Nadeem et al. Advances in Difference Equations (2020) 2020:466 ® Advances in Difference Eq uations
https://doi.org/10.1186/513662-020-02924-2 a SpringerOpen Journal

RESEARCH Open Access

Check for
updates

Analytical properties of the Hurwitz-Lerch
zeta function

Raghib Nadeem', Talha Usman?, Kottakkaran Sooppy Nisar®" @ and Dumitru Baleanu**®

“Correspondence:

n.sooppy@psau.edu.sa Abstract

3Department of Mathematics, h . dth . h f .

College of Arts and Sciences, Prince In the present paper, we aim to extend the Hurwitz-Lerch zeta function

Sattam bin Abdulaziz University, D5y (&,s,u;p) involving the extension of the beta function (Choi et al. in Honam

Xvai“A'dawase“ 11991, Saud Math. J. 36(2):357-385, 2014). We also study the basic properties of this extended
rabla . . . . . . . .

Full list of author information is Hurwitz-Lerch zeta function which comprises various integral formulas, a derivative

available at the end of the article formula, the Mellin transform, and the generating relation. The fractional kinetic

equation for an extended Hurwitz—-Lerch zeta function is also obtained from an
application point of view. Furthermore, we obtain certain interesting relations in the
form of particular cases.

MSC: 33C05; 33C45; 33C47;33C90

Keywords: Generalized; Generating functions; Rodrigues formula

1 Overture
The familiar Hurwitz—Lerch zeta function @ (§,s,v) is defined by (see, e.g., [2, p. 27,
Sect. 1.11, Eq. (1)]; see also [3])

¢Es5v) _Z < (m + V)
(v#{0,-1,-2,...};s € C when [£] < 1;9(s) > 1 when [§] = 1). (1.1)

A more detailed exposition of the various generalizations, properties, and applications
of the Hurwitz—Lerch zeta functions could be found in the literature (see [3—12]). For
example Goyal and Laddha [9], Lin and Srivastava [13] and Garg et al. [7] established
certain remarkable extensions of the Hurwitz—Lerch zeta function @5, (£,s,v) given in
Eq. (1.1), which are described, respectively, by
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m! (m+v)s
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(6 €Gv #{0,-1,-2,...},s € C when [§] < 1;%(s — §) > 1 when [§] = 1), (1.2)
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(ge(C;v,y #{0,-1,-2,...};n,w € R*;n < w when s,¢ € C;

n=wandse€ Cwhen || <1,n=wand N(s— ¢ +y)>1when |§] :1) (1.3)

and

m(S)m  E™
Pagiy:5,0) = Z (y>m(m o)l

(8,5‘ eCy,v#{0,-1,-2,...};s€ Cwhen |§| < 1;
Ris+y—-38-¢)>1when |&| = 1), (1.4)

where (8),, stands for the Pochhammer symbol (for § € C) given by (see [14, p. 22, Eq. (1)])

) T +m) 80+1)6+2)---(+m—-1) (m=1,8€C),
Tore (m=0,8 €C\ {0}).

The integral representation of Egs. (1.2), (1.3) and (1.4) are given below, respectively,

* _ 1 o tsl—Ut - e_U1
oiton 15 | e ) e

(SR(U) >0;R(s) >0when |§]| <1 (§ #1);R(s) >1 when & = 1), (1.5)
() el (e, (L1);, _, p

Doy @5 v T'(s) ./ |:(J/;60) ;se g
(Si(v) >0;R(s) >0when |§] <1 (§ #1);0(s) >1 when & = 1), (1.6)

where 1] is the Fox—Wright function defined in [8] and
@g,g;y(E;S,U) F( )/ ts e Ut2F1(5 SV Ee” )
(R(v) > 0;%R(s) >0 when [§] =1 (§ #1);R(s) > 1 when & = 1). (1.7)

Firstly, in 2014 Parmar and Raina [15] introduced the generalized Hurwitz—Lerch zeta
function involving the extended beta function [16] given by

(8)m By(s +m,y —g)  &"
Ds . (&85
s.civ (€,8,03p) = % m'  B(c,y-¢) (m+v)

(p=0;8,c €Ciy,v#{0,-1,-2,...};s € Cwhen |§| < 1;

i}i(s+y—6—g)>1when§:1), (1.8)
and they also established their integral representation as follows:

D5 iy (£,5,V3p) = f e VE, (8, g5 sk dt

(p Z 0;%(v) > 0;9(s) >0 when [§] <1 (§ #1);9(s) > 1 when & = 1), (1.9)
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where the extended beta function B(3;, §2; p) appears in (1.8) and extended hypergeomet-
ric function F,(a, b; c;€) [17] appears in (1.9) defined, respectively, by

1
B(81,85;p) = | 9711 - )%t __PF dt
R A L e e

(R(p) > 0,%(8;) > 0,R(3,) > 0), (1.10)

and

Bp(b+m,c—b)@

Fp(a,b;c;$)=§(“)m B(b,c-b)  m!

(p 20,161 < 1;%(c) > %R(b) > 0). (111)

Obviously for p = 0, Eq. (1.8) reduces directly to (1.4).
Moreover, Choi et al. [1] established the underlying generalization of extended beta and
extended hypergeometric functions given by, respectively,

' rp_ g
By,4(81,82) = / 11— g2t exp(—— - —) dt
0 t 1-t

(Sﬁ(p) > 0;R(g) > 0;R(51) > 0;N(57) > 0), (1.12)
and

B (b+m,c—b) (£)"
B(b,c-b) m!

Fp,q(“: bic;€) = Z(ﬂ)m
m=0
(p20,g20,[§] < 1;%R(c) > R(b) > 0). (1.13)

Itis clearly seen that Egs. (1.10) and (1.11) are particular cases of Eq. (1.12) and Eq. (1.13),
respectively, provided when p = g.

Motivated by those various fascinating extensions of Hurwitz—Lerch zeta function, fur-
ther we establish an extension of generalized Hurwitz—Lerch zeta function involving ex-
tended beta function B(81, 82; p, ).

2 A new extension of the Hurwitz-Lerch zeta function
In this section, we consider a new extension of the generalized Hurwitz—Lerch zeta func-
tion involving extended beta function [1] given by

o0

¢6,g;y (E!S’ v p, q) = Z

m=0

%Bp,q(g"'m’y_g) Sm
m!  B(g,y-¢5) (m+v)

(sz,qZO;S,gE(C;y,v7/{0,—1,—2,...};se(then &l < 1;

NR(s+y —-38-¢)>1when |§|=1). (2.1)

Remark 2.1 We enumerate the following particular and limiting cases of the function
®8,§,y (57 $U;p, 4)1
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(i) InEq. (2.1) substituting § = 1, we obtain a new extended form of the generalized
Hurwitz—Lerch zeta function found by Lin and Srivastava [13]:

q(c+my—-g) §&E”
B(s,y -¢) (m+v)

%)

B

(p;”;(E,S, v;p, IZ) = (pl,gd/(grsr v;p, q) = E £
m=0

(pzo,qzo;ge(c;y,v #{0,-1,-2,...};s € C when |&] < 1;

N(s+y —¢)>1whenl|§|=1). (2.2)

(ii) If we set g = 1, Eq. (2.2) reduces the extended Hurwitz—Lerch zeta function
introduced in [15, p. 160, Eq. (2.2)]:

(s +my—¢) &
B(g,y-g) (m+v)

(pll(gsr »P)—‘pl;y(gs,UP Z:m—)

(pzo,ge(C;y,v7’{0,—1,—2,...};s€CWhen €] < 1;

NR(s+y —¢c)>1when |§] :1). (2.3)

(iii) On taking the values of § = ¥ =1 in Eq. (2.1), we find a new particular case of the
extended generalized zeta function @} (£, s, v) established by Goyal and Laddha [9]:

o0

3 Byylc+m1-¢) §&”
(D;(S,S: U;P,Q) = (pl,g‘,l(E’S» v p, q) = B( 1— ) (Wl + U)S

=0 S S

(iﬂ(p) >0,N(q) >0;¢ € C;v #{0,-1,-2,...};s € C when |§] < 1;

N(s+8—1)>1 when [£] = 1). (2.4)

(iv) InEq. (2.4) if weset p=g=1and § = y =1 gives the special case of the
Hurwitz—Lerch zeta function introduced in [8, p. 160, Eq. (2.3)]:

q(c+ml-¢) &
B(g,1-¢) (m+v)

o0
B
¢;(§>5, v; 1) 1) = ¢1,§,1(E;S) v; 1} 1) = § L
m=0

(g eCuv #{0,-1,-2,...};s € Cwhen |&] < 1;
N(s+8—1)>1 when [£] = 1). (2.5)

(v) The limiting case of new extension of the generalized Hurwitz—Lerch zeta function
involving extended beta function @7, (§,s,v;p,q) is given by

. &
(D;;V & suipq) = |511Lnoo{¢;;y (5’3’ v;p,q

Byy(c+myy—g) §&™
_Z B(s,y —¢)m! (m+v)

(pzo,qzo;ge(c;y,v #{0,-1,-2,...};s € C when |&] < 1;

NR(s+y —¢)>1when |&] :1). (2.6)
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(vi) The particular cases of Egs. (2.1) and (2.4) are clearly seen to reduce to Eqgs. (1.4)
and (1.2), respectively, provided p = g = 0, in view of the underlying connection of
the functions:

(pé,g;y(‘i:;sr v; 0, 0) = ¢8,g;y(§ys,v) and ¢1,§;1($15’ U;0¢O) = ¢;(§,S, U)'

Moreover, if p = g = 0 in Eq. (2.2) yields the underlying particular case of the
generalized Hurwitz—Lerch zeta function of Lin and Srivastava [13] with
(n=w=1):

D166 (5,5,0;0,0) = DL (£,5,0).
3 Integral representations differential formula

The section deals with the integral representation of the new extension of the generalized
Hurwitz—Lerch zeta function involving the extended beta function (2.1) as follows.

Theorem 3.1 For R(p) = 0, R(q) = 0; p = 0, R(v) > 0; R(s) >0, when |§] < 1; R(s) > 1
when & = 1, then

1 o0
D (&,5,05p,q9) = —— / fﬁlewap,q(‘S' s;ysEe™™)dt. (3.1)
r'(s) Jo

Proof We know that the Eulerian integral of the gamma function obeys the following iden-
tity [18]:

1
(m + v)s F(s)

ple=mev)t gy (min{m(S), i}t(v)} >0;m € No).

Employing the above result in Eq. (2.1) and then interchanging the order of summation

and integration (condition above), we obtain

1 00 [e') B o —ivm
D56, (&,5,0;0,9) = ™® /0 t“%‘“‘(Z?)(a)m M;f; ;”_Vg) S) (Sem !) ) &

In view of the definition (1.12) and (1.13), we obtain the required result (3.1). O

Theorem 3.2 For R(p) >0, N(q) >0; p=0,g =0, R(s) >0, R(y) >0, min{s, v} >0, then

e’ (y)
')ty -s)

* _x p kx
—gx—= |of ,s,v ) d. 3.2
X/o Tsa7 exp< qx x) 6(1+xsv> x (3.2)

L erIr(y) e
Pocir (25,032 0) = F RO - §)/ / e

P
xexp(—q —i—j)(l—iﬁ;) , (3.3)

provided the integrals in the right-hand side of Eqs. (3.2) and (3.3) converge.

Ds,c;y (&,5,0;p,q) =

and
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Proof On setting §; = ¢ + m and &, = y — ¢ in the underlying integral representation of
the extended beta function (see, e.g., [1, p. 361, Eq. (2.6)]):

- o) x51*1
B, 4(81,82) =€ q‘/(; A s apis exp( qx — —> dx, (3.4)
we obtain
o 00 ystm 1
Bp,q(§+m»7/—§)=epq/ WGXI)( q ——>dx, (3.5)
0

in view of the above relation and using definition (1.2), Eq. (2.1) clearly gives the first state-
ment of Theorem 3.2.

Moreover, using the integral representation (1.5) in Eq. (3.4), we obtain the required
result (3.3). |

Theorem 3.3 For R(p) >0, R(q) >0; p=0,4=0, R(g) >0, R(y) >0, min{s, v} >0, then

1 rr
Pry 65030 = 1 f (1+257(1 -yt
X exp<— 2+ ql')_+sz(q—p)>q>;<E(12+ x),s, U) dx (3.6)
and
N — 21_VF()/) ! oo -1 _-vut -1 —c-1
Posr G5V = O RGP~ ) /1/0 et T

_t -6
X exp<— 2p+ ql)szz(q —p)) <1 - se (21 * x)) dx. (3.7)

Proof On setting 8; = ¢ + m and &, = y — ¢ in the underlying integral representation of
the extended beta function (see, e.g., [1, p. 361, Eq. (2.7)]):

2p+q)+2(q-p)
1-—x2

B, 4(81,82) = 21-01=52 / (1 +x)171(1 - x)%21 exp<— ) dx, (3.8)
-1

similarly, it can be easy to prove both the assertions of Theorem 3.3 and of Theorem 3.2. [J

Theorem 3.4 For R(p) >0, N(q) >0; p=0,4 =0, R(g) >0, R(y) >0, min{s, v} >0, then

Psc;y (&5, 03p,q) = %/( —a)(c—x) !

X exp(—&{(q—p)x+ (pc—qa)})

(x—a)(c—x)

x & <.§ <%>,s, U) dx (3.9)
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and

(c—a)(y)
rQ)resry-g¢)

x CXP(—((C;Q){(q—P)er (pc—qa)})

[
D5 ¢y (E,5,03p,q) = / (x—a)Hc—a)y<t
a

x —a)(c—x)

=
X <1—$<i::>e_t) dx. (3.10)

Proof On setting 8; = ¢ + m and &, = y — ¢ in the underlying integral representation of
the extended beta function (see, e.g., [1, p. 362, Eq. (2.8)]):

Byq(81,8) = (c—a)' ™17 / (@—a) " (c-x)"
a

x exp(—((c_a)){(q—p)x+(pc—qa)}) dx, (3.11)

x—a)(c-x
similarly, it is easy to prove both the assertions of Theorem 3.4 and of Theorem 3.2. [

Theorem 3.5 Forp >0, g >0, R(8) >0, R(v) >0, R(s) >0, when |§| <1 (§ #1); R(s) > 1,
when & =1, then

I
Posvpa&rsivipd) = 5 /0 £l ol (6t s vip,q)dt, (3.12)

where 45;,,;,9,,1(‘5% S U; p, q) is the limiting case in (2.6).

Proof The integral representation of the Pochhammer symbol (8),, is defined as

1 o0
(8)m = —/ gmlet gy,
) ) Jo

By making use of the above relation in (2.1) and interchanging the order of summation and
integration which may be admissible subject to the condition of Theorem 3.5, we obtain

1 [ N Byglc+my—¢) ()"
Ds ¢ yipq (&S Us P, q) = —/ e o dt. (3.13)
b P4 ) Jo % B(c,y —¢) ml(m+v)s

Applying (2.6), we get the required integral representation. O

Remark 3.1 On substituting g = 0 in Eq. (3.13), we obtain the result earlier obtained by

Parmar and Raina [8].
Subsequently, we establish the underlying derivative formula of (2.1).
Theorem 3.6 The following differential formula for @5, ¢ ,,.p.q(&,s; V; p, q) holds:

a" (8)m(S)m
ds—m{(pﬁ.g,y;p,q(g!& v;p, q)} = (V) ¢8+m,g+m,y+m;p,q(€: Sv+ngp, q) (meN).
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Proof Consider the derivative of (2.1) with respect to &, we obtain

d o O)m Bpgls+my—g) &}
—1Pocywa&rsUip Q)| = = : (3.14)
dé{ e } ;(M—l)! B(s,y—s) (m+v)y
which upon replacing m by m + 1 in Eq. (3.14) and employing the identity
Y
B(g,y -¢)= ;B(g +Ly-¢)  (Wmi=vU+1n
leads to the derivative formula
d 8¢
% {QDB,;,V;PJI(&;S; v;ps 61)} = 7¢5+1,§+1,y+1;p,q($r5; v+1Lp, 61), (3.15)
recursive application of this procedure provides the required result (3.6). O

4 Mellin transform of the Hurwitz-Lerch zeta function and their relation
between H-function

The Mellin transform of a suitable integrable function f(x) with index ¢ is defined, gen-

erally, by

M{f(/c):/c—np}:/ooo/c“’_lf(/c)d/c (0 <k <00). (4.1)

Theorem 4.1 Counsider R(p) > 0, RN(g) > 0, R(p) >0, R(Y) >0, R(c +m +¢) >0, Ry —
S +¥) > 0, then the Mellin transform of the function ®s, ¢ ., 4(§,s; V; p, q) defined by (2.1) is
given by

M{®scppassivip,q) i p— 0.0 — Y}

_ () (Y)B(s + @,y —g + V)
B(s,y = ¢)

Ps,crgipry+y (658 V). (4.2)
Proof Consider the Mellin transform for (2.1) in view of definition (4.1), we obtain

M{¢8,g,y;p,q(‘§»s; u;p,q)ip—> 9, q—> Iﬁ}

= f / P " B ypalEss;vspq) dpdg
0 0

o i By tmy —¢) (8"
_ o 1qz//1 pq
[ ey

B(g,y —¢) ml(m+v)

oo

(B)mE™ 1 o0 oo
= Z 1 s / / p(ﬂ quI pr,q(§ +m,y — c) dpdq.
- m!m+v)sB(c,y-¢)Jo Jo

Employing the underlying well-known integral representation (see [1, p. 360, Eq. (1.14)])

o0 o0
f f P q" Byy(s 4+ myy — <) dpdq = T(@)T()Bls +m+ g,y —  + )
0 0

(R(e) > 0,R(y) >0), (4.3)

Page 8 of 15
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we get

M{qa&g,y;p,q(é:x uip,q):ip—> 9,4 1//}

CT@QFW) O &
_B(g,y—g); ml (m+v)s

Blc+m+@,y —c+V)

_T@OIW)Bs+e.y-s+¥) i O)m(s +@)m  E™
B(s,y - ) — i@ +y + ) (m+ V)

which gives the desired result 4.1. O

Remark 4.1 The generalized Hurwitz—Lerch zeta function can be easily written in terms
of H-function as appears in the literature [19, 20] (see also [7, p. 316, Eq. (3.2)]):

b, (E,50) =

I'(y) 73| ’(1—8,1;1),(1—§,1;1),(1—v,1;8) 45
r)r-y) 0,1),(1-y,1;1),(-v,1;9)

By using (4.5) we can easily deduce Eq. (4.2), Mellin representation in terms of the H-
function which is a fascinating result given as a corollary.

Corollary 4.1 The underlying Mellin representation holds:

M{@s.c, & s0;50,9) 10— 9.9 — V)

F(@)F(W)F(V §+1/f)—13 1 5,1;1):(1—5—90:1;1):(1—1):1;5)
- —£ .(4.6)
F(S)B(g Y- g) (O»I)y(l—90—1ﬁ—7/,1;1),(—v,1;5)

Theorem 4.2 Forp 20,q 20,68 € Cand |t| < 1, the underlying generating function holds:

o P

Z qzj5+m SV E R Z q) ( - t)_sqja*mlgvy(

m=0

1-; E_ t,s, v p, q). (4.7)

Proof Consider the left-hand side of the assertion (4.7) of Theorem 4.2 be denoted by K;
and in view of definition (2.1), we obtain

& o0 Byylc+ly-¢) & L
K = Z(é)m{;;(zs +m); B(c,y —¢) l(m+v) } m!

m=0

Inverting the order of summation of the above equality and after a little simplification,
we get

S Bl Ly =) e
_g((S)z Bley - <) {Z(8+l)m }l‘(m+u)s (4.8)

Now, employing the binomial expansion

5+l)_ - "
(1-t)" %(M)mm, (4.9)

and in view of definition (2.1), we obtain the assertion (4.7) of Theorem 4.2. O



Nadeem et al. Advances in Difference Equations (2020) 2020:466 Page 10 of 15

Theorem 4.3 Let p,q = 0, § € C and |t| < |v|; s # 1 then the generating functions of
bs. ., (&,50;p,q) is given by

Z (Z)q, Piscy (&5 + M0, It" = Pigy (8,50 =1, 4)- (4.10)

m=0

More generally

8)m
Z (ni. Ds. (&5 + m;u;p, )"

m=0
_ - (8) Bpy(s +Ly —¢) gl
_;:7 B(s,y —¢) (I+v)ps(l+v-t) (4.11)
and
Z‘Pa;y(é s+ m;v; p,q)—
m=0
- (_ Bygs+Ly-¢) & t )
Z I B(s,y - ¢) (Z+U)Sexp<l+v ’ (4.12)

1=0
Proof Using the definition (2.1) in the right-hand side of (4.10), we have

oo

pq(g"'ly ) Sl
Z B(c,y-¢) IMl+v-1)

D& s5v-tp,q)

1=0
- \ 2o ds+by—-¢c) & [t \7
— B(c,y —¢) DI(I+v) l+v)

In view of expansion (4.9) and some little simplification of the above second equality, we
are thus led to the assertion (4.11).
The generating function (4.11) can easily be deduced by substituting § = sin Eq. (4.12). O

5 Fractional kinetic equation

This section deals with the fractional kinetic equation (FKE) involving the new extended
Hurwitz—Lerch zeta function (2.1). The FKE has great significance in the field of astro-
physics and mathematical physics.

The solutions of FKE has many applications in various fields such as renormalization of
the non-stationary problem near the phase transition point [21], the theory of turbulence
[22], diffusion in porous media [23], and kinetics in viscoelastic media [24], which has
been published in the literature of special functions.

In 2000 Haubold and Mathai [25] derived a fascinating result between the rate of change
of reaction, the destruction rate, and the production rate given by

dN

T —8(ND) +p(N)), (5.1)

where N = N (¢) is the rate of reaction, §(N;) =: § is the rate of destruction, p = p(N\) is the
rate of production and M, signifies the function defined by N;(¢*) = N'(¢ - £*); t* > 0.
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Under spatial fluctuations or homogeneities where the quantity A (¢) is neglected we
arrive at a particular case of Eq. (5.1), which is given by (see [25, 26])

dN;

pre ~c:Ni(®), (5.2)

with the initial condition N;(t = 0) = Ay standing for the number of density of species i at
time ¢ = 0; ¢; > 0, studied as standard kinetic equation. Integrating both sides of Eq. (5.2)

under the condition if the index i is omitted, we get
N(@) = No = —cooD;' = N (), (5.3)

where ¢D;! denotes the standard fractional integral operator.
A fractional generalization of standard kinetic Eq. (5.2) is investigated by Haubold and
Mathai [25] as follows:

N(&) = No = =3 oD;” = N (8), (5.4)
where (D;® is the familiar Riemann-Liouville fractional integral operator (see [27]) de-

fined as

1

oD f () = @)

/t(t - )" f(u)du (t >0, N(w) > O), (5.5)
0

and they obtained the solution of (5.5) as follows:

o0 BRTY;
N(@©) =Ny IZ %(ct)‘”k. (5.6)
=0

Moreover, Saxena and Kalla [25] obtained the underlying fractional kinetic equation:
N(#) = Nof () = =5 oD;”N () (R(w) >0), (5.7)
where A/(¢) is the number density of a given species at time ¢, Ny = N'(0) is the number

density of that species at time ¢ = 0, c is a constant and f € £(0, 00).
Applying the Laplace transform to (5.7) (see [28]),

L{IN(@);p} = No <i(—c‘“)mp’”‘”)F(p)

m=0
c
(meNo, E <1), (5.8)
FO) =Ly} = [ er0de (i) >0) 59)

Now, we proceed to obtain the solution of the generalized fractional; kinetic equations
by considering our new extended Hurwitz—Lerch zeta function. The result obtained in

terms of the generalized Mittag-Leffler function.
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Theorem 5.1 Letd >0, w >0 and v #d, ¢ > 0 then the solution of the equation

N(#) = No{ @5,y (¢85, 030, 9) } = —dg oD "N (2) (5.10)

is given by the following relation:

B, (c+m,y—g) (8) I'(mw + m + 1)

N O = Mo ; B(g,y-¢) m! (m +v)
X Ew,m+mw+1 (dwtw): (511)

where the E, g(§) denotes the generalized Mittag-Leffler function [29] is given by

o0

&" N
Ea,ﬂ(g) = mzzo m (91(0[) >0,R(B) > 0).

Proof The Laplace transform of the Riemann-Liouville fractional integral operator is

given by [30]
L{oD;“f ();p} = p~F(p), (5.12)

where F(p) is defined in (5.9).
Now, taking the Laplace transform of both sides of Eq. (5.11), we obtain

LIN(@sp} = NoL{®s.c;, (£78,5,0sp,9); p} — d {oD; “N (1)},

j\/()(/ _plz pq § +m,)/ S-) (8)m (tw+1)m dt) _dwp—wN(p),

B(gc,y-¢) m! (m+v)

m=0

w\—0 pq (c+m,y— §)(8)m 1 foo Y p—
N(p) +d°p™N(p) J\/Z Ble,y o) eyl A e Pt dt,

(c+m,y - g)(S)m 1 I'imw+m+1)

N(p) +d°p N (p) NZ ”
m=0

B(s,y <) m! (m+v)s  pmetmil
(5.13)

Bpgls+my —=¢)@)m 1
NZ B(gc,y-¢) m! (m+v)

x I'(mw +m + 1)p~ "o (1 4 d“’p“‘))_l,

e Bulsrmy —9) O 1
N(p)_NO,% B(s,y—¢)  m! (m+vy

[ee]

x I'(mw + m + 1)p~tmermD) Z d“’ “”
r=0
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Applying the inverse Laplace transform to (5.13), we obtain

_ = Byylc+m,y =) (8)m 1
LN @} =N Y qu(g,y—g) ml (m+ vy

m=0

x 'mw +m+ 1)L { derpmer-me-m-1 },
)

e Boals +my =) ()
N(t)_%; B(s,y—¢)  m! (m+vy

o portmo+ml
x I'(mw + m + 1)

Zda)r
= IN'wr+mw+m+ 1)

e Blstmy =) () 1
N(t)_%; B(s,y—¢)  m! (m+vy

oo

dwrtwr
x I'(mw + m + 1) Z ,
r=

S I'wr+mow+m+1)

Byg(s+my —=¢) 8)m 1
N NZ By —5) ml (miop

x I'(mw + m + 1)t’”"’+’”Ew,mw+m+1(d"’t"’),

which is the required result. d

6 Concluding remarks
In the present paper, it seems to be of interest that the extensions of Hurwitz—Lerch zeta
function so obtained are very general in nature and, by specific parameters, can yield the
previously defined Hurwitz—Lerch zeta function which is shown in this paper. On that
account, they become of great importance from an application perspective. For example,
here we establish the connection of the new extended Hurwitz—Lerch zeta function with
other special functions.

By using the connection of the generalization of the extended beta function with other
special functions (see [1, p. 367, Sect. 5]), we can obtain the relation between the new
extended Hurwitz—Lerch zeta function with other special functions.

+ Laguerre polynomials

g Blc+m+n+l,y—¢c+r+1)
¢5§}/ E’S) ,P,q)_zz B(g)/—g)
Em
X ———L,(p)L,(q)
(m + v)s

(R +m+n)>-1,R(y - ¢ +7r)>-1%(s) >0,R(y) > R(s)). (6.1)
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o Meijer’s G-function
¢5,§;y (&,s, v p, q)
I OIS S

o ;1,1): —; -
« GL00202 (y +m;1, ; ; al, 6.2
0020201 (0,1), (¢ +m,1);(0,1),(y - ¢, 1);p 1 o

where G represents Meijer’s G-function (see [31, p. 7, Eq. (1.2.3) and p. 88,
Eq. (6.4.1)]).
o Appell series

¢5,g;y (&,s, v; p, Q)
SO 1 e
‘% m! B(s,y —¢) (m+v)

xB(c+my-¢)h[l-m-y,— —l-¢-ml-y+¢-p—ql, (63)

where F[-] represents one of the four Appell series F; (j = 1,2,3,4) (see [32,

pp. 22-23]).
Similarly, we can further obtain the connection with the Macdonald function and the
Whittaker function.
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