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Abstract
In this paper, we consider a time-fractional backward problem for the fractional
Rayleigh–Stokes equation in a general bounded domain. We propose a fractional
Landweber regularization method for solving this problem. Error estimates between
the regularized solution and the sought solution are also obtained under some
choice rules for both a-priori and a-posterior regularization parameters.
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1 Introduction
Fractional partial differential equations have applications in applied science and engineer-
ing, and these applications appear in fluid flow, heat conduction, image processing (filter-
ing, denoising [30], restorations, segmentation, edge enhancement/detection), see [6, 26].
Nonlocal properties of the fractional operator, fractional partial differential equations are
useful for simulating real super-diffusion and sub-diffusion phenomena. In this paper we
discuss the Rayleigh–Stokes problem for a heated generalized second grade fluid with a
fractional derivative. Equation (1) below arises in Newtonian fluids and magnetohydrody-
namic flows in porous media [9] and initial value problems for fractional Rayleigh–Stokes
was studied, for example, in [1–4, 20, 29].

In this paper, we consider a backward problem of the fractional Rayleigh–Stokes equa-
tion with variable coefficient in a bounded domain:

⎧
⎪⎨

⎪⎩

∂tu – (1 + γ∂α
t )(Lu)(t, x) = F (t, x), (t, x) ∈ (0,T ) × Ω ,

u(t, x) = 0, x ∈ ∂Ω ,
u(T , x) = g, x ∈ Ω ,

(1)

where Ω is a bounded domain in R
d (1 ≤ d ≤ 3) with sufficiently smooth boundary ∂Ω

and T > 0 is a given time. Here γ > 0 is a constant, g is the final data in L2(Ω), ∂t = ∂/∂t, and
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∂α
t is the Riemann–Liouville fractional derivative of order α ∈ (0, 1) defined by [13, 22]:

∂α
t u(t, x) =

{
d
dt
∫ t

0 ω1–α(t – ξ )u(ξ , x) dξ , ωα(t) = tα–1

Γ (α) , 0 < α < 1,
ut(t, x) = 0, α = 1.

(2)

Let L be

Lv(x) =
d∑

i=1

∂

∂xi

( d∑

j=1

Bij(x)
∂

∂xj

v(x)

)

+ C(x)v(x), x ∈ Ω .

Here:
(1) Bij = Bji, 1 ≤ i, j ≤ d, Bij ∈ C1(Ω).
(2) There exists a constant χ such that

χ

d∑

i=1

ξ2
i ≤

d∑

i=1

d∑

j=1

Bij(x)ξiξj, x ∈ Ω , ξ = (ξ1, . . . , ξd) ∈ R
d,

(3) The function C ∈ C(Ω) satisfies C(x) ≤ 0, x ∈ Ω .
Our goal is to construct the initial data h(x) = u(0, x) from the given data (g,F ). When

we observe the data (g,F ), we get approximate data (gδ,Fδ) such that

∥
∥g – gδ∥∥

L2(Ω) ≤ δ,
∥
∥F – Fδ∥∥

L∞(0,T ;L2(Ω)) ≤ δ, (3)

where ‖ · ‖ denotes the L2(Ω)-norm and δ > 0 is the noise level.
The corresponding direct problem for (1) is stated as follows:

⎧
⎪⎨

⎪⎩

∂tu – (1 + γ∂α
t )(Lu)(t, x) = F (t, x), (t, x) ∈ (0,T ) × Ω ,

u(t, x) = 0, x ∈ ∂Ω ,
u(0, x) = h(x), x ∈ Ω .

(4)

The backward problem for the time fractional diffusion equation was studied by many
authors; see, for example, [5, 18, 23, 24]. Such a problem is ill-posed in the sense of
Hadamard. The solution (if it exists) does not depend continuously on the given data.
Indeed, a small error of the given observation can result in that the solution may have
a large error. This makes numerical computation troublesome. Hence a regularization is
needed. There are very few results on the backward problem for the fractional Rayleigh–
Stokes equation, and the first regularization result for such problems seems to be that of
Tuan et al. [19] where they regularized a Rayleigh–Stokes problem with random noise.

In this paper, we do not follow the method in [19]. We will present another method
called the fractional Landweber method to find a regularized solution. This method was
introduced by Klann and Ramlau [15] to consider a linear ill-posed problem. The main
idea of the fractional Landweber method is based on iterative sequences, which is similar
to the classical iterative method [7, 11, 12, 16, 25]. Using this method, some authors devel-
oped and established a fractional Tikhonov method [10, 21, 27] and fractional Landweber
method [28] for solving some linear ill-posed models.

The outline of the paper is as follows: Sect. 2 discusses mild solutions and the ill-
posedness of the problem. In Sect. 3, we introduce the fractional Landweber regularization
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method and present a convergence estimate under an a-priori assumption on the exact so-
lution. The a-posteriori parameter choice rule is also discussed.

2 The backward time of the fractional Rayleigh–Stokes equation
2.1 Preliminaries
In this section, we introduce some notation and preliminaries. Assume that –L has eigen-
values {̃λn} and corresponding eigenfunctions {Xn} with Xn ∈ H2(Ω) ∩ H1

0 (Ω).
Note that {̃λn} satisfies

0 < λ̃1 ≤ λ̃2 ≤ λ̃3 ≤ · · · ≤ λ̃n ≤ · · ·

and λ̃n → ∞ as n→ ∞. Moreover,

⎧
⎨

⎩

LXn(x) = –̃λnXn(x), x ∈ Ω ,

Xn(x) = 0, x ∈ ∂Ω .

For p > 0, we let

D
(
(–L)p) =

{

v ∈ L2(Ω) :
∞∑

n=1

λ̃2p
n

∣
∣〈v,Xn〉

∣
∣2 < +∞

}

, (5)

with the following norm:

‖v‖D((–L)p) =

( ∞∑

n=1

λ̃2p
n

∣
∣〈v,Xn〉

∣
∣2
) 1

2

.

In the following, we present a mild solution of our direct problem (4). Indeed, suppose
that problem (4) has a solution u. Then using the result in [1], we obtain

un(t) = Q(t,n, α)hn +
∫ t

0
Q(t – ς ,n, α)Fn(ς ) dς , (6)

where hn = 〈h,Xn〉 , Fn(t) = 〈F (t, ·),Xn〉 and

Q(t,n, α) =
γ
π

∫ ∞

0

λ̃n sin(απ )ραe–ρt

(–ρ + λ̃nγρα cos(απ ) + λ̃n)2 + (̃λnγρα sin(απ ))2
dρ. (7)

This implies that

u(t, x) =
∞∑

n=1

[

Q(t,n, α)hn +
∫ t

0
Q(t – ς ,n, α)Fn(ς ) dς

]

Xn(x), (8)

where hn = 〈h(·),Xn〉. For the convenience of the reader, we repeat the relevant material
from [19].

Lemma 2.1 Let us assume that α ∈ (0, 1). The following estimates hold:
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• There exists D1(T , α) > 0 such that

Q(T ,n, α) ≥ 1
λ̃n

D1(T , α). (9)

• There exists a constant D2(α) > 0 such that

Q(t,n, α) ≤ D2(α)
λ̃n

min

(
1
t

,
1

t1–α

)

, 0 < t ≤ T . (10)

Hence

∫ T

0

∣
∣Q(t,n, α)

∣
∣dt≤ D2(α)

λ̃n

(
1
α

+ ln
(
max{T , 1})

)

, (11)

where

D1(T , α) =
γ sin(απ )

3π

∫ +∞

0

e–ρT ρα dρ

γ2ρ2α + 1 + ρ2

λ2
1

. (12)

Lemma 2.2 Let F ∈ L∞(0,T ; L2(Ω)). If 1 ≤ d ≤ 3 then there exists a positive constant
G(α, d) such that

∞∑

n=1

∣
∣
∣
∣

∫ t

0
Q(t – ς ,n, α)Fn(ς ) dς

∣
∣
∣
∣

2

≤ G(α, d)‖F‖2
L∞(0,T ;L2(Ω)), (13)

where

G(α, d) =
D2

2(α)( 1
α + ln(max{T , 1}))2

C2

∞∑

n=1

1

n
4
d

,

with C being a positive constant independent of n.

Next we present a representation for the mild solution of problem (1). We assume that
problem (1) has a unique solution u and then u satisfies (8). By letting t = T , we have

gn = Q(T ,n, α)hn +
∫ T

0
Q(T – ς ,n, α)Fn(ς ) dς (14)

where Gn = 〈G(·),Xn〉. It follows that

hn =
1

Q(T ,n, α)

(

gn –
∫ T

0
Q(T – ς ,n, α)Fn(ς ) dς

)

=
∞∑

n=1

1
Q(T ,n, α)

Hn (15)

where

H(x) =
∞∑

n=1

∣
∣
∣
∣gn –

∫ T

0
Q(T – ς ,n, α)Fn(ς ) dς

∣
∣
∣
∣Xn(x). (16)
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By substituting hn into (8), we obtain

un(t) =
Q(t,n, α)
Q(T ,n, α)

(

gn –
∫ T

0
Q(T – ς ,n, α)Fn(ς ) dς

)

+
∫ t

0
Q(T – ς ,n, α)Fn(ς ) dς . (17)

Hence, we get

u(t, x) =
∞∑

n=1

Q(t,n, α)
Q(T ,n, α)

(

gn –
∫ T

0
Q(T – ς ,n, α)Fn(ς ) dς

)

Xn(x)

+
∞∑

n=1

[∫ t

0
Q(T – ς ,n, α)Fn(ς ) dς

]

Xn(x). (18)

From [1, Theorem 2.2], the functions Q(t,n, α), n = 1, 2, . . . , are completely monotone for
t ≥ 0, and we get

⎧
⎨

⎩

0 < Q(t,n, α) < 1, t > 0,

Q(t,n, α) = 1, t = 0.

Our main goal is to find the initial value u(0, x) = h(x) from given data (g,F ). To find h(x),
we need to solve the integral equation as follows:

Kh(x) =
∫ T

0
k(x, ζ )h(ζ ) dζ = H(x), (19)

where

k(x, ζ ) =
∞∑

n=1

Q(T ,n, α)Xn(x)Xn(ζ ).

Since k(x, ζ ) = k(ζ , x), it is clear that the operator K is self-adjoint. Now we prove that the
operator K is a compact operator. Let us consider the finite rank operator KM defined by

KMf (x) =
M∑

n=1

Q(T ,n, α)〈h,Xn〉Xn(x). (20)

We have

∥
∥KMh(x) – Kh(x)

∥
∥2

L2(Ω) =
∞∑

M+1

∣
∣Q(T ,n, α)

∣
∣2
∣
∣〈h,Xn〉

∣
∣2 (21)

≤
[

D2(α)
λ̃M

min

(
1
t

,
1

t1–α

)]2

‖h‖2
L2(Ω). (22)

Therefore ‖KMh(x) –Kh(x)‖ → 0 when M → ∞ in L(L2(Ω), L2(Ω)). Hence, K is a com-
pact operator and from a result by Kirsch [14], we know that the problem is ill-posed.
Hence we introduce the fractional Landweber regularization method to recover it.
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Let us denote by μn the singular values for the linear self-adjoint compact operator K:

μn = Q(T ,n, α), n = 1, 2, 3, . . . (23)

2.2 The ill-posedness of a backward time-fractional problem
To illustrate an ill-posedness of the backward problem, we give an example. Let (g,F ) =
(0, 0) and (̂g, F̂ ) = ( 1√

λq
Xq, 1√

λq
Xq). It is easy to see that

‖̂g – g‖ =
1
√

λq

and ‖F̂ – F‖ =
1
√

λq

.

Hence

lim
q→∞‖̂g – g‖ = 0 and lim

q→∞‖F̂ – F‖ = 0, (24)

so we know that (̂g, F̂ ) is an approximation of (g,F ) when q is large enough. Using (̂g, F̂ ),
we get the corresponding initial data ĥ and the function Ĥ as follows:

Ĥ(x) =
∞∑

n=1

∣
∣
∣
∣̂gn –

∫ T

0
Q(T – ς ,q, α)F̂n(ς ) dς

∣
∣
∣
∣Xn(x),

ĥ(x) =
1

Q(T ,n, α)

∞∑

n=1

∣
∣
∣
∣̂gn –

∫ T

0
Q(T – ς ,n, α)F̂n(ς ) dς

∣
∣
∣
∣Xn(x).

Using Lemma 2.1, we obtain

‖Ĥ – H‖2 =
∞∑

n=1

[

〈̂g – g,Xn〉 –
∫ T

0
Q(T – ς ,n, α)〈F̂ – F ,Xn〉dς

]2

=
[

1
√

λq

–
1
√

λq

∫ T

0
Q(T – ς ,q, α) dς

]2

=
1
λq

[

1 –
∫ T

0
Q(T – ς ,q, α) dς

]2

.

This gives

lim
q→∞‖Ĥ – H‖ = 0. (25)

On the other hand, we have

‖̂h – h‖2 =
∞∑

n=1

1
Q2(T ,n, α)

[

〈̂g – g,Xn〉 –
∫ T

0
Q(T – ς ,n, α)〈F̂ – F ,Xn〉dς

]2

≥ λ2
q

D2
2(α) min( 1

t
, 1
t1–α )

[
1
√

λq

–
1
√

λq

∫ T

0
Q(T – ς ,q, α) dς

]2

≥ λ2
q

D2
2(α) min( 1

t
, 1
t1–α )

1
λq

[

1 –
∫ T

0
Q(T – ς ,q, α) dς

]2
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≥ 1
D2

2(α) min( 1
t
, 1
t1–α )

λq

[

1 –
∫ T

0
Q(T – ς ,q, α) dς

]2

. (26)

Therefore

lim
q→∞‖̂h – h‖ = +∞. (27)

We conclude that the backward problem is ill-posed in the Hadamard sense. Hence a reg-
ularization method is necessary.

2.3 Conditional stability
We impose the following a priori bound condition on the initial value u(0, x) = h(x):

‖h‖
D((–L)

m
2 )

=

( ∞∑

n=1

|̃λn|m|h|2
) 1

2

≤P , (28)

where P and m are both positive constants. Now we construct a conditional stability es-
timate for this backward problem.

Theorem 2.1 Suppose h ∈ D((–L)m
2 ) ⊂Hm(Ω) satisfies ‖h‖

D((–L)
m
2 )

≤P . Then we get

‖h‖L2(Ω) ≤ P(T , α)
[‖g‖2

L2(Ω) + G(α, d)‖F‖2
L∞(0,T ;L2(Ω))

] m
2m+2 P 1

m+1 , (29)

where P is a positive constant and P(T , α) = 2
m

2m+2

[D1(T ,α)]
m

m+1
.

Proof Using (15) and Hölder’s inequality, we get

‖h‖2
L2(Ω)

=
∞∑

n=1

[gn –
∫ T

0 Q(T – ς ,n, α)Fn(ς ) dς ]2

|Q(T ,n, α)|2

≤
∞∑

n=1

[gn –
∫ T

0 Q(T – ς ,n, α)Fn(ς ) dς ] 2m
m+1 [gn –

∫ T
0 Q(T – ς ,n, α)Fn(ς ) dς ] 2

m+1

|Q(T ,n, α)|2

= I
m

m+1
1 I

1
m+1
2 , (30)

where

I1 =
∞∑

n=1

[

gn –
∫ T

0
Q(T – ς ,n, α)Fn(ς ) dς

]2

and

I2 =
∞∑

n=1

[gn –
∫ T

0 Q(T – ς ,n, α)Fn(ς ) dς ]2

|Q(T ,n, α)|2(m+1) .

(31)
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From Lemma 2.2, we estimate I1 as follows:

I1 ≤ 2

[ ∞∑

n=1

g2
n +

∞∑

n=1

∣
∣
∣
∣

∫ T

0
Q(T – ς ,n, α)Fn(ς ) dς

∣
∣
∣
∣

2
]

≤ 2
[‖g‖2

L2(Ω) + G(α, d)‖F‖2
L∞(0,T ;L2(Ω))

]
. (32)

For estimating I2, we use Lemma 2.1 to obtain

I2 =
∞∑

n=1

1
|Q(T ,n, α)|2m

[gn –
∫ T

0 Q(T – ς ,n, α)Fn(ς ) dς ]2

|Q(T ,n, α)|2

≤ 1
[D1(T , α)]2m

∞∑

n=1

λ̃2m
n

∣
∣〈h,Xn〉

∣
∣2

=
1

[D1(T , α)]2m ‖h‖2
D((–L)m)(Ω). (33)

Combining (30), (32) and (33), we get

‖h‖2
L2(Ω) ≤ 2 m

m+1

[D1(T , α)] 2m
m+1

[‖g‖2
L2(Ω) + G(α, d)‖F‖2

L∞(0,T ;L2(Ω))
] m
m+1

× ‖h‖ 2
m+1
D((–L)m)(Ω). (34)

Thus

‖h‖L2(Ω) ≤ P(T , α)
[‖g‖2

L2(Ω) + G(α, d)‖F‖2
L∞(0,T ;L2(Ω))

] m
2m+2 P 1

m+1 , (35)

which completes the proof of the theorem. �

3 Regularization method and error estimate under two parameter choice rules
In this section, we introduce the fractional Landweber regularization method and also an-
alyze the convergence properties of regularization methods under two parameter choice
rules.

From [14], the operator equation Kh = H is equivalent to the following equation:

h =
(
I – aK∗K

)
h + aK∗H, (36)

for any a > 0. Here, K∗ is the adjoint operator of K, and a > 0 satisfies 0 < a < 1
‖K‖2 . The

iterative implementation of the fractional Landweber method was constructed in [15]. Let
us denote the fractional Landweber regularization solution by

hβ,ϑ =
∞∑

n=1

[
1 –
(
1 – aQ2(T ,n, α)

)β]ϑ 1
Q(T ,n, α)

〈H,Xn〉Xn, (37)

and the fractional Landweber regularization solution with the noisy data by

hδ
β,ϑ =

∞∑

n=1

[
1 –
(
1 – aQ2(T ,n, α)

)β]ϑ 1
Q(T ,n, α)

〈
Hδ,Xn

〉
Xn, (38)
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where ϑ ∈ ( 1
2 , 1] is called the fractional parameter, and β = 1, 2, 3, . . . is a regularization

parameter. When ϑ = 1, this is the classical Landweber method.

Lemma 3.1 For λ̃n > 0, β > 0, ϑ ∈ ( 1
2 , 1], and 0 < aQ2(T ,n, α) < 1, we get

sup
λ̃n>0

[
1 –
(
1 – aQ2(T ,n, α)

)β]ϑ 1
Q(T ,n, α)

≤ a
1
2 β

1
2 . (39)

Proof Let us denote two functions with ζ 2 := aQ2(T ,n, α):

Ψ (ζ ) = aζ –2[1 –
(
1 – ζ 2)β]2ϑ (40)

and

Ψ̃ (ζ ) = ζ –2[1 –
(
1 – ζ 2)η]2ϑ . (41)

Note that Ψ (ζ ) = aΨ̃ (ζ ). These two functions are continuous in [0, +∞) when ζ ∈ (0, 1).
For ϑ ∈ ( 1

2 , 1] and a < 1
‖K‖2 , using Lemma 3.3 in [15], we have

Ψ̃ (ζ ) ≤ β. (42)

Combining (40) and (42) gives

sup
μn>0

Ψ (ζ ) ≤ aβ. (43)

Therefore

sup
λ̃n>0

[
1 –
(
1 – aQ2(T ,n, α)

)β]ϑ 1
Q(T ,n, α)

≤ a
1
2 β

1
2 , (44)

and this is precisely the assertion of the lemma. �

Lemma 3.2 For λ̃n > 0, β > 0, and 0 < aQ2(T ,n, α) < 1, we have

sup
λ̃n>0

(
1 – aQ2(T ,n, α)

)βQm(T ,n, α) ≤
(
m

2a

)m
2

β– m
2 . (45)

Proof Consider the function f (z) = (1 – az)βzm
2 , where z := Q2(T ,n, α) < 1

a .
It is easy to see that there exists a unique z0 = c

a(c+β) with c = m

2 such that f ′(z0) = 0. This
implies that

f (z) ≤ f (z0) ≤
(

1 –
c

c + β

)β( c
a(c + β)

)c

≤
(

c
a

)c( 1
c + β

)c

<
(

c
a

)c(1
β

)c

=
(
m

2a

)m
2
(

1
β

)m
2

,

which completes the proof. �
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3.1 The a-priori parameter choice
Theorem 3.1 Let h ∈ L2(Ω), given by (15), be the initial value of problem (1). Suppose the
a priori bound condition (28) and (23) hold. Then the error estimate between the exact
solution and its regularized solution with the exact data is as follows:

‖h – hβ,ϑ‖L2(Ω) ≤ 1
D1(T , α)

(
m

2a

)m
2

β– m
2 P . (46)

Proof Using Parseval’s equality, we get

‖h – hβ,ϑ‖2
L2(Ω) =

∞∑

n=1

[
1 –
[
1 –
(
1 – aQ2(T ,n, α)

)β]ϑ]2 1
Q2(T ,n, α)

∣
∣〈H,Xn〉

∣
∣2

≤
∞∑

n=1

(
1 – aQ2(T ,n, α)

)2β∣∣〈h,Xn〉
∣
∣2

≤
∞∑

n=1

(
1 – aQ2(T ,n, α)

)2β̃
λ–2m
n

∞∑

n=1

λ̃2m
n

∣
∣〈h,Xn〉

∣
∣2. (47)

From Lemma 2.1, we deduce that

1
λ̃n

≤ Q(T , n, α)
D1(T , α)

. (48)

Applying Lemma 3.2, we have

‖h – hβ,ϑ‖2
L2(Ω)

≤ 1
D2m

1 (T , α)
sup
λ̃n>0

(
1 – aQ2(T ,n, α)

)2βQ2m(T ,n, α)‖h‖2
D((–L)m)(Ω)

≤ D–2m
1 (T , α)

(
m

2a

)m

β–mP2. (49)

Thus we get

‖h – hβ,ϑ‖L2(Ω) ≤ D–m
1 (T , α)

(
m

2a

)m
2

β– m
2 P . (50)

�

Theorem 3.2 Let h ∈ L2(Ω) and F ∈ L∞(0,T ; L2(Ω)). Assume the a priori bound condi-
tion (28) holds. If we choose the regularization parameter β = [Λ] where

Λ =
(P

δ

) 2
m+1

,

then we get the following error estimate between the exact solution and its regularization
solution with the noisy data:

∥
∥h – hδ

β,ϑ
∥
∥

L2(Ω) ≤
(

D–m
1 (T , α)

(
m

2a

)m
2

+ a
1
2
(
2 + 2G(α, d)

) 1
2

)

P 1
m+1 δ

m
m+1 , (51)

where [Λ] denotes the largest integer less than or equal to Λ.
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Proof From the triangle inequality, we get

∥
∥h – hδ

β,ϑ
∥
∥

L2(Ω) ≤ ‖h – hβ,ϑ‖L2(Ω) +
∥
∥hβ,ϑ – hδ

β,ϑ
∥
∥

L2(Ω). (52)

Using Parseval’s equality, we obtain that

∥
∥hβ,ϑ – hδ

β,ϑ
∥
∥2

L2(Ω)

=
∞∑

n=1

[
1 –
(
1 – aQ2(T ,n, α)

)β]2ϑ 1
Q2(T ,n, α)

∣
∣
〈
H – Hδ,Xn

〉∣
∣2

= sup
λ̃n>0

[
1 –
(
1 – aQ2(T ,n, α)

)β]2ϑ 1
Q2(T ,n, α)

∞∑

n=1

∣
∣
〈
H – Hδ,Xn

〉∣
∣2. (53)

Note that

∞∑

n=1

∣
∣
〈
H – Hδ ,Xn

〉∣
∣2

=
∞∑

n=1

[
〈
g – gδ ,Xn

〉
–
∫ T

0
Q(T – ς ,n, α)

〈
F – F δ ,Xn

〉
dς

]2

≤ 2
∥
∥g – gδ

∥
∥2

L2(Ω) + 2
∞∑

n=1

[∫ T

0
Q(T – ς ,n, α)

〈
F – F δ ,Xn

〉
dς

]2

≤ 2
∥
∥g – gδ

∥
∥2

L2(Ω) + 2G(α, d)
∥
∥F – F δ

∥
∥2

L∞(0,T ;L2(Ω))

≤ 2δ2(1 + G(α, d)
)
. (54)

From (53) and (54), by Lemma 3.1, we get

∥
∥hβ,ϑ – hδ

β,ϑ
∥
∥

L2(Ω) ≤ a
1
2 β

1
2 δ
(
2 + 2G(α, d)

) 1
2 . (55)

Combining the above two inequalities (50) and (55), we obtain

∥
∥h – hδ

β,ϑ
∥
∥

L2(Ω) ≤ D–m
1 (T , α)

(
m

2a

)m
2

β– m
2 P + a

1
2 β

1
2 δ
(
2 + 2G(α, d)

) 1
2 . (56)

Choosing the regularization parameter β as

β =
[(P

δ

) 2
m+1
]

,

we then obtain the following error estimate:

∥
∥h – hδ

β,ϑ
∥
∥

L2(Ω) ≤
(

D–m
1 (T , α)

(
m

2a

)m
2

+ a
1
2
(
2 + 2G(α, d)

) 1
2

)

P 1
m+1 δ

m
m+1 . (57)

�
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3.2 A-posteriori parameter choice rule and convergence analysis
In this subsection, we give the convergence estimate between the regularized solution and
the exact solution by using an a posteriori choice rule for the regularization parameter.
From results in Morozov’s discrepancy principal [8], the general a-posteriori rule can be
formulated as follows:

∥
∥Khδ

β,ϑ – Hδ∥∥≤ ℘δ, (58)

where ℘ > 1 is a constant independent of δ, β > 0 is the regularization parameter which
makes (58) hold at the first iteration time.

Lemma 3.3 Set M(β) = ‖Khδ
β,ϑ – Hδ‖. Then we have the following conclusions:

(a) M(β) is a continuous function.
(b) M(β) → 0 as β → ∞.
(c) M(β) → ‖Hδ‖L2(Ω) as β → 0.
(d) M(β) is a strictly decreasing function, for any β ∈ (0, +∞).

Proof From our results, we get

M(β) =
∥
∥Khδ

β,ϑ – Hδ∥∥

=

( ∞∑

n=1

[
1 –
[
1 –
(
1 – aQ2(T ,n, α)

)β]ϑ]2∣∣
〈
Hδ,Xn

〉∣
∣2
) 1

2

.

Therefore

lim
β→0

M(β) =

( ∞∑

n=1

∣
∣
〈
Hδ,Xn

〉∣
∣2
) 1

2

=
∥
∥Hδ∥∥

L2(Ω),

and the conditions (a) through (d) hold. �

Remark 3.1 In this paper, without loss of generality we can assume that the noisy data
‖Hδ‖L2(Ω) is large enough such that 0 < ℘δ ≤ ‖Hδ‖L2(Ω). From Lemma 3.3, there exists a
unique minimal solution for the inequality (58).

Lemma 3.4 Let β satisfy (58). Then, we have the following inequality:

β ≤ m + 1
2a

(
D–m

1 (T , α)
℘ – (2 + 2G(α, d)) 1

2

) 2
m+1
(P

δ

) 2
m+1

. (59)

Proof From the definition of β, ϑ ∈ ( 1
2 , 1], and 0 < aQ2(T ,n, α) < 1, we have

∥
∥Khδ

β–1,ϑ – Hδ∥∥

=

∥
∥
∥
∥
∥

∞∑

n=1

[
1 –
[
1 –
(
1 – aQ2(T ,n, α)

)β–1]ϑ]〈Hδ,Xn

〉
Xn(x)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

n=1

[
1 –
[
1 –
(
1 – aQ2(T ,n, α)

)β–1]ϑ]〈Hδ – H,Xn

〉
Xn(x)

∥
∥
∥
∥
∥
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+

∥
∥
∥
∥
∥

∞∑

n=1

[
1 –
[
1 –
(
1 – aQ2(T ,n, α)

)β–1]ϑ]〈H,Xn〉Xn(x)

∥
∥
∥
∥
∥

≤ ∥∥Hδ – H
∥
∥ +

∥
∥
∥
∥
∥

∞∑

n=1

(
1 – aQ2(T ,n, α)

)β–1Q(T ,n, α)〈h,Xn〉Xn(x)

∥
∥
∥
∥
∥

. (60)

By Lemma 2.1 and (54), we get

∥
∥Khδ

β–1,ϑ – Hδ∥∥≤ δ
(
2 + 2G(α, d)

) 1
2

+ sup
λ̃n>0

(
1 – aQ2(T ,n, α)

)β–1Qm+1(T ,n, α)D–m
1 (T , α)‖h‖

D((–L)
m
2 )

.

From [17] and [25], for 0 < κ < 1, m > 0, and p ∈ N:

(1 – κ)pκm ≤ mm(p + 1)–m.

This implies that

℘δ ≤ δ
(
2 + 2G(α, d)

) 1
2 + D–m

1 (T , α)P
(
m + 1

2a

)m+1
2

β– m+1
2 ,

so

β ≤ m + 1
2a

(
D–m

1 (T , α)
℘ – (2 + 2G(α, d)) 1

2

) 2
m+1
(P

δ

) 2
m+1

. �

Theorem 3.3 If the a-priori condition (28) and the noise assumption (3) hold, then we
have the following convergence estimate;

∥
∥h – hδ

β,ϑ
∥
∥

L2(Ω) ≤ [M1 + M2]P 1
m+1 δ

m
m+1 . (61)

Proof From the triangle inequality, we get

∥
∥h – hδ

β,ϑ
∥
∥

L2(Ω) ≤ ‖h – hβ,ϑ‖L2(Ω) +
∥
∥hβ,ϑ – hδ

β,ϑ
∥
∥

L2(Ω). (62)

From Lemma 3.4 and (55), we see that

∥
∥hβ,ϑ – hδ

β,ϑ
∥
∥

L2(Ω) ≤ a
1
2 β

1
2 δ
(
2 + 2G(α, d)

) 1
2 (63)

≤
(

a(1 + G(α, d))(m + 1)

(℘ – (2 + 2G(α, d)) 1
2 ) 2

m+1 D
2m
m+1
1 (T , α)

) 1
2
P 1

m+1 δ
m

m+1 . (64)

Using the triangle inequality, the a-priori bound condition (58), and 0 < aQ2(T ,n, α) < 1,
it follows that

‖h – hβ,ϑ‖L2(Ω)

≤
∥
∥
∥
∥
∥

∞∑

n=1

[
1 –
[
1 –
(
1 – aQ2(T ,n, α)

)β]ϑ] 1
Q2(T ,n, α)

〈H,Xn〉Xn(x)

∥
∥
∥
∥
∥
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≤
∥
∥
∥
∥
∥

∞∑

n=1

〈h,Xn〉Xn(x)

∥
∥
∥
∥
∥

1
m+1

×
∥
∥
∥
∥
∥

∞∑

n=1

(
1 – aQ2(T ,n, α)

)β 1
Q2(T ,n, α)

〈H,Xn〉Xn(x)

∥
∥
∥
∥
∥

m
m+1

≤
∥
∥
∥
∥
∥

∞∑

n=1

λ̃–m
n λ̃m

n 〈h,Xn〉Xn(x)

∥
∥
∥
∥
∥

1
m+1

×
(∥
∥
∥
∥
∥

∞∑

n=1

(
1 – aQ2(T ,n, α)

)β 1
Q2(T ,n, α)

〈
Hδ,Xn

〉
Xn(x)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

n=1

(
1 – aQ2(T ,n, α)

)β 1
Q2(T ,n, α)

〈
H – Hδ,Xn

〉
Xn(x)

∥
∥
∥
∥
∥

) m
m+1

≤ sup
λ̃n>0

(
λ̃–1
n Q–1(T ,n, α)

) m
m+1
((

2 + 2G(α, d)
) 1

2 δ + ℘δ
) m
m+1 ‖h‖ 1

m+1
D((–L)m)(Ω).

From Lemma 2.1, we have

‖h – hβ,ϑ‖L2(Ω) ≤
(

(2 + 2G(α, d)) 1
2 + ℘

D1(T , α)

) m
m+1

P 1
m+1 δ

m
m+1 .

Thus we have

∥
∥h – hδ

β,ϑ
∥
∥

L2(Ω) ≤ [M1 + M2]P 1
m+1 δ

m
m+1 , (65)

where

M1 =
(

a(1 + G(α, d))(m + 1)

(℘ – (2 + 2G(α, d)) 1
2 ) 2

m+1 D
2m
m+1
1 (T , α)

) 1
2

,

M2 =
(

(2 + 2G(α, d)) 1
2 + ℘

D1(T , α)

) m
m+1

. �

4 Simulation theory
4.1 Numerical example
The main objective of this subsection is to present an example to simulate the theory of
this study in the case of an a-priori parameter choice. We consider the time-fractional
backward problem of finding u = u(t, x), (t, x) ∈ (0,T ) × Ω := (0, 1) × (0,π ) such that

⎧
⎪⎨

⎪⎩

ut + γ ∂α
t �u + �u =

√
2/π t sin(x), (t, x) ∈ (0, 1) × (0,π ),

u(t, x) = 0, (t, x) ∈ (0, 1) × {0;π},
u(1, x) =

√
2/π sin(2x), x ∈ (0,π ).

(66)

We choose the Laplace operatorL = –� associated with the Dirichlet boundary condition.
Then, it has the eigenvalues λ̃n = n2, n ≥ 1, and corresponding eigenfunctions Xn(x) =
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√
2/π sin(nx), n≥ 1. The solution of problem (66) is given by

u(t, x) =
√

2
π

sin(x)
[

2Q(t, 2, α) cos(x)
Q(1, 2, α)

–
Q(t, 1, α)
Q(1, 1, α)

∫ 1

0
Q(1 – ς , 1, α)ς dς

+
∫ t

0
Q(1 – ς , 1, α)ς dς

]

, (67)

where we recall that

Q(t,n, α) =
γ
π

∫ ∞

0

n2 sin(απ )ραe–ρt

(–ρ + n2γρα cos(απ ) + n2)2 + n4γ2ρ2α sin2(απ )
dρ. (68)

Next, we present the composite Simpson’s rule to approximate the integral as follows:
Suppose that the interval [a, b] is split up into k subintervals, with k being an even number.
Then, the composite Simpson’s rule is given by

∫ b

a
f (z) dz ≈ �z

3

[

f (z0) + 2
k/2–1∑

i=1

f (z2i) + 4
k/2∑

i=1

f (z2i–1) + f (zk)

]

, (69)

where zi = a+ i�z for i = 0, 1, . . . , k with �z = b–a
k , and in particular, z0 = a and zn = b. In the

following simulation results, we will discretize the time and spatial variables as follows:

xi = (i – 1)�x, tj = (j – 1)�t,

�x =
π

Nx
, �t =

1
Nt

, i = 1, . . . , Nx + 1, j = 1, . . . , Nt + 1,

where Nx, Nt ∈ Z
+ \ {0}.

Instead of observing the exact data (g,F ), we get approximate data (gδ,Fδ) such that

∥
∥g – gδ∥∥

L2(Ω) ≤ δ,
∥
∥F – Fδ∥∥

L∞(0,T ;L2(Ω)) ≤ δ, (70)

Figure 1 The input data and its approximations
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Table 1 The output errors for t ∈ {0.1; 0.5; 0.9}, δ ∈ {0.1; 0.01; 0.001}, and α = 0.2 in case 1

δ γ = 0.7,m = 1/2, ϑ = 3/4,P = 30, Nx = 40, Nt = 40

Error1(t = 0.1) Error1(t = 0.5) Error1(t = 0.9)

0.1 2.370005530364097 1.839421744056028 1.114272879651872
0.01 0.266013210499944 0.179032675679955 0.119410328707072
0.001 0.027337033449183 0.016692692749124 0.012092996690034

Table 2 The output errors for t ∈ {0.1; 0.5; 0.9}, δ ∈ {0.1; 0.01; 0.001}, and α = 0.2 in case 2

δ N(δ) = 1
max(T1–α ,T )δ

, γ = 0.7

Error2(t = 0.1) Error2(t = 0.5) Error2(t = 0.9)

0.1 3.067277122239126 2.331560024339361 0.586862037977597
0.01 0.282303322277925 0.693116629713161 0.046189744153395
0.001 0.035344214548148 0.201830859315601 0.040932510968230

Table 3 The output errors for t ∈ {0.1; 0.5; 0.9}, δ ∈ {0.1; 0.01; 0.001}, and α = 0.4 in case 1

δ γ = 0.7,m = 1/2, ϑ = 3/4,P = 30, Nx = 40, Nt = 40

Error1(t = 0.1) Error1(t = 0.5) Error1(t = 0.9)

0.1 3.441083614522570 1.967441863324420 1.216004031281940
0.01 0.392794589419522 0.175387014637054 0.124872454990796
0.001 0.040783838085983 0.016522743057455 0.013353281312731

Table 4 The output errors for t ∈ {0.1; 0.5; 0.9}, δ ∈ {0.1; 0.01; 0.001}, and α = 0.4 in case 2

δ N(δ) = 1
max(T 1–α ,T )δ

, γ = 0.7

Error2(t = 0.1) Error2(t = 0.5) Error2(t = 0.9)

0.1 4.538099120142149 2.098712218495121 1.474085282648231
0.01 0.459148594925824 0.281395186718633 0.173056572314173
0.001 0.057943611026572 0.025385813139180 0.014230357573040

Table 5 The output errors for t ∈ {0.1; 0.5; 0.9}, δ ∈ {0.1; 0.01; 0.001}, and α = 0.6 in case 1

δ γ = 0.7,m = 1/2, ϑ = 3/4,P = 30, Nx = 40, Nt = 40

Error1(t = 0.1) Error1(t = 0.5) Error1(t = 0.9)

0.1 4.528918237889845 1.508794132566739 1.600628856280399
0.01 0.514335896636502 0.139127374227336 0.157363853188444
0.001 0.053388298785060 0.090959770500309 0.017066574494708

Table 6 The output errors for t ∈ {0.1; 0.5; 0.9}, δ ∈ {0.1; 0.01; 0.001}, and α = 0.6 in case 2

δ N(δ) = 1
max(T 1–α ,T )δ

, γ = 0.7

Error2(t = 0.1) Error2(t = 0.5) Error2(t = 0.9)

0.1 6.728343436454919 2.083436656341341 2.194194359940908
0.01 0.573679745877681 1.547353873964686 0.188447118306793
0.001 0.065624643204875 0.185606287444821 0.022053101663947

Table 7 The output errors for t ∈ {0.1; 0.5; 0.9}, δ ∈ {0.1; 0.01; 0.001}, and α = 0.8 in case 1

δ γ = 0.7,m = 1/2, ϑ = 3/4,P = 30, Nx = 40, Nt = 40

Error1(t = 0.1) Error1(t = 0.5) Error1(t = 0.9)

0.1 4.242912131190551 1.549288857217745 1.398671745776383
0.01 0.479566420425554 0.144428484048293 0.138497851165066
0.001 0.049714128627384 0.085696070388215 0.015046030605746



Luc et al. Advances in Difference Equations        (2020) 2020:459 Page 17 of 21

Table 8 The output errors for t ∈ {0.1; 0.5; 0.9}, δ ∈ {0.1; 0.01; 0.001}, and α = 0.8 in case 2

δ N(δ) = 1
max(T 1–α ,T )δ

, γ = 0.7

Error2(t = 0.1) Error2(t = 0.5) Error2(t = 0.9)

0.1 5.267407080684832 2.322503778497919 1.894375818559956
0.01 0.600229963944443 0.935180709782072 0.181090792426397
0.001 0.061597621175013 0.113528567084024 0.020271875129425

Figure 2 A comparison between the exact and regularized solutions of the proposed method (case 1) and
according to [19] (case 2) at t = 0.1 for α ∈ {0.2; 0.4; 0.6; 0.8}, δ = 0.1, and Nx = Nt = 40

Figure 3 A comparison between the exact & regularized solutions of the proposed method (case 1) and
according to [19] (case 2) at t = 0.1 for α ∈ {0.2; 0.4; 0.6; 0.8}, δ = 0.01, Nx = Nt = 40

where δ > 0 is the noise level. Then the couple (gδ,Fδ), which is determined below, plays
the role of measured data with a random noise as follows (see Fig. 1):

gδ(·) = g(·) + δ
(
rand(·) + 1

)
, Fδ(·) = F (·) + 2δ rand(·). (71)

For the best of reader’s comparison, we present some results between the result of this
study and the result in [19] in two subsections as follows.
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Figure 4 A comparison between the exact and regularized solutions of the proposed method (case 1) and
according to [19] (case 2) at t = 0.1 for α ∈ {0.2; 0.4; 0.6; 0.8}, δ = 0.001, and Nx = Nt = 40

Figure 5 A comparison between the regularized solution in case 1 and case 2 for α = 0.8, δ = 0.1, and
Nx = Nt = 40 on (t,x) ∈ [0, 1])× [0,π ]

Figure 6 A comparison between the regularized solution in case 1 and case 2 for α = 0.8, δ = 0.01, and
Nx = Nt = 40 on (t,x) ∈ [0, 1])× [0,π ]
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Figure 7 A comparison between the regularized solution in case 1 and case 2 for α = 0.8, δ = 0.001, and
Nx = Nt = 40 on (t,x) ∈ [0, 1])× [0,π ]

Figure 8 A comparison between the exact solution in case 1 and case 2 for α = 0.8 and Nx = Nt = 40 on
(t,x) ∈ [0, 1])× [0,π ]

4.2 Case 1: the Landweber method
We choose the regularization parameter β = [(Pδ ) 2

m+1 ], then we get the absolute error es-
timate between the exact solution and its regularization solution as follows:

Error1(t) =

√
√
√
√ 1

Nx

Nx∑

i=1

∣
∣u(t, xi) – uδ(t, xi)

∣
∣2, (72)

where uδ = uδ
β,ϑ is defined by (38).

4.3 Case 2: the filter regularization method
In this case, we present the result which was shown in [19]. There the authors considered
a general filter regularization method, then they gave the following regularized solution:

uδ(t, x) =
∞∑

n=1

Rn(δ)
Pn(T )

(

gδ
n –
∫ T

0
Pn(T – ς )F δ

n(ς ) dς

)

Xn(x), (73)
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where

Rn(δ) =
Pn(T )

δ + Pn(T )
, and Pn(T ) =

∫ ∞

0
exp(–ξ t)Mn(ξ ) dξ ,

Mn(ξ ) =
γ
π

λ̃n sin(απ )ξα

(–ξ + λ̃nγξα cos(απ ) + λ̃n)2 + (̃λnγξα sin(απ ))2
·

The absolute error estimate between the exact and regularized solutions is given by

Error2(t) =

√
√
√
√ 1

N(δ)

N(δ)∑

i=1

∣
∣u(t, xi) – uδ(t, xi)

∣
∣2. (74)

Take t ∈ {0.1; 0.5; 0.9}, α ∈ {0.2; 0.6; 0.8}, and δ ∈ {0.1; 0.01; 0.001}, respectively. The nu-
merical results are included in Tables 1–8 and Figs. 2–8, i.e., we show the estimates of the
exact and regularized solutions for α = 0.2 in case 1 (Table 1) and in case 2 (Table 2), for
α = 0.4 in case 1 (Table 3) and in case 2 (Table 4), for α = 0.6 in case 1 (Table 5) and in
case 2 (Table 6), for α = 0.8 in case 1 (Table 7) and in case 2 (Table 8), respectively. We
also present the 2D graphs of the exact and regularized solutions of two cases at t = 0.1
for δ = 0.1 (Fig. 2), δ = 0.01 (Fig. 3) and δ = 0.001 (Fig. 4). In addition, the 3D graphs of the
solutions, for α = 0.8 on the domain (t, x) ∈ [0, 1] × [0,π ], are shown in Figs. 5–8. From
the above results, it is clear that the smaller input error, the smaller output error, when
δ tends to zero, the regularized solution approaches the exact solution, the convergence
results of case 1 are better compared to case 2. It is clear that the experiment convergence
orders are consistent with theoretical analysis.
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