 2, we present the bilinear
collocation scheme for the two-dimensional variable-coefficient linear nonlocal diffusion
model. In Sect. 3, we study the structure of the coefficient matrix and prove that the coeffi-
cient matrix can be approximated by a sum of the products of diagonal matrix and Toeplitz
matrix. Then fast matrix-vector multiplication and the reduced memory requirement can
be proved, which can be used in the Krylov subspace iteration method. In Sect. 4, we do
numerical experiments to investigate the computational benefits of the fast collocation
method. In Sect. 5, we make the concluding remarks.

2 The bilinear collocation approximation for variable-coefficient linear
nonlocal diffusion model

To begin with, we consider the following two-dimensional variable-coefficient static linear
nonlocal diffusion model[22]:

⎧
⎪⎪⎨

⎪⎪⎩

∫

Bδ (x,y)(α(x′, y′) + α(x, y))σ (x – x′, y – y′)(u(x, y) – u(x′, y′)) dx′ dy′

= f (x, y), (x, y) ∈ Ω ,

u(x, y) = g(x, y), (x, y) ∈ Ωc.

(1)

Here Ω = (0, xR) × (0, yR); δ represents a parameter of the model which determines the
range of interactions; Ωc denotes a boundary zone surrounding Ω with width δ; Bδ(x, y) is
an open disk in which the center is located at (x, y) and the radius is δ. σ (x, y) denotes
the integral kernel; f (x, y) and g(x, y) represent the source term and prescribed nonlo-
cal boundary data, respectively; α(x, y) is the elasticity coefficient with lower and upper
bounds.

Let Nx and Ny represent the number of mesh grids in the x and y directions, respectively.
Let hx := xR/Nx be the mesh size in the x direction. Let hy := yR/Ny be the mesh size in the y
direction. We define a spatial partition on Ω̄ by xi := ihx for i = 0, 1, . . . , Nx and yj := jhy for
j = 0, 1, . . . , Ny. To account for the nodes on Ωc, we need to extend the partition to (xi, yj) for
i = –K + 1, . . . , –1, 0, 1, . . . , Nx, Nx + 1, . . . , Nx + K – 1 and j = –L + 1, . . . , –1, 0, 1, . . . , Ny, Ny +
1, . . . , Ny + L – 1. Here,

K =
⌈

δ

hx

⌉

, L =
⌈

δ

hy

⌉

. (2)
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Let ψ(ξ ) be equal to 1 – |ξ | when ξ ∈ [–1, 1] and equal to zero otherwise. Then the
pyramid function φij(x, y) centered at (xi, yj) can be expressed as

φij(x, y) = ψ

(
x – xi

hx

)

ψ

(
y – yj

hy

)

, –K ≤ i ≤ Nx + K , –L ≤ j ≤ Ny + L. (3)

Then the trial function u is

u(x, y) =
Nx+K∑

i′=–K

Ny+L
∑

j′=–L

ui′ ,j′φi′ ,j′ (x, y). (4)

Because for the spatial nodes (xi, yj) ∈ Ωc, u(xi, yj) = g(xi, yj) are known, we choose the
spatial nodes (xi, yj) ∈ Ω as the collocation points. Then we obtain a collocation scheme
as follows:

∫

Bδ (xi ,yj)

(
α
(
x′, y′) + α(xi, yj)

)
σ
(
xi – x′, yj – y′)(u(xi, yj) – u

(
x′, y′))dx′ dy′

= f (xi, yj), 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1. (5)

We substitute (4) into (5) and rewrite (5) as follows:

α(xi, yj)
∫

Bδ (xi ,yj)
σ
(
xi – x′, yj – y′)

(

ui,j –
Nx+K–1∑

i′=–K+1

Ny+L–1
∑

j′=–L+1

ui′ ,j′φi′ ,j′
(
x′, y′)

)

dx′ dy′

+
∫

Bδ (xi ,yj)
α
(
x′, y′)σ

(
xi – x′, yj – y′)

(

ui,j –
Nx+K–1∑

i′=–K+1

Ny+L–1
∑

j′=–L+1

ui′ ,j′φi′ ,j′
(
x′, y′)

)

dx′ dy′

= fi,j, 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1, (6)

where fi,j = f (xi, yj) and uij is the collocation approximation to the true solution u(xi, yj).
Let N := (Nx – 1) × (Ny – 1) be the number of collocation points. Let u and f be N-

dimensional vectors defined by

u := [u1,1, . . . , uNx–1,1, u1,2, . . . , uNx–1,2, u1,Ny–1, . . . , uNx–1,Ny–1]T (7)

and

f := [f1,1, . . . , fNx–1,1, f1,2, . . . , fNx–1,2, f1,Ny–1, . . . , fNx–1,Ny–1]T , (8)

respectively.
Then the collocation approximation (6) can be expressed in the following matrix form:

(A1 + A2)u = f . (9)

Here, A1 ∈ R
N×N and A2 ∈ R

N×N are associated with the first term and the second term
on the left-hand side of (6), respectively.
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For the matrix A1, each entry Am,n
1 for m = 1, . . . , N and n = 1, . . . , N is defined as

Am,n
1 = α(xi, yj)

∫

Bδ (xi ,yj)
σ
(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′. (10)

For the matrix A2, each entry Am,n
2 for m = 1, . . . , N and n = 1, . . . , N is given by

Am,n
2 =

∫

Bδ (xi ,yj)
α
(
x′, y′)σ

(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′. (11)

In (10) and (11), δm,n is equal to 1 for m = n and equal to zero otherwise. The elements
{fm, m = 1, . . . , N} of f on the right hand side in (9) are given by

fm = fi,j +
∑

–K+1≤i′′≤0
Nx≤i′′≤Nx+K–1

∑

–L+1≤j′′≤0
Ny≤j′′≤Ny+L–1

α(xi, yj)
∫

Bδ (xi ,yj)

× σ
(
xi – x′, yj – y′)g(xi′′ , yj′′ )φi′′ ,j′′

(
x′, y′)dx′ dy′

+
∑

–K+1≤i′′≤0
Nx≤i′′≤Nx+K–1

∑

–L+1≤j′′≤0
Ny≤j′′≤Ny+L–1

∫

Bδ (xi ,yj)
α
(
x′, y′)

× σ
(
xi – x′, yj – y′)g(xi′′ , yj′′ )φi′′ ,j′′

(
x′, y′)dx′ dy′. (12)

In (10), (11), and (12), the global indices (m, n) and the local indices (i, j), (i′, j′) have the
following relationship:

m = (j – 1)(Nx – 1) + i, 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1,

n =
(
j′ – 1

)
(Nx – 1) + i′, 1 ≤ i′ ≤ Nx – 1, 1 ≤ j′ ≤ Ny – 1.

(13)

3 Structure of the coefficient matrices A1 and A2 in (9)
To construct a fast collocation method, we are now in a position to analyse the structure
of the coefficient matrices A1 and A2 in (9).

Theorem 1 The matrix A1 can be expressed as

A1 = D1B1. (14)

Here D1 is a diagonal matrix and the entries on the main diagonal are given by

Dm,m
1 = α(xi, yj), 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1. (15)
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B1 is a block-Toeplitz–Toeplitz-block (BTTB) matrix. More precisely, B1 is a (Ny – 1)-by-
(Ny – 1) banded block-Toeplitz matrix with bandwidth (2L + 1)

B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0
1 · · · BL

1 0 · · · 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

B–L
1

. . . B0
1

. . . . . . 0
. . . . . . 0

0
. . . . . . B0

1
. . . . . . 0

. . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0
. . . 0

. . . . . . B0
1

. . . . . . 0

0
. . . . . . 0

. . . . . . B0
1

. . . BL
1

...
. . . . . . . . . . . . . . . . . . . . .

...
0 · · · 0 0 · · · 0 B–L

1 · · · B0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

In (16), each block matrix Bj
1, –L ≤ j ≤ L is a (Nx – 1)-by-(Nx – 1) banded Toeplitz matrix

with bandwidth 2K + 1

Bj
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0,j
1 · · · bK ,j

1 0 · · · 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

b–K ,j
1

. . . b0,j
1

. . . . . . 0
. . . . . . 0

0
. . . . . . b0,j

1
. . . . . . 0

. . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0
. . . 0

. . . . . . b0,j
1

. . . . . . 0

0
. . . . . . 0

. . . . . . t0,j
1

. . . bK ,j
1

...
. . . . . . . . . . . . . . . . . . . . .

...
0 · · · 0 0 · · · 0 b–K ,j

1 · · · b0,j
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (17)

Proof By a straightforward calculation and analysis of A1, we can find that

A1 = D1B. (18)

The entries in B are given by

Bm,n =
∫

Bδ (xi ,yj)
σ
(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′, (19)

where the local indices (i, j), (i′, j′) and the global indices m, n are related by (13). Following
the proof of Theorem 1 in [24], we see that B is a BTTB matrix and can be expressed as
B1. �

Now we consider the structure of matrix A2. From (11), we observe that the variable
coefficient occurs inside the integral, which brings a global impact to the numerical dis-
cretization. If we calculate the matrix A2 straightforwardly, we find A2 is also a 2K + 1
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block-banded 2L + 1 banded-block matrix but destroys the BTTB structure. Therefore if
we use this structure to solve the linear system, the computational complexity and mem-
ory requirement will not decrease.

In this paper, we consider the following approximate way. That is, although the original
matrix A2 does not have the BTTB structure, it can be approximated by a sum of products
of diagonal matrix and BTTB matrix if the variable coefficient α(x, y) is approximated by
Taylor expansion. We denote the sum by Aa

2.

Theorem 2 The matrix A2 can be approximately decomposed as

Aa
2 = D1B1 + D2B2 + D3B3. (20)

Here D1 and B1 are given in the Theorem 1. D2 and D3 are diagonal matrices where the
main diagonal entries are defined as

Dm,m
2 =

∂α(xi, yj)
∂x

, 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1, (21)

and

Dm,m
3 =

∂α(xi, yj)
∂y

, 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1, (22)

respectively. B2 and B3 have the same structure as B1. The definition of B2 and B3 can be
easily obtained by replacing the subscript 1 by 2 and 3 in (16) and (17), respectively.

Proof Using Taylor expansion, the variable coefficient α(x′, y′) can be expanded to the fol-
lowing form at the point (xi, yj):

α
(
x′, y′) ≈ α(xi, yj) +

∂α(xi, yj)
∂x

(
x′ – xi

)
+

∂α(xi, yj)
∂y

(
y′ – yj

)
. (23)

Substituting (23) into (11), each entry of A1 can be rewritten as

Am,n
2 =

∫

Bδ (xi ,yj)
α
(
x′, y′)σ

(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′

≈ α(xi, yj)
∫

Bδ (xi ,yj)
σ
(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′

+
∂α(xi, yj)

∂x

∫

Bδ (xi ,yj)

(
x′ – xi

)
σ
(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′

+
∂α(xi, yj)

∂y

∫

Bδ (xi ,yj)

(
y′ – yj

)
σ
(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′

= Im,n
1 + Im,n

2 + Im,n
3 , (24)
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where

Im,n
1 = α(xi, yj)

∫

Bδ (xi ,yj)
σ
(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′,

Im,n
2 =

∂α(xi, yj)
∂x

∫

Bδ (xi ,yj)

(
x′ – xi

)
σ
(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′,

Im,n
3 =

∂α(xi, yj)
∂y

∫

Bδ (xi ,yj)

(
y′ – yj

)
σ
(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′.

(25)

We first consider the term Im,n
1 . Because Im,n

1 is the same as Am,n
1 , the matrix form of Im,n

1

for 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1 is equal to D1B1 given in Theorem 1. Here the global
indices (m, n) and the local indices (i, j), (i′, j′) are related by (13).

Next, we only prove the structure of matrix generated by Im,n
2 . The structure of matrix

generated by Im,n
3 is similar. Let the matrix form of Im,n

2 , with 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1,
be denoted by A. By a direct analysis, we have

A = D2M, (26)

where D2 is defined in (21) and each entry of M is defined as

Mm,n =
∫

Bδ (xi ,yj)

(
x′ – xi

)
σ
(
xi – x′, yj – y′)(δm,n – φi′ ,j′

(
x′, y′))dx′ dy′. (27)

Furthermore, M is of the form

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

M1,1 M1,2 · · · M1,Ny–1

M2,1 M2,2 . . . M2,Ny–1

...
. . . . . .

...
MNy–1,1 MNy–1,2 · · · MNy–1,Ny–1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (28)

Here each matrix block Mj,j′ , 1 ≤ j ≤ Ny – 1, 1 ≤ j′ ≤ Ny – 1 is of order Nx – 1 and can be
expressed as

Mj,j′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Mj,j′
1,1 Mj,j′

1,2 · · · Mj,j′
1,Nx–1

Mj,j′
2,1 Mj,j′

2,2
. . . Mj,j′

2,Nx–1
...

. . . . . .
...

Mj,j′
Nx ,1 Mj,j′

Nx–1,2 · · · Mj,j′
Nx–1,Nx–1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (29)

We now analyze the structure of M. From (13) and the second equation in (25), we have
Im,n

2 �= 0 if and only if

Bδ(xi, yj) ∩ supp(φi′ ,j′ )) �= ∅. (30)
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From (28) and (30), each matrix block Mj,j′ satisfying |j – j′| > L becomes zero matrix.
Thus M has a block-banded structure given by

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M1,1 · · · M1,L+1 0 · · · 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

ML+1,1 . . . . . . . . . . . . 0
. . . . . . 0

0
. . . . . . . . . . . . . . . 0

. . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0
. . . 0

. . . . . . . . . . . . . . . 0

0
. . . . . . 0

. . . . . . . . . . . . MNy–L–1,Ny–1

...
. . . . . . . . . . . . . . . . . . . . .

...
0 · · · 0 0 · · · 0 MNy–1,Ny–L–1 · · · MNy–1,Ny–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (31)

From (29) and (30), we also observe that all the entries Mj,j′
i,i′ with |i– i′| > K in Mj,j′ vanish.

That is, Mj,j′ satisfying |j – j′| ≤ L has a banded structure expressed as

Mj,j′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mj,j′
1,1 · · · mj,j′

1,K+1 0 · · · 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

mj,j′
K+1,1

. . . . . . . . . . . . 0
. . . . . . 0

0
. . . . . . . . . . . . . . . 0

. . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0
. . . 0

. . . . . . . . . . . . . . . 0

0
. . . . . . 0

. . . . . . . . . . . . mj,j′
Nx–K–1,Nx–1

...
. . . . . . . . . . . . . . . . . . . . .

...
0 · · · 0 0 · · · 0 mj,j′

Nx–1,Nx–K–1 · · · mj,j′
Nx–1,Nx–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (32)

By the transformations

ξ1 = x′ – xi, ξ2 = y′ – yj,

the pyramid function given in (2) can be written as

φi′ ,j′
(
x′, y′) = ψ

(
ξ1 – xi′–i

hx

)

ψ

(
ξ2 – yj′–j

hy

)

= φi′–i,j′–j(ξ1, ξ2).

Then from Eq. (27) can be deduced

Mm,n =
∫

Bδ (0,0)
ξ1σ (–ξ1, –ξ2)

(
δm,n – φi′–i,j′–j(ξ1, ξ2)

)
dξ1 dξ2. (33)
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Let j′1 – j1 = j′2 – j2 = l, –L ≤ l ≤ L. That is, the matrix blocks Mj1,j′1 and Mj2,j′2 are on the
same diagonal. Let

m1 = (j1 – 1)(Nx – 1) + i, 1 ≤ i ≤ Nx – 1, 1 ≤ j1 ≤ Ny – 1,

n1 =
(
j′1 – 1

)
(Nx – 1) + i′, 1 ≤ i′ ≤ Nx – 1, 1 ≤ j′1 ≤ Ny – 1,

m2 = (j2 – 1)(Nx – 1) + i, 1 ≤ i ≤ Nx – 1, 1 ≤ j2 ≤ Ny – 1,

n2 =
(
j′2 – 1

)
(Nx – 1) + i′, 1 ≤ i′ ≤ Nx – 1, 1 ≤ j′2 ≤ Ny – 1.

(34)

Then we have

mj1,j′1
i,i′ = Mm1,n1

=
∫

Bδ (0,0)
ξ1σ (–ξ1, –ξ2)

(
δm1,n1 – φi′–i,j′1–j1 (ξ1, ξ2)

)
dξ1 dξ2

=
∫

Bδ (0,0)
ξ1σ (–ξ1, –ξ2)

(
δm2,n2 – φi′–i,j′2–j2 (ξ1, ξ2)

)
dξ1 dξ2

= Mm2,n2 = mj2,j′2
i,i′ , 1 ≤ i, i′ ≤ Nx – 1. (35)

According to (35), we have proved Mj1,j′1 = Mj2,j′2 .
Let i′3 – i3 = i′4 – i4 = k, –K ≤ k ≤ K . That is, the entries mj,j′

i3,i′3
and mj,j′

i4,i′4
in each matrix

block Mj,j′ are on the same diagonal. Let

m3 = (j – 1)(Nx – 1) + i3, 1 ≤ i3 ≤ Nx – 1, 1 ≤ j ≤ Ny – 1,

n3 =
(
j′ – 1

)
(Nx – 1) + i′3, 1 ≤ i′3 ≤ Nx – 1, 1 ≤ j′ ≤ Ny – 1,

m4 = (j – 1)(Nx – 1) + i4, 1 ≤ i4 ≤ Nx – 1, 1 ≤ j ≤ Ny – 1,

n4 =
(
j′ – 1

)
(Nx – 1) + i′4, 1 ≤ i′4 ≤ Nx – 1, 1 ≤ j′ ≤ Ny – 1.

(36)

Then we observe that

mj,j′
i3,i′3

= Mm3,n3

=
∫

Bδ (0,0)
ξ1σ (–ξ1, –ξ2)

(
δm3,n3 – φi′3–i3,j′–j(ξ1, ξ2)

)
dξ1 dξ2

=
∫

Bδ (0,0)
ξ1σ (–ξ1, –ξ2)

(
δm4,n4 – φi′4–i4,j′–j(ξ1, ξ2)

)
dξ1 dξ2

= Mm4,n4 = mj,j′
i4,i′4

. (37)

Combining (35) and (37), we conclude that the matrix defined in (26) is a BTTB matrix. �

Using the Taylor expansion (23), the collocation scheme (6) can be changed to an ap-
proximate form,

2α(xi, yj)
∫

Bδ (xi ,yj)
σ
(
xi – x′, yj – y′)

(

ûi,j –
Nx+K∑

i′=–K

Ny+L
∑

j′=–L

ûi′ ,j′φi′ ,j′
(
x′, y′)

)

dx′ dy′
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+
∂α(xi, yj)

∂x

∫

Bδ (xi ,yj)
σ
(
xi – x′, yj – y′)

(

ûi,j –
Nx+K∑

i′=–K

Ny+L
∑

j′=–L

ûi′ ,j′φi′ ,j′
(
x′, y′)

)

dx′ dy′

+
∂α(xi, yj)

∂y

∫

Bδ (xi ,yj)
σ
(
xi – x′, yj – y′)

(

ûi,j –
Nx+K∑

i′=–K

Ny+L
∑

j′=–L

ûi′ ,j′φi′ ,j′
(
x′, y′)

)

dx′ dy′

= fi,j, 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1, (38)

where ûi,j is the alternative collocation approximation to the true solution u(xi, yj). The
matrix form of (38) can be written as

Âû = (2D1B1 + D2B2 + D3B3)û = f̂ , (39)

where

û := [û1,1, . . . , ûNx–1,1, û1,2, . . . , ûNx–1,2, û1,Ny–1, . . . , ûNx–1,Ny–1]T (40)

and

f̂ := [f̂1,1, . . . , f̂Nx–1,1, f̂1,2, . . . , f̂Nx–1,2, f̂1,Ny–1, . . . , f̂Nx–1,Ny–1]T . (41)

The elements in f̂ are given by

f̂i,j = fi,j +
∑

–K+1≤i′′≤0
Nx≤i′′≤Nx+K–1

∑

–L+1≤j′′≤0
Ny≤j′′≤Ny+L–1

α(xi, yj)
∫

Bδ (xi ,yj)

× σ
(
xi – x′, yj – y′)g(xi′′ , yj′′ )φi′′ ,j′′

(
x′, y′)dx′ dy′

+
∂α(xi, yj)

∂x
∑

–K+1≤i′′≤0
Nx≤i′′≤Nx+K–1

∑

–L+1≤j′′≤0
Ny≤j′′≤Ny+L–1

∫

Bδ (xi ,yj)

× σ
(
xi – x′, yj – y′)g(xi′′ , yj′′ )φi′′ ,j′′

(
x′, y′)dx′ dy′

+
∂α(xi, yj)

∂y
∑

–K+1≤i′′≤0
Nx≤i′′≤Nx+K–1

∑

–L+1≤j′′≤0
Ny≤j′′≤Ny+L–1

∫

Bδ (xi ,yj)

× σ
(
xi – x′, yj – y′)g(xi′′ , yj′′ )φi′′ ,j′′

(
x′, y′)dx′ dy′,

1 ≤ i ≤ NX – 1, 1 ≤ j ≤ Ny – 1. (42)

Corollary 1 The coefficient matrices Â can be stored in O(N) memories.

Proof From (39), to store the matrices Â, we need to store D1, D2, D3, B1, B2, and B3. Be-
cause D1, D2, and D3 are all diagonal matrices, the storage of these three matrices requires
O(N) memories.

According to the fact that matrices B1, B2, and B3 have the same structure, we only need
to analyse the storage requirement of B1. Because of the BTTB structure of B1, to store
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B1, we need to store only (2K + 1)-by-(2L + 1) entries which can be arranged as follows:

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b–K ,–L
1 · · · b–K ,0

1 · · · b–K ,L
1

...
. . .

...
. . .

...
b0,–L

1 · · · b0,0
1 · · · b0,L

1
...

. . .
...

. . .
...

bK ,–L
1 · · · bK ,0

1 · · · bK ,j
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (43)

Hence, the memory requirement of B1 is O(N). �

Corollary 2 The matrix-vector multiplication Âu can be calculated in O(N log N) oper-
ations for any vector u ∈R

N .

Proof From (39), we have

Âu = 2(D1B1u) + D2B2u + D3B3u. (44)

We only consider the first term on the right-hand side in (44). The other two terms are
calculated similarly. Because the matrix B1 is a BTTB matrix, the matrix-vector multipli-
cation G1 = B1u can be finished in O(N log N) operations[25]. Subsequently, D1G1 can be
calculated in O(N) operations due to the fact that D1 is a diagonal matrix. In summary,
D1B1u can be calculated in O(N log N) operations. �

In the well-known Krylov subspace iteration method, such as conjugate gradient method
(CG) and conjugate gradient squared method (CGS), each iteration contains several
matrix-vector multiplications and vector operations. Because of the nonlocal property of
the nonlocal diffusion model, the coefficient matrices A1 and A2 are usually dense. Hence,
the matrix-vector multiplications in each iteration need O(N2) computational operations.
All other computations in each iteration still need O(N) computational operations. Thus,
a fast Krylov subspace iteration method can be developed by calculating the matrix-vector
multiplications in each iteration using Corollary 2. Moreover, the computer memory stor-
age can be reduced for the coefficient matrix Â using Corollary 1.

4 Numerical experiments
In this section, several numerical experiments are done to investigate the performance of
the fast collocation method for the two-dimensional variable-coefficient nonlocal diffu-
sion model. In the numerical runs as follows:, the variable-coefficient nonlocal diffusion
model (1) with kernel function [26]

σ (x, y) =
1

(x2 + y2)1+s , s <
1
2

(45)

is considered.
In the following numerical experiments, the domain Ω in (1) is chosen to be Ω = (0, 1)×

(0, 1). We divide Ω by uniform square meshes, i.e., Nx = Ny. The horizon parameter is
fixed to δ = 1/8. The true solution is chosen to be x(1 – x)y(1 – y). g(x, y) = u(x, y) on the
boundary zone Ωc. The variable coefficient α(x, y) = 1 + x2 + y2. We use MATLAB to run
the following numerical examples on a 8G-memory laptop.



Zhang and Cheng Advances in Difference Equations        (2020) 2020:479 Page 12 of 15

Table 1 The L2 errors of the collocation schemes (6) and (38)

Nx = Ny ‖uh – u‖L2 ‖ûh – u‖L2
24 1.1033× 10–2 1.0974× 10–2

25 4.5320× 10–3 4.4807× 10–3

Example 1 We investigate the credibility of the collocation method (38) in this numerical
example. The value of s in (45) is fixed to be zero. The right-hand term can be analytically
computed by polar coordinate transformation and Maple

f (x, y) = –
π

64
x4 –

π

64
y4 +

π

64
x3 +

π

64
y3 –

517π

32,768
x2 –

517π

32,768
y2 +

515π

32,768
x

+
515π

32,768
y –

3π

32
x2y2 +

π

16
x2y +

π

16
xy2 –

π

32
xy –

193π

6,291,456
. (46)

We run this numerical experiment with the original collocation method (6) and the ap-
proximate collocation method (38), respectively. In (6), there are not any approximations
to the variable coefficient. However, in (38), a Taylor expansion is used to approximate
the variable coefficient. We solve (6) and (38) by CGS and present the L2 errors and the
number of iterations of these two collocation methods in Table 1.

From Table 2, we can observe that the L2 errors of the approximate collocation method
are comparable to that of the original collocation method. Furthermore, the L2 errors of
the approximate collocation method are slightly better than that of the original collocation
method. This is because the formation of matrix A2 requires lots of numerical integrations
(precisely speaking, we need 4(2K + 1)2 numerical integrations to calculate each non-zero
entry), but the formation of matrix Â needs only a total of 3(2K + 1)2 numerical integra-
tions. The accumulation of truncation errors of the latter is better than that of the former.
When Nx = Ny = 26, because of the massive numerical integrations, the formation of ma-
trix A2 is very time-consuming(precisely speaking, it took us more than 2 days). Hence,
when Nx = Ny is larger than 26, we terminated the numerical experiment.

Example 2 In this numerical example, we investigate the convergence behavior of the fast
approximate collocation method by choosing different kernel functions. The value of s
in (45) is chosen to be 3/8, 0 and –1/2, respectively. When s is equal to 3/8, –1/2, the
corresponding right-hand terms are given by

f (x, y) = –
21/4π

10
x4 –

21/4π

10
y4 +

21/4π

10
x3 +

21/4π

10
y3 –

21/43353π

33,280
x2

–
21/43353π

33,280
y2 +

21/43343π

33,280
x +

21/43343π

33,280
y –

21/43π

5
x2y2

+
21/42π

5
x2y +

21/42π

5
xy2 –

21/4π

5
xy –

21/42701π

17,891,328
(47)

and

f (x, y) = –
π

768
x4 –

π

768
y4 +

π

768
x3 +

π

768
y3 –

259π

196,608
x2

–
259π

196,608
y2 +

1289π

983,040
x +

1289π

983,040
y –

π

128
x2y2
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Table 2 Performance of FCG, CG, and Gauss while s = 3/8

Nx = Ny ‖uh – u‖L2 # of iter. CPUs

Gauss 24 2.2848× 10–2 0.73 s
25 1.6317× 10–2 20 s
26 9.8298× 10–3 19 m 2 s
27 > 10 h
28 out of memory

Cα = 0.13, α = 0.61

CGS 24 2.2848× 10–2 33 0.53 s
25 1.6317× 10–2 104 8.1 s
26 9.8298× 10–3 165 3 m 49 s
27 > 10 h
28 out of memory

Cα = 0.13, α = 0.61

FCGS 24 2.2848× 10–2 32 0.1 s
25 1.6317× 10–2 104 1 s
26 9.8298× 10–3 165 15.82 s
27 4.9156× 10–3 303 1 m 19 s
28 2.2000× 10–3 625 11 m 59 s

Cα = 0.28, α = 0.85

Table 3 Performance of FCG, CG, and Gauss while s = 0

Nx = Ny ‖uh – u‖L2 # of iter. CPUs

Gauss 24 1.0974× 10–2 0.59 s
25 4.4807× 10–3 14.6 s
26 1.4500× 10–3 19 m 1 s
27 > 10 h
28 out of memory

Cα = 0.65, α = 1.46

CGS 24 1.0974× 10–2 22 0.27 s
25 4.4807× 10–3 34 4.2 s
26 1.4500× 10–3 44 2 m 41 s
27 3.7331× 10–4 53 5 h 28 m 14 s
28 out of memory

Cα = 1.12, α = 1.63

FCGS 24 1.0974× 10–2 22 0.19 s
25 4.4807× 10–3 34 0.44 s
26 1.4500× 10–3 44 5.33 s
27 3.7331× 10–4 53 18.9 s
28 2.2977× 10–5 62 1 m 40 s

Cα = 6.6, α = 2.14

+
π

192
x2y +

π

192
xy2 –

π

384
xy –

901π

293,601,280
, (48)

respectively.
In this numerical experiment, we solve the resulting approximate collocation method

(38) by Gauss elimination method (Gauss), CGS, and the fast CGS (FCGS), respectively.
We present the L2 errors of the numerical solutions, the number of iterations in the cor-
responding iteration methods, and the CPU time spent in the above solvers in Tables 2–4.
Furthermore, we use least squares method to estimate the constant Cα and the conver-
gence rate α in the error estimate

‖u – uh‖L2 ≤ Cαhα . (49)
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Table 4 Performance of FCG, CG, and Gauss while s = –1/2

Nx = Ny ‖uh – u‖L2 # of iter. CPUs

Gauss 24 6.3004× 10–3 0.69 s
25 1.8866× 10–3 13.5 s
26 4.3221× 10–4 19 m 28 s
27 > 10 h
28 out of memory

Cα = 1.4, α = 1.93

CGS 24 6.3004× 10–3 15 0.48 s
25 1.8866× 10–3 20 4.75 s
26 4.3221× 10–4 24 2 m 53 s
27 2.8420× 10–5 7 h 18 m 40 s
28 out of memory

Cα = 10.3, α = 2.55

FCGS 24 6.3004× 10–3 15 0.09 s
25 1.8866× 10–3 20 0.25 s
26 4.3221× 10–4 24 2.33 s
27 2.8420× 10–5 27 10.6 s
28 8.2241× 10–6 35 54.5 s

Cα = 9.3, α = 2.52

From Tables 2–4, The following results can be observed: (i) The L2 errors of the numer-
ical solutions of (1) become small while s decreases. (ii) The number of iterations in CGS
and FCGS falls while s decreases. (iii) FCGS requires less memory than the traditional
solvers like Gauss and CGS. Specifically, we can observe from Tables 2–4 that when N is
equal to 28, the memory required in Gauss and CGS is not enough. However, FCGS does
not have this problem because of less memory requirement. (iv) From Tables 2–4, we can
observe that FCGS needs less CPU time than Gauss and CGS especially when N is cho-
sen to be bigger. For example, when s = –1/2 and N = 27, the CPU time required by CGS
exceeds 5 hours, but FCGS needs only about 19 seconds.

5 Conclusions
In this paper, a fast and faithful collocation method is developed for a two-dimensional
variable-coefficient linear nonlocal diffusion model. Using Taylor expansion to the vari-
able coefficient α(x, y), we see that the coefficient matrix resulting from the bilinear col-
location method can be approximated by a sum of the products of diagonal matrix and
BTTB matrix, which result in an approximate collocation method to the original physical
problem. This fast method can reduce the computational operations in each Krylov sub-
space iteration from O(N2) to O(N log N) and the memory requirement of the coefficient
matrix from O(N2) to O(N). The numerical experiments show the credibility and utility
of this fast collocation method.
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