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Abstract
This paper presents theoretical results on the finite-time synchronization of delayed
memristive neural networks (MNNs). Compared with existing ones on finite-time
synchronization of discontinuous NNs, we directly regard the MNNs as a switching
system, by introducing a novel analysis method, new synchronization criteria are
established without employing differential inclusion theory and non-smooth finite
time convergence theorem. Finally, we give a numerical example to support the
effectiveness of the theoretical results.
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1 Introduction
It is well known that Chua in [1] postulated the existence of the fourth circuit element
in 1971, and he named this element memristor as a contraction of memory and resistor,
Chua also pointed out that the memristor can memorize its past dynamic history, such a
memory characteristic makes it as a potential candidate for simulating biological synapses,
and it has been shown that a simple memristive system can exhibit a plethora of complex
dynamical behaviors. Until 2008, William and his research group at Hewlett-Packard Lab-
oratory proclaimed that the fourth circuit element is realized by building a prototype of a
solid-state memristor [2], since then, many efforts have been made devoted to the analysis
and synthesis of memristive systems, see [3–5] and the references therein.

Especially, the so-called memristive neural networks (MNNs) are constructed by in-
troducing resistors into artificial or biological neural networks, which greatly expand the
application scope of neural networks, for example, MNNs can provide an important ap-
proach to better understand the neural processes in the human brain [3]. In addition, in
the process of design and implementation of NNs, communication delays are ubiquitous
in the real world owing to the finite velocity of signal switching and delivery, and it often
becomes a source of some undesirable side-effects such as oscillation and divergence in a
real-world network [6]. Recently, the research on the dynamics of many types of delayed
MNNs has been today’s hot topics and there are many excellent works have been reported,
such as [7–13] and the references therein.
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Synchronization, as an important nonlinear dynamical nature, has extensive applica-
tions in practical engineering fields. Under the drive–response (or master–slave) frame-
work proposed by Pecora and Carroll in [14], many theoretical results have been estab-
lished on the synchronization of two MNNs, for example, the synchronization dynam-
ics of kinds of delayed MNNs have been well studied, such as the global exponential
synchronization [15], reliable asymptotic anti-synchronization [16], non-fragile H∞ syn-
chronization [17], projective synchronization [18], and so on. Looking through the above-
mentioned literature, the trajectories of the response system can reach the trajectories of
deriving system over the infinite horizon. In the application point of view, the synchroniza-
tion is usually required to be realized in finite time, which is more important in some engi-
neering processes, for instance, secure communication and artificial intelligence [19, 20].
For finite-time synchronization, it is noteworthy that the settling time depends heavily on
the initial states of the system, which limits practical applications because the informa-
tion of initial conditions may be hard to adjust or even impossible to estimate. To satisfy
the need of fact, the fixed-time stability was originally introduced by Polyakov in [21], if it
is globally finite-time stable and the settling time function is uniformly bounded for any
initial values, which means that the settling or halting time is not dependent on the ini-
tial states. Nowadays, fixed-time control has been extensively applied in many areas such
as power systems [22], rigid spacecraft [23], etc. According to the significant biological
and engineering backgrounds of finite-time or fixed-time synchronization control, such
an issue of delayed MNNs has attracted considerable attention, see [10, 24–30] and the
references therein. It is noteworthy that for the majority of the aforementioned studies, a
common method is based on the generalized finite-time convergence theorem under the
Filippov differential inclusion theory, and the corresponding criteria are established via
constructing Lyapunov (or Lyapunov–Krasovskii) functionals.

Motivated by recent works in [31, 32] and combining with the framework for studying
MNNs proposed in [33], in this paper, we further study the finite-time synchronization
of a basic delayed MNN model. The main contribution of this paper lies in the following
aspects.

(1) Different from the theoretical results on dynamics of the aforementioned delayed
MNNs, in this paper, the differential inclusion theory and the nonsmooth analysis
techniques are abandoned, our results complement the earlier publications.

(2) Existing finite-time synchronization results on delayed MNNs are mainly based on
some generalized finite-time convergence theorem (see, e.g., [10, 24, 26, 27]), in this
paper, we study the finite-time synchronization without using them, the employed
approach enriches the analysis method of MNNs.

(3) The theoretical results established in this paper are closely related to the location of
the initial error states, which presents a new viewpoint of finite-time
synchronization process.

The rest of this paper is arranged as follows. In Sect. 2, the model description and some
preliminary works are presented. Section 3 discusses the finite-time synchronization of
the drive–response MNNs with a state feedback controller. In Sect. 4, a numerical example
is given to substantiate the theoretical analysis. Finally, conclusions are drawn in Sect. 5.
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2 Preliminaries
In this paper, we consider the following delayed MNN model described by Guo et al. in
[33],

dxi(t)
dt

= –dixi(t) +
n∑

j=1

aij(xi)fj
(
xj(t)

)
+

n∑

j=1

bij(xi)gj
(
xj(t – θ )

)
+ Ii, (2.1)

where xi(t) denotes the neuron current activity level, di > 0 is the neuronal self-inhibition,
fj(·), gj(·) are two activation functions, Ii stands for the input or bias, θ represents the trans-
mission delay, and aij(·) and bij(·) are dependent on the variation directions of fj(xj(t))–xi(t)
and gj(xj(t – θ )) – xi(t) along time t, respectively. More concretely, in light of the current–
voltage characteristics of memristor [33], the state-dependent parameters aij(·) and bij(·)
can be specifically expressed as

aij(xi) =

⎧
⎪⎪⎨

⎪⎪⎩

a∗
ij, D–fij(t) < 0,

unchanged, D–fij(t) = 0,

a∗∗
ij , D–fij(t) > 0,

bij(xi) =

⎧
⎪⎪⎨

⎪⎪⎩

b∗
ij, D–gij(t – θ ) < 0,

unchanged, D–gij(t – θ ) = 0,

b∗∗
ij , D–gij(t – θ ) > 0,

(2.2)

in which a∗
ij, a∗∗

ij and b∗
ij, b∗∗

ij are different constants, D–(·) means the left upper Dini-
derivation, and fij(t) = fj(xj(t)) – xi(t), gij(t – θ ) = fj(xj(t – θ )) – xi(t). The initial condition is
equipped with xi(t) = ϕi(t) ∈ C([–θ , 0],R).

In the following, we routinely regard system (2.1) as the drive system and the corre-
sponding response system is presented as follows:

dyi(t)
dt

= –diyi(t) +
n∑

j=1

aij(yi)fj
(
yj(t)

)
+

n∑

j=1

bij(yi)gj
(
yj(t – θ )

)
+ Ii + Ci(t), (2.3)

in which yi(t) stands for the state variable of the ith neuron of response system and Ci(t)
corresponds to the control input. The initial condition associated with system (2.3) is given
by yi(t) = ϕ̃i(t) ∈ C([–θ , 0],R).

Let us define the synchronization error function as ei(t) = yi(t) – xi(t), and subtract (2.3)
from (2.1), we obtain the following error system:

dei(t)
dt

= –diei(t) +
n∑

j=1

[
aij(yi)fj

(
yj(t)

)
– aij(xi)fj

(
xj(t)

)]

+
n∑

j=1

[
bij(yi)gj

(
yj(t – θ )

)
– bij(xi)gj

(
xj(t – θ )

)]
+ Ci(t). (2.4)

With regard to neural networks (2.1) and (2.3), the initial condition of system (2.4) is cor-
respondingly given as follows,

ei(s) = ϕ̃i(s) – ϕi(s), s ∈ [–θ , 0].
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Definition 2.1 ([20, 32]) If for a suitable designed controller and any initial state ei(s) =
ϕ̃i(s) – ϕi(s), s ∈ [–θ , 0], there is a time T(ϕ̃,ϕ) such that

lim
t→T(ϕ̃,ϕ)

∣∣yi(t) – xi(t)
∣∣ = 0

and

∣∣yi(t) – xi(t)
∣∣ ≡ 0, for t ≥ T(ϕ̃,ϕ), i = 1, 2, . . . , n.

Then the drive system-response systems (2.1) and (2.3) are said to achieve finite-time syn-
chronization. The function T is called the settling-time function.

Definition 2.2 ([20, 32]) If drive–response systems (2.1) and (2.3) are finite-time syn-
chronization and the settling time function T(ϕ̃,ϕ) is uniformly bounded, that is, there is
a constant Tmax > 0 such that T(ϕ̃,ϕ) ≤ Tmax. Then the drive system (2.1) and response
system (2.3) are said to achieve fixed-time synchronization.

It is easy to see from the preknowledge that the finite-time synchronization problem in
this paper is converted to finite-time stability problem of (2.4). In order to achieve this
objective, further assumptions on the activations are made in the following.

Assumption 2.1 The activation functions fi(·) and gi(·) satisfy globally Lipschitz condi-
tions and are bounded, that is, there exist positive constants Lf

i , Lg
i and Mf

i , Mg
i such that

∣∣fi(u) – fi(v)
∣∣ ≤ Lf

i |u – v|, ∣∣gi(u) – gi(v)
∣∣ ≤ Lg

i |u – v|,

and

∣∣fi(u)
∣∣ ≤ Mf

i ,
∣∣gi(u)

∣∣ ≤ Mg
i ,

hold for all u, v ∈R, i = 1, 2, . . . , n.

3 Main results
For notational convenience, in what follows we denote âij = max{|a∗

ij|, |a∗∗
ij |}, b̂ij = max{|b∗

ij|,
|b∗∗

ij |}, da
ij = |max{a∗

ij, a∗∗
ij } – min{a∗

ij, a∗∗
ij }|, db

ij = |max{b∗
ij, b∗∗

ij } – min{b∗
ij, b∗∗

ij }|, k̃min =
min1≤i≤n{ki}.

We are now in a position to state our main results as follows.

Theorem 3.1 Let Assumption 2.1 hold, if the error system (2.4) is controlled with the con-
trol law

Ci(t) = – sign
(
ei(t)

)(
αi

∣∣ei(t)
∣∣ + βi + ki

∣∣ei(t)
∣∣μ)

, 0 < μ < 1,

where the control parameters αi, βi, ki are positive constants satisfying

αi > –di +
n∑

j=1

âijL
f
j + 2

μ
1–μ

n∑

j=1

b̂ijL
g
j (3.1)
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and

βi ≥ 2
μ

1–μ
(
(1 – μ)k̃minθ

) 1
1–μ

n∑

j=1

b̂ijL
g
j +

n∑

j=1

da
ijM

f
j +

n∑

j=1

db
ijM

g
j , i = 1, 2, . . . , n, (3.2)

then the response system (2.3) can in finite–time synchronize with the drive system (2.1).

In order to prove the main results, we first establish the following two lemmas.

Lemma 3.2 Let Assumption 2.1 hold and conditions (3.1) and (3.2) be satisfied. Then, for
each ei(t) of system (2.4) with sup–θ≤s≤0(max1≤i≤n |ei(s)|) > 1, it would finite–timely cross
the hyperplane with sup–θ≤s≤0(max1≤i≤n |ei(s)|) = 1.

Proof Observe from (3.1), (3.2) and 0 < μ < 1 that

αi > –di +
n∑

j=1

âijL
f
j +

n∑

j=1

b̂ijL
g
j (3.3)

and

βi >
n∑

j=1

da
ijM

f
j +

n∑

j=1

db
ijM

g
j . (3.4)

Firstly, we obtain from the continuity argument and (3.1) that there exists a sufficiently
small ε satisfying

ε – αi – di +
n∑

j=1

âijL
f
j + eεθ

n∑

j=1

b̂ijL
g
j < 0, i = 1, 2, . . . , n. (3.5)

Set

Γ
(
e(t)

)
= sup

t–θ≤s≤t

(
max
1≤i≤n

eεs∣∣ei(s)
∣∣
)

, t ≥ 0.

One can easily see that eεt|ei(t)| ≤ Γ (e(t)), i = 1, 2, . . . , n, and we shall discuss it into the
following two cases:

Case I: eεt|ei(t)| < Γ (e(t)), i = 1, 2, . . . , n. We know from the continuity argument that
there exists a constant σ > 0 such that eεs|ei(s)| < Γ (e(t)), i = 1, 2, . . . , n, and Γ (e(s)) <
Γ (e(t)), for s ∈ (t, t + σ ).

Case II: If there exists an index i0 and a time t0 ≥ 0 such that eεt0 |ei0 (t0)| = Γ (e(t0)), then
we have

D+(
eεt∣∣ei0 (t)

∣∣)∣∣
t=t0

= εeεt0
∣∣ei0 (t0)

∣∣ + eεt0 · sign
(
ei0 (t0)

)
{

–di0ei0 (t0) +
n∑

j=1

[
ai0j(yi0 )fj

(
yj(t0)

)

– ai0j(xi0 )fj
(
xj(t0)

)]
+

n∑

j=1

[
bi0j(yi0 )gj

(
yj(t0 – θ )

)
– bi0j(xi0 )gj

(
xj(t0 – θ )

)]
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– sign
(
ei0 (t)

)(
αi0

∣∣ei0 (t)
∣∣ + βi0 + ki0

∣∣ei0 (t)
∣∣μ)

}

= εeεt0
∣∣ei0 (t0)

∣∣ + eεt0 · sign
(
ei0 (t0)

)
{

–di0ei0 (t0) +
n∑

j=1

ai0j(yi0 )
[
fj
(
yj(t0)

)
– fj

(
xj(t0)

)]

+
n∑

j=1

[
ai0j(yi0 ) – ai0j(xi0 )

]
fj
(
xj(t0)

)
+

n∑

j=1

bi0j(yi0 )
[
gj
(
yj(t0 – θ )

)
– gj

(
xj(t0 – θ )

)]

+
n∑

j=1

[
bi0j(yi0 ) – bi0j(xi0 )

]
gj
(
xj(t0 – θ )

)

– sign
(
ei0 (t)

)(
αi0

∣∣ei0 (t)
∣∣ + βi0 + ki0

∣∣ei0 (t)
∣∣μ)

}
. (3.6)

Note from

eε(t0–θ )∣∣ej(t0 – θ )
∣∣ ≤ eεt0

∣∣ei0 (t0)
∣∣

that

∣∣ej(t0 – θ )
∣∣ ≤ eεθ

∣∣ei0 (t0)
∣∣, j = 1, 2, . . . , n.

Then we deduce from (3.4), (3.5) and (3.6) that

D+(
eεt∣∣ei0 (t)

∣∣)∣∣
t=t0

≤ eεt0

{
ε
∣∣ei0 (t0)

∣∣ – di0
∣∣ei0 (t0)

∣∣ +
n∑

j=1

âi0jL
f
j
∣∣ej(t0)

∣∣ +
n∑

j=1

da
i0jM

f
j

+
n∑

j=1

b̂i0jL
g
j
∣∣ej(t0 – θ )

∣∣ +
n∑

j=1

db
i0jM

g
j – αi0

∣∣ei0 (t)
∣∣ – βi0 – ki0

∣∣ei0 (t)
∣∣μ

}

≤ eεt0

{(
ε – αi0 – di0 +

n∑

j=1

âi0jL
f
j + eεθ

n∑

j=1

b̂i0jL
g
j

)
∣∣ei0 (t0)

∣∣ +
n∑

j=1

da
i0jM

f
j

+
n∑

j=1

db
i0jM

g
j – βi0

}

< 0.

Therefore, there must exist a constant σ > 0 such that eεs|ei0 (s)| < eεt0 |ei0 (t0)|, and
Γ (e(s)) < Γ (e(t0)), for s ∈ (t0, t0 + σ ).

We conclude from the above two cases that Γ (e(t)) is non-increasing and Γ (e(t)) ≤
Γ (e(0)), t ≥ 0, which means that

eε(t–θ ) sup
t–θ≤s≤t

(
max

i=1,2,...,n

∣∣ei(s)
∣∣
)

≤ Γ
(
e(t)

) ≤ Γ
(
e(0)

)
, for all t ≥ 0.
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Therefore, as time t increases, supt–θ≤s≤t(maxi=1,2,...,n |ei(s)|) would be less than 1. Denote
the first time satisfying supt–θ≤s≤t(maxi=1,2,...,n |ei(s)|) = 1 as T1, then we have

T1 ≤ 1
ε

lnΓ
(
e(0)

)
+ θ .

That is to say, every error function ei(t) would cross the hyperplane

sup
t–θ≤s≤t

(
max

i=1,2,...,n

∣∣ei(s)
∣∣
)

= 1,

and the time it takes is no more than T1. The proof of Lemma 3.2 is complete. �

Lemma 3.3 Let Assumption 2.1 and conditions (3.1)–(3.2) be satisfied, if

αi > –di +
n∑

j=1

âijL
f
j + 2

μ
1–μ

n∑

j=1

b̂ijL
g
j

and

βi > 2
μ

1–μ
(
(1 – μ)k̃minθ

) 1
1–μ

n∑

j=1

b̂ijL
g
j +

n∑

j=1

da
ijM

f
j +

n∑

j=1

db
ijM

g
j ,

hold for all i = 1, 2, . . . , n, then for each ei(t) of system (2.4) with

sup
–θ≤s≤0

(
max
1≤i≤n

∣∣ei(s)
∣∣
)

≤ 1

would fixed–timely flow to 0.

Proof Define

V
(
e(t)

)
= sup

t–θ≤s≤t

(
max

i=1,2,...,n

|ei(s)|1–μ

1 – μ
+ k̃mins

)
, t ≥ 0. (3.7)

It is easy to see that

|ei(t)|1–μ

1 – μ
+ k̃mint ≤ V

(
e(t)

)
, i = 1, 2, . . . , n,

and if there exist an index i1 and a time t1 ≥ 0 such that |ei(t1)|1–μ

1–μ
+ k̃mint1 = V (e(t1)), then

one has

D+
( |ei1 (t)|1–μ

1 – μ
+ k̃mint

)∣∣∣∣
t=t1

=
∣∣ei1 (t1)

∣∣–μ × sign
(
ei1 (t1)

)

×
{

–di1ei1 (t1) +
n∑

j=1

[
ai1j(yi1 )fj

(
yj(t1)

)
– ai1j(xi1 )fj

(
xj(t1)

)]
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+
n∑

j=1

[
bi1j(yi1 )gj

(
yj(t1 – θ )

)
– bi1j(xi1 )gj

(
xj(t1 – θ )

)]

– sign
(
ei1 (t1)

)(
αi1

∣∣ei1 (t1)
∣∣ + βi1 + ki1

∣∣ei1 (t1)
∣∣μ)

}
+ k̃min

≤ ∣∣ei1 (t1)
∣∣–μ ×

{
–di1

∣∣ei1 (t1)
∣∣ +

n∑

j=1

âi1jL
f
j
∣∣ej(t1)

∣∣ +
n∑

j=1

da
i1jM

f
j

+
n∑

j=1

b̂i1jL
g
j
∣∣ej(t1 – θ )

∣∣ +
n∑

j=1

db
i1jM

g
j – αi1

∣∣ei1 (t)
∣∣ – βi1 – ki1

∣∣ei1 (t)
∣∣μ

}

+ k̃min. (3.8)

Notice that

|ej(t1 – θ )|1–μ

1 – μ
+ k̃min(t1 – θ ) ≤ |ei1 (t1)|1–μ

1 – μ
+ k̃mint1. (3.9)

Elementary calculation from (3.9) produces

∣∣ej(t1 – θ )
∣∣ ≤ (∣∣ei1 (t1)

∣∣1–μ + (1 – μ)k̃minθ
) 1

1–μ

=
∣∣ei1 (t1)

∣∣
(

1 +
(1 – μ)k̃minθ

|ei1 (t1)|1–μ

) 1
1–μ

≤ ∣∣ei1 (t1)
∣∣ × 2

μ
1–μ

(
1 +

((1 – μ)k̃minθ )
1

1–μ

|ei1 (t1)|
)

= 2
μ

1–μ
(∣∣ei1 (t1)

∣∣ +
(
(1 – μ)k̃minθ

) 1
1–μ

)
, (3.10)

which, together with (3.8), leads to

D+
( |ei1 (t)|1–μ

1 – μ
+ k̃mint

)∣∣∣∣
t=t1

≤ ∣∣ei1 (t1)
∣∣–μ ×

{(
–di1 +

n∑

j=1

âi1jL
f
j + 2

μ
1–μ

n∑

j=1

b̂i1jL
g
j – αi1

)
∣∣ei1 (t1)

∣∣

+ 2
μ

1–μ
(
(1 – μ)k̃minθ

) 1
1–μ

n∑

j=1

b̂i1jL
g
j +

n∑

j=1

da
i1jM

f
j +

n∑

j=1

db
i1jM

g
j – βi1

– ki1
∣∣ei1 (t1)

∣∣μ
}

+ k̃min

< –
∣∣ei1 (t1)

∣∣–μki1 |ei1 (t1)|μ + k̃min ≤ 0, (3.11)

which means that there exists some ς > 0 such that |ei1(s)|1–μ

1–μ
+ k̃mins < |ei1 (t1)|1–μ

1–μ
+ k̃mint1

holds for all s ∈ (t1, t1 + ς ).
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Therefore, we obtain from the above discussions that

max
i=1,2,...,n

|ei(t)|1–μ

1 – μ
+ k̃mint ≤ V

(
e(t)

) ≤ V
(
e(0)

) ≤ sup
–θ≤s≤0

(
max

i=1,2,...,n

|ei(s)|1–μ

1 – μ

)
, t ≥ 0,

which reduces to

(
max

i=1,2,...,n

∣∣ei(t)
∣∣
)1–μ ≤ sup

–θ≤s≤0

(
max

i=1,2,...,n

∣∣ei(s)
∣∣1–μ

)
– k̃min(1 – μ)t, t ≥ 0,

and hence one can easily deduce that, as time t increases, maxi=1,2,...,n |ei(t)| would flow
to 0. Denote T2 as the time such that maxi=1,2,...,n |ei(T2)| = 0, we then have

T2 ≤ 1
k̃min(1 – μ)

(
sup

–θ≤s≤0

(
max

i=1,2,...,n

∣∣ei(s)
∣∣1–μ

)
–

(
max

i=1,2,...,n

∣∣ei(T2)
∣∣
)1–μ)

≤ 1
k̃min(1 – μ)

(1 – 0)

=
1

k̃min(1 – μ)
,

which implies that the time–taken for each |ei(t)| from 1 to 0 is no more than 1
k̃min(1–μ)

,
i = 1, 2, . . . , n. The proof of Lemma 3.3 is complete. �

Based on Lemmas 3.2 and 3.3, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 For every solution ei(t) of error system (2.4), we treat it into two
cases according to the location of initial error function:

Case I: sup–θ≤s≤0(max1≤i≤n |ei(s)|) ≤ 1.
In this case, we obtain from Lemma 3.3 that each error state component ei(t), i =

1, 2, . . . , n, would flow to 0, and the time–taken is no more than 1
k̃min(1–μ)

. In other words,
the drive–response system (2.1) and (2.3) under control law (3.1) achieve fixed-time syn-
chronization.

Case II: sup–θ≤s≤0(max1≤i≤n |ei(s)|) > 1.
In this case, we conclude from Lemma 3.2 that |ei(t)| would flow to 1 with a finite time,

which is no more than 1
ε

lnΓ (e(0)) + θ , and then in a similar manner to that carried out
in Lemma 3.3, we see that each |ei(t)| would continue to flow 0 in fixed time, which is no
more than 1

k̃min(1–μ)
. In short, as time t increases, each ei(t) would finally achieve 0 in finite

time Ttotal with Ttotal ≤ 1
ε

lnΓ (e(0)) + θ + 1
k̃min(1–μ)

. �

Remark 3.1 The proof of the previous results provides a new perspective for better un-
derstanding the finite-time synchronization of MNNs. That is to say, if the absolute value
of initial error function is less than or equal to 1, then each error function will achieve 0
in a fixed time; if the absolute value of initial error function is greater than 1, then each
error function will firstly from the initial function to 1 in a finite time, and then further
reach 0 in a fixed time. When the control parameter μ > 1, whether there is such a mech-
anism process to realize fixed-time synchronization is another issue worth studying and
discussing.
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Remark 3.2 With the differential inclusion theory and nonsmooth finite (or fixed)-time
convergence theorem, the researchers studied the finite (or fixed)-time synchronization
of MNNs (see, e.g., [10, 24, 26, 27] and the references therein). Different from the method
employed in those works, in this paper, we directly study the finite-time synchronization
of the delayed MNNs (2.1) without using the theory of differential equations with discon-
tinuous right-hand sides. Therefore, the theoretical results established in this paper enrich
the already existing finite-time synchronization methods.

Remark 3.3 Different from some existing finite-time controllers with time delays in such
as [24, 30, 34], the designed control law in Theorem 3.1 depends only on the current states
at time t, it does not involve any information on the past states, which is much easier to
be verified and realized in practice. Therefore, the designed finite-time control scheme is
some less conservative. On the other hand, to realize the finite-time synchronization of
discontinuous NNs, some useful Lyapunov functions or Lyapunov–Krasovskii functions
are constructed based on the nonsmooth finite-time convergence theorem together dif-
ferential inequality techniques; see, e.g., [20, 28, 30, 34]. In this paper, we investigate the
finite-time synchronization problem of the considered delayed system by some mathe-
matical analysis techniques via constructing different Lyapunov functions.

4 Numerical simulations
In this section, we will present a numerical example to illustrate the obtained theoretical
results. For convenience, we denote fij(t) = aj(xj(t)) – xi(t) and gij(t –θ ) = bj(xj(t –θ )) – xi(t).

Example 4.1 Consider a two-neuron memristive neural network model as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = –6.75x1(t) + a11(t)f1(x1(t)) + a12f2(x2(t))

+ b11(t)g1(x1(t – 0.45)) + b12g2(x2(t – 0.45)) + I1,

ẋ2(t) = –5x2(t) + a21f1(x1(t)) + a22(t)f2(x2(t))

+ b21g1(x1(t – 0.45)) + b22(t)g2(x2(t – 0.45)) + I2,

(4.1)

where

fi(s) = gi(s) =
|s + 1| – |s – 1|

2
, i = 1, 2,

a12 = –4.8, a21 = 6.1, b12 = 0.8, b21 = –1.2, I1 = I2 = 1.2,

and

a11(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0.856, D–f11(t) < 0,

1.628, D–f11(t) > 0,

a11(t–), D–f11(t) = 0,

a22(t) =

⎧
⎪⎪⎨

⎪⎪⎩

–1.276, D–f22(t) < 0,

3.462, D–f22(t) > 0,

a22(t–), D–f22(t) = 0,

b11(t) =

⎧
⎪⎪⎨

⎪⎪⎩

–3.726, D–g11(t – 0.45) < 0,

2.346, D–g11(t – 0.45) > 0,

b11(t–), D–g11(t – 0.45) = 0,

b22(t) =

⎧
⎪⎪⎨

⎪⎪⎩

–2.224, D–g22(t – 0.45) < 0,

–2.216, D–g22(t – 0.45) > 0,

b11(t–), D–g22(t – 0.45) = 0.
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We can verify that the activation functions satisfy Assumption 2.1 with Lf
i = Lg

i = 1, Mf
i =

Mg
i = 1. Moreover, the response system is described by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẏ1(t) = –6.75y1(t) + a11(t)f1(y1(t)) + a12(f2(y2(t))

+ b11(t)g1(y1(t – 0.45)) + b12g2(y2(t – 0.45)) + I1 + C1(t),

ẏ2(t) = –5y2(t) + a21f1(y1(t)) + a22(t)f2(y2(t))

+ b21g1(y1(t – 0.45)) + b22(t)g2(y2(t – 0.45)) + I2 + C2(t),

(4.2)

where the activation functions and system parameters are the same as that in system (4.1),
and the controllers are designed as follows:

C1(t) = – sign
(
e1(t)

)(
5.5

∣∣e1(t)
∣∣ + 7.8 +

∣∣e1(t)
∣∣ 1

3
)
,

C2(t) = – sign
(
e2(t)

)(
9.6

∣∣e1(t)
∣∣ + 6.6 + 1.2

∣∣e1(t)
∣∣ 1

3
)
.

It follows from simple computations that conditions (3.1) and (3.2) are satisfied. There-
fore, we conclude from Theorem 3.1 that the finite-time synchronization between system
(4.1) and system (4.2) is achieved. Figures 1–2 show the simulation results with the initial
conditions x1(s) = 8.5, x2(s) = –2.5, y1(s) = 4.5, y2(s) = 3.4, s ∈ [–4.5, 0]. Specifically, Fig. 1
shows the trajectories of the state evolution of system (4.1) and system (4.2), we can ob-
serve that the state of networks (4.2) in finite time synchronizes with system (4.1). Figure 2
shows the finite-time synchronization between system (4.1) and system (4.2), it is readily
seen that the state evolution error approaches zero quickly as time goes.

Figure 1 Time behaviors of state variables in xi(t),
yi(t) of MNNs (4.1), i = 1, 2

Figure 2 The synchronization errors between the
drive–response systems in Example 4.1
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5 Conclusion
This paper performed a finite-time synchronization analysis of delayed MNNs based on
the previous works [31–33]. Different from the existing works, we turn to the synchro-
nization analysis by discussing the MNNs directly. Some new criteria ensuring finite-time
synchronization of delayed MNNs were established by designing the suitable controller
and constructing some novel Lyapunov functions. It is worth mentioning that the pre-
sented methodology herein without employing the differential inclusion theory and non-
smooth finite time convergence theorem, which are usually used to handle the finite-time
synchronization problem. Finally, a numerical example is presented to substantiate the
results. The future work will focus on the investigation of the finite-time synchronization
of MNNs with mixed time-varying delays or leakage delays or impulse disturbance.
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