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Abstract
Plants play a vital role in the everyday life of all organisms on earth. This paper
proposes a Filippov vector-borne plant disease model incorporating roguing of
infected plants and spaying pesticides to relieve the economical devastation for
growers and damage to humans, natural enemies and the environment. No control
strategy is taken if the number of infected plants is less than an infected plant
threshold level Ic ; further, infected plants are removed once the number of infected
plants exceeds Ic ; meanwhile, pesticides are spayed if the number of infected vectors
exceeds the infected vector threshold level Yc . The global dynamics for the proposed
system is investigated. Model solutions ultimately stabilize at the positive equilibrium
that lies in the region above Ic , or on I = Ic , or below Ic , depending on the threshold
values Ic and Yc . The findings indicate that proper combinations of the infected plant
and vector threshold values based on the threshold policy can maintain the number
of infected plants either at a previously given level or below a certain threshold level.
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1 Introduction
Plant viruses belong to the most limiting factors to modern agriculture, especially in lesser-
developed countries. For example, the cassava mosaic virus has ravaged the cassava plant,
a staple in many underdeveloped African countries, in Kenya, Uganda and Tanzania [1].
Tomato in India is another example of plants infected by viruses. These viruses cause
tomato leaf curling disease (TLCD), such that diseased plants exhibit vein clearing, leaf
curling, stunting and partial or complete sterility [1, 2]. Most plant viruses are vectored
by arthropods, notably homopteran insects [1]. In fact, insects are responsible for 70% of
all plant virus transmissions [3]. The vector that transmits both the cassava mosaic virus
and TLCD is Bemisia tabaci.

Roguing (identifying and removal of diseased plants) is a well-known means of virus dis-
ease control measures with wide applicability [1]. It has been recommended repeatedly to
control cassava mosaic disease. However, roguing is generally unpopular with farmers,
who will suffer crop loss and are short of energy to allocate effort and time required to
inspect crops with the thoroughness and frequency required to identify and remove dis-
eased plants [4, 5]. Vector control by using pesticides (insecticides, acaricides, nematicides

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02921-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02921-5&domain=pdf
mailto:yyang@sdnu.edu.cn


Yang and Zhang Advances in Difference Equations        (2020) 2020:465 Page 2 of 30

and fungicides) against the insect or mite vectors [4] has been used successfully to pre-
vent or at least decrease the transmission of the virus. However, the use of chemicals is not
always applicable or appropriate, one disadvantage being the damage to natural enemies
and risks to human health and the environment [4].

Mathematical modeling has increasingly been developed using a wide range of tech-
niques and used to the study of plant virus disease epidemics [6–14]. Gao et al. [15] used a
model to evaluate the effects of control measures when roguing and replanting were prac-
ticed. The authors showed that previous models that modeled roguing as a continuous ac-
tivity may over estimate the infection risk compared with the more realistic intermittent
roguing. van den Bosch and Jeger [16] adapted the model proposed in Ref [17] to eval-
uate the effect of control interventions on cassava mosaic disease dynamics. The results
showed that a combination of disease management measures including both continuous
roguing and spaying insecticide might eradicate the disease.

Since completely removal of diseased plants is generally unachievable, nor is it econom-
ically or biologically desirable, then control measures should be implemented such that
the number of diseased plants stabilize at a desired or an acceptable level (the economic
threshold in IDM–integrated disease management [11]). IDM allows an economic thresh-
old, a tolerant threshold beyond which control measures are implemented to prevent the
number of infected plants from exceeding the acceptable level. Accordingly, Filippov sys-
tems modeled by using nonlinear differential equations with discontinuous right-hand
sides are proposed by incorporating these control strategies to investigate the transmission
of plant disease. The authors in Refs [18, 19] established and investigated the Filippov-type
models by considering a proportional planting rate and a constant planting rate, respec-
tively. The effectiveness of the control measures was evaluated to maintain the number of
diseased plants not exceeding the economic threshold.

In order to relieve the economical devastate for growers by continuously roguing dis-
eased plants and the damage to the environment, human health and natural enemies by
spraying insecticides, in this paper, we consider a vector-borne plant disease model with
Filippov–type control, that is, roguing and spraying insecticides are implemented only
when the infected plants and infected vectors are beyond some tolerant thresholds. The
Filippov vector-borne plant disease model is proposed in Sect. 2. The existence and global
stability of various types of positive equilibria and the existence of the sliding mode and
its dynamics are investigated by varying the infected plant and vector threshold values in
Sects. 3–6. A conclusion together with biological implications is presented in Sect. 7.

2 Filippov vector-borne plant disease model
We consider a threshold policy to control the transmission of the plant disease and achieve
the maximal economic benefits with roguing diseased plants and spaying insecticides.
Here the numbers of infected plants and vectors are chosen as two indices to decide on
when to take control strategies. The threshold policy is defined as follows: we take no con-
trol strategy when the number of infected plants is less than the infected plant threshold
level Ic; we remove diseased plants at a rate q once the number of infected plants exceeds
Ic; meanwhile we spray insecticides if the number of infected vectors exceeds the infected
vector threshold value Yc; whereas we only remove diseased plants at a rate q if the in-
fected vectors are less than Yc, which seems realistic from the point of view of relieving the
damage of insecticides to environment, human health and natural enemies. A schematic
diagram of the threshold policy is illustrated in Fig. 1.
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Figure 1 Schematic diagram of the threshold policy

Plant population is divided into susceptible plants S and infected plants I . Susceptible
plants do not have the disease but can contract the disease if infected with the virus. The
infected plants have the virus but cannot directly transmit the virus to susceptible plants.
Infected plants can either die from the disease or recover. We assume that, as soon as
a plant dies either from the infection or from a natural death, it is immediately replaced
with a new susceptible plant by a grower. Thus the total plant population K = S + I remains
fixed.

The insect vector population is divided into susceptible insect vectors X and infected
insect vectors Y . The susceptible insects do not have the virus but can obtain the virus
if they come in contact with an infected plant. Infected insects can transmit the virus to
susceptible plants upon contact. We assume no vertical transmission of the virus with
neither vectors nor plants. Moreover, we assume that the virus does not harm the vector
and it holds the virus for the rest of its life. We consider a bilinear incidence rate, then the
model describing the interactions of the plants and the vectors reads as follows:

dX
dt

= Λ – β1XI – mX,

dY
dt

= β1XI – mY ,

dS
dt

= μK + (d + γ )I – μS – βpSY ,

dI
dt

= βpSY – (d + μ + γ )I,

where Λ is the replenishing rate of vectors (birth and/or immigration), m (μ) is the natural
death rate of vectors (plants), β1 (βp) is the infection rate of vectors (plants) due to plants
(vectors), d is the disease deduced death rate of infected plants, γ is the recovery rate of
plants. Notice that adding dX

dt and dY
dt yields

dN
dt

= Λ – mN ,

where N = X + Y and as t → ∞, N → Λ
m .

So we can consider a reduced system with the threshold policy depicted in Fig. 1 as
follows:(

Y ′

I ′

)
= f (Y , I) =

(
β1I( Λ

m – Y ) – mY – u1Y
βpY (K – I) – ωI – u2I

)
, (1)
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with

(u1, u2) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0), for I < Ic,

(0, q), for Y < Yc and I > Ic,

(v, q), for Y > Yc and I > Ic,

(2)

where ω = d + μ + γ , q is the roguing rate, and v is the insecticide spray induced death rate
of vectors.

Therefore, the Y , I space R2
+ can be divided into the following five regions:

G1 =
{

(Y , I) ∈ R2
+ : I < Ic

}
,

G2 =
{

(Y , I) ∈ R2
+ : Y < Yc and I > Ic

}
,

G3 =
{

(Y , I) ∈ R2
+ : Y > Yc and I > Ic

}
,

Ω1 =
{

(Y , I) ∈ R2
+ : I = Ic

}
,

Ω2 =
{

(Y , I) ∈ R2
+ : Y = Yc and I > Ic

}
.

The dynamics in region Gi are governed by Fi, for i = 1, 2, 3, where

F1(Y , I) =

(
F11(Y , I)
F12(Y , I)

)
=

(
β1I( Λ

m – Y ) – mY
βpY (K – I) – ωI

)
, (3)

F2(Y , I) =

(
F21(Y , I)
F22(Y , I)

)
=

(
β1I( Λ

m – Y ) – mY
βpY (K – I) – ωI – qI

)
, (4)

F3(Y , I) =

(
F31(Y , I)
F32(Y , I)

)
=

(
β1I( Λ

m – Y ) – mY – vY
βpY (K – I) – ωI – qI

)
. (5)

Note that the manifolds Ω1 and Ω2 are discontinuity surfaces between the two different
structures of system (1) with (2). The normal vectors that are perpendicular to Ω1 and Ω2

are defined as n1 = (0, 1)T and n2 = (1, 0)T , respectively. The existence and uniqueness of
solutions of Filippov system, such as system (1) with (2), is illustrated elaborately in Ref
[20]. Here, we just present some definitions (real and/or virtual equilibrium, pseudoequi-
librium, sliding modes) that will be used in what follows, detailed contents can be referred
to [20–23].

Definition 2.1 A point E∗ is called a real equilibrium of system (1) with (2) if Fi(E∗) = 0,
and E∗ ∈ Gi, i = 1, 2, 3; E∗ is called a virtual equilibrium if Fi(E∗) = 0, and E∗ ∈ Gj, j �= i,
i, j = 1, 2, 3.

Definition 2.2 A point EP is called a pseudoequilibrium of system (1) with (2) if it is an
equilibrium of the sliding mode of system (1) with (2). A sliding mode exists if there are
subsets Σ of the manifold Ωi such that the flows of f (outside of Ωi) are directed toward
each other on them, i = 1, 2.

Definition 2.3 The set of all points (Y , I) on Ωj such that the flow of f (outside Ωj) ap-
proaches (Y , I) from all sides is an attracting sliding mode, j = 1, 2. When the attraction
sliding mode is only one point, it is said to be a pseudoattractor.
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2.1 Dynamics of the subsystems Fi in region Gi, i = 1, 2, 3
In this section, we investigate the global dynamics of Fi in region Gi, i = 1, 2, 3. The basic
reproduction number R0i (the average number of secondary cases of an infectious disease
arising from a typical case in a totally susceptible population) for the system in region Gi,
i = 1, 2, 3, can be defined by applying the next generation matrix method [24], where

R01 =
KΛβ1βp

m2ω
, R02 =

KΛβ1βp

m2(ω + q)
, R03 =

KΛβ1βp

m(m + v)(ω + q)
.

The system in region Gi always has one disease-free equilibrium given by Ei0, i = 1, 2, 3.
Furthermore, if R0i > 1, there is a unique endemic equilibrium given by Ei = (Y ∗

i , I∗
i ), where

E10 = (0, 0), E1 =
(
Y ∗

1 , I∗
1
)

=
(

β1
Λ
m I∗

1

β1I∗
1 + m

,
Kβ1βp

Λ
m – mω

β1βp
Λ
m + β1ω

)
,

E20 = (0, 0), E2 =
(
Y ∗

2 , I∗
2
)

=
(

β1
Λ
m I∗

2

β1I∗
2 + m

,
Kβ1βp

Λ
m – m(ω + q)

β1βp
Λ
m + β1(ω + q)

)
,

E30 = (0, 0), E3 =
(
Y ∗

3 , I∗
3
)

=
(

β1
Λ
m I∗

3

β1I∗
3 + m + v

,
Kβ1βp

Λ
m – (m + v)(ω + q)

β1βp
Λ
m + β1(ω + q)

)
.

The following proposition gives the global stability of the equilibria in region Gi, i =
1, 2, 3.

Proposition 2.1 (i) If R0i < 1, then the disease-free equilibrium Ei0 is globally asymptoti-
cally stable; (ii) If R0i > 1, then the endemic equilibrium Ei is globally asymptotically stable,
i = 1, 2, 3.

Proof The corresponding Jacobian matrix of system (1) with (2) equals

J =

(
–β1I – m – u1 β1

Λ
m

βp(K – I) –βpY – ω – u2

)
.

(i) At Ei0 in region Gi,

p = – tr J = m + ω + u1 + u2,

q = |J| = (m + u1)(ω + u2)(1 – R0i).

Hence, if R0i < 1 the characteristic equation has two negative eigenvalues, Ei0 is locally
asymptotically stable. Further, choosing a Dulac function B = 1/(YI), we have

∂(BFi1)
∂Y

+
∂(BFi2)

∂I
= –

(
β1

Λ
m

Y 2 +
Kβp

I2

)
< 0, i = 1, 2, 3.

Thus by the Bendixson–Dulac criterion, Ei0 is globally asymptotically stable by excluding
the existence of limit cycles, i = 1, 2, 3.

(ii) If R0i > 1,

p = – tr J = β1I∗
i + m + βpY ∗

i + ω + u1 + u2,

q = |J| = β1βpY ∗
i I∗

i + βpY ∗
i (m + u1).
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So Ei is locally asymptotically stable for there exists two negative eigenvalues. Similarly,
Ei is globally asymptotically stable, i = 1, 2, 3, by the Bendixson–Dulac criterion with the
Dulac function B = 1/(YI). �

2.2 Sliding mode on Ω1 and its dynamics
Note that a sliding surface may exist on Ω1 between the regions G1 and G2, or between the
regions G1 and G3. First, from 〈n1, F1〉 > 0, we have Y > ωIc

βp(K–Ic)
.= h1, and from 〈n1, F2〉 < 0,

we have Y < (ω+q)Ic
βp(K–Ic)

.= h2, hence, there may exist a sliding mode on Ω1 between the regions
G1 and G2, which is defined as

Σ1 =
{

(Y , I) ∈ Ω1 : h1 < Y < min{h2, Yc}
}

. (6)

Then we investigate the dynamics on Σ1 ⊂ Ω1. Utilizing the Filippov convex method
[25, 26], we have

(
Y ′

I ′

)
= σ1F1 + (1 – σ1)F2, where σ1 =

〈n1, F2〉
〈n1, F2 – F1〉 .

Therefore, the sliding-mode dynamics along the manifold Σ1 can be described by

⎧⎨
⎩Y ′ = β1( Λ

m – Y )Ic – mY ,

I ′ = 0.
(7)

System (7) exists a unique equilibrium Ep1 = (Y ∗
p1, Ic), where Y ∗

p1 = β1
Λ
m Ic

β1Ic+m .
Next, from 〈n1, F1〉 > 0 and 〈n1, F3〉 < 0, there may also exist a sliding mode on Ω1 be-

tween the regions G1 and G3, which is defined as

Σ2 =
{

(Y , I) ∈ Ω1 : max{Yc, h1} < Y < h2
}

. (8)

Moreover, the sliding-mode dynamics along the manifold Σ2 can be obtained by the Fil-
ippov convex method,

(
Y ′

I ′

)
= σ2F1 + (1 – σ2)F3, where σ2 =

〈n1, F3〉
〈n1, F3 – F1〉 .

That is,

⎧⎨
⎩Y ′ = β1( Λ

m – Y )Ic – mY – βpY (K–Ic)–ωIc
qIc

vY ,

I ′ = 0.
(9)

For system (9) there exists a unique equilibrium Ep2 = (Y ∗
p2, Ic), where Y ∗

p2 = –b1+
√

b2
1–4a1c1

2a1
,

a1 = βp(K – Ic)v, b1 = (m + β1Ic)qIc – ωvIc, c1 = –β1
Λ

m
qI2

c .
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Finally, we present the conditions for different sliding modes Σ1 and Σ2 and seek con-
ditions under which Ep1 and Ep2 become pseudoequilibria on Σ1 ⊂ Ω1 and Σ2 ⊂ Ω1. For
convenience, we give the following notations that will be used throughout the analysis:

g1 =
mYc

β1( Λ
m – Yc)

,

g2 =
(m + v)Yc

β1( Λ
m – Yc)

,

g3 =
–b2 +

√
b2

2 – 4a2c2

2a2
,

where a2 = β1q
(

Λ

m
– Yc

)
, b2 = βpvY 2

c – mqYc + ωvYc, c2 = –KβpvY 2
c ,

g4 =
KβpYc

ω + q + βpYc
,

g5 =
KβpYc

ω + βpYc
.

(10)

Proposition 2.2 According to the value of Yc, we have the following three situations.
(1) If Yc < h1 (Ic > g5 by Proposition 2.3), then Σ1 does not exist, while

Σ2 = {(Y , I) ∈ Ω1 : h1 < Y < h2}.
Ep1 does not exist, while Ep2 ∈ Σ2 ⊂ Ω1 if h1 < Y ∗

p2 < h2, that is, if and only if
I∗

3 < Ic < I∗
1 .

(2) If h1 < Yc < h2 (g4 < Ic < g5), then Σ1 = {(Y , I) ∈ Ω1 : h1 < Y < Yc},
Σ2 = {(Y , I) ∈ Ω1 : Yc < Y < h2}.

Ep1 ∈ Σ1 ⊂ Ω1 if h1 < Y ∗
p1 < Yc, that is, if and only if I∗

2 < Ic < min{I∗
1 , g1};

Ep2 ∈ Σ2 ⊂ Ω1 if Yc < Y ∗
p2 < h2, that is, if and only if max{I∗

3 , g3} < Ic < I∗
1 , where

g1 < g3 if and only if Yc < Y ∗
1 .

(3) If h2 < Yc (Ic < g4), then Σ1 = {(Y , I) ∈ Ω1 : h1 < Y < h2}, while the sliding mode Σ2

does not exist.
Ep1 ∈ Σ1 ⊂ Ω1 if h1 < Y ∗

p1 < h2, that is, if and only if I∗
2 < Ic < I∗

1 , while Ep2 does not
exist.

The different sliding modes Σ1 and Σ2 on Ω1 according to the relationship between
g4, g5 and Ic are depicted in Fig. 2.

Figure 2 Different sliding modes on Ω1 according to the relationship between g4, g5 and Ic . The
sliding-mode dynamics on Σ1 can be described by Eq. (7), while the sliding-mode dynamics on Σ2 can be
described by Eq. (9). h1 =

ωIc
βp (K–Ic )

, h2 =
(ω+q)Ic
βp (K–Ic )
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Proof Here we present the derivation for g3, other results can be obtained by lengthy but
trivial calculation. In this case, h1 < Yc < h2, Ep2 becomes a pseudoequilibrium if Yc < Y ∗

p2 <
h2. First we have Y ∗

p2 < h2 if and only if Ic > I∗
3 , Y ∗

p2 > h1 if and only if Ic < I∗
1 . Then we

consider the situation when Yc < Y ∗
p2. By calculation, we obtain

Y ∗
p2 – Yc > 0 ⇐⇒ a2I2

c + b2Ic + c2 > 0,

where a2, b2 and c2 are shown in Eq. (10). For a2 > 0, c2 < 0, we have a2I2
c + b2Ic + c2 > 0 ⇔

Ic > –b2+
√

b2
2–4a2c2

2a2
= g3, where g3 is the unique positive root of a2I2

c + b2Ic + c2 = 0. Then we
have Y ∗

p2 > Yc ⇔ Ic > g3. By lengthy calculation we can also obtain g1 < g3 ⇔ Yc < Y ∗
1 . �

The following theorems show the stability of Ep1 and Ep2.

Theorem 2.1 Ep1 is stable on Σ1 ⊂ Ω1 when it is feasible.

Proof We have

∂

∂Y

(
β1

(
Λ

m
– Y

)
Ic – mY

)∣∣∣∣
Ep1

= –β1Ic – m < 0.

Hence, Ep1 is attracting. �

Note that the term “feasible” here means the equilibrium is a pseudoequilibrium
throughout this paper.

Theorem 2.2 Ep2 is stable on Σ2 ⊂ Ω1 when it is feasible.

Proof We have

∂

∂Y

(
β1

(
Λ

m
– Y

)
Ic – mY –

βpY (K – Ic) – ωIc

qIc
vY

)∣∣∣∣
Ep2

= –β1Ic –
βp(K – Ic)

qIc
vY ∗

p2 – β1

(
Λ

m
– Y ∗

p2

)
Ic

Y ∗
p2

< 0.

Hence, Ep2 is attracting. �

Note that according to Proposition 2.2, the existence of the sliding modes Σ1 and Σ2

and the conditions under which Ep1 and Ep2 become pseudoequilibria on Σ1 ⊂ Ω1 and
Σ2 ⊂ Ω1 depend on the relationship between the threshold value Yc, h1 and h2. The next
proposition gives the equivalent formula related to Ic.

Proposition 2.3 The following equivalent formula holds between Yc and Ic:

Yc < h1 if and only if Ic > g5,

h1 < Yc < h2 if and only if g4 < Ic < g5,

h2 < Yc if and only if Ic < g4,

where g4 and g5 are shown in Eq. (10).
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Proposition 2.2 together with Proposition 2.3 can give the conditions for the existence
of the sliding modes Σ1 and Σ2, and Ep1 and Ep2 to be pseudoequilibria related to Ic, g4

and g5.

2.3 Sliding mode on Ω2 and its dynamics
A sliding surface may exist on Ω2 between the regions G2 and G3. From 〈n2, F2〉 > 0, we
have I > mYc

β1( Λ
m –Yc)

= g1. From 〈n2, F3〉 < 0, we have I < (m+v)Yc
β1( Λ

m –Yc)
= g2. Therefore, the sliding

mode on Ω2 is

Σ3 =
{

(Y , I) ∈ Ω2 : max{Ic, g1} < I < g2, g2 > Ic
}

. (11)

Note that the relationship between Ic and g2 may be a little hard to be determined in
some situations, so the sliding mode Σ3 ⊂ Ω2 varies from one case to another.

Moreover, the sliding-mode dynamics along the manifold Σ3 can be obtained by the
Filippov convex method,

(
Y ′

I ′

)
= σ3F2 + (1 – σ3)F3, where σ3 =

〈n2, F3〉
〈n2, F3 – F2〉 .

That is,

⎧⎨
⎩Y ′ = 0,

I ′ = βpYc(K – I) – (ω + q)I.
(12)

For system (12) there exists a unique equilibrium Ep3 = (Yc, I∗
p3), where

I∗
p3 = g4 =

KβpYc

ω + q + βpYc
.

For the existence and stability of the pseudoequilibrium Ep3, we have the following result.

Theorem 2.3 Ep3 is a pseudoequilibrium on Σ3 ⊂ Ω2 if g1 < I∗
p3 < g2, I∗

p3 > Ic; that is, Y ∗
3 <

Yc < Y ∗
2 , I∗

p3 > Ic. Meanwhile, Ep3 is stable on Σ3 ⊂ Ω2 when it is feasible.

Proof We have

∂

∂I
(
βpYc(K – I) – (ω + q)I

)∣∣∣∣
Ep3

= –βpYc – (ω + q) < 0.

Hence, Ep3 is attracting. �

The next proposition shows the relationship between Yc, Y ∗
i and I∗

i , gj, i = 1, 2, 3, j =
1, . . . , 5, which will play a crucial role in the analysis throughout the cases below.

Proposition 2.4 We have

Yc < Y ∗
3 if and only if g2 < g3, g3 < g4, g4 < I∗

3 ,
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Yc < Y ∗
2 if and only if g1 < g4, g4 < I∗

2 ,

Yc < Y ∗
1 if and only if g1 < g3, g3 < g5, g1 < g5, g5 < I∗

1 .

The proof is lengthy and complicated, here we just omit it.
In the following four sections (Sects. 3–6), we address the richness of the dynamics that

system (1) with (2) can exhibit, including the existence and stability of all the possible
equilibria (e.g. real equilibrium, virtual equilibrium, pseudoequilibrium, pseudoattractor),
and the existence of the sliding mode and its dynamics on the switching surfaces Ω1 and
Ω2 by varying the threshold values Yc and Ic. Note that we only consider the situation R0i >
1, i = 1, 2, 3, to guarantee the existence of the unique endemic equilibrium Ei; otherwise the
system Fi will converge to its disease-free equilibrium Ei0, i = 1, 2, 3. From the expressions
for Ei, i = 1, 2, 3, we have Y ∗

3 < Y ∗
2 < Y ∗

1 and I∗
3 < I∗

2 < I∗
1 . Then we consider the different

cases generated by Yc < Y ∗
3 < Y ∗

2 < Y ∗
1 , Y ∗

3 < Yc < Y ∗
2 < Y ∗

1 , Y ∗
3 < Y ∗

2 < Yc < Y ∗
1 and Y ∗

3 <
Y ∗

2 < Y ∗
1 < Yc, together with Ic < g4 < g5, g4 < Ic < g5 and g4 < g5 < Ic, meanwhile, combining

with Ic < I∗
3 < I∗

2 < I∗
1 , I∗

3 < Ic < I∗
2 < I∗

1 , I∗
3 < I∗

2 < Ic < I∗
1 and I∗

3 < I∗
2 < I∗

1 < Ic. The dynamical
behaviors of system (1) with (2) are examined from one case to another. Additionally, the
biological phenomena and implication of each case will be described and summarized
accordingly.

We then first study the case when Yc < Y ∗
3 < Y ∗

2 < Y ∗
1 with different infected threshold

value Ic.

3 Global behavior in Case A: Yc < Y∗
3 < Y∗

2 < Y∗
1

In Case A, where Yc < Y ∗
3 , E2 is a virtual equilibrium, denoted by EV

2 , and Ep3 is never a
pseudoequilibrium even if there is a sliding mode on Ω2. Nevertheless, Ep1 and Ep2 may
become pseudoequilibria on Σ1 ⊂ Ω1, and Σ2 ⊂ Ω1, E1 and E3 may be real equilibria,
depending on the threshold value Ic, I∗

i , i = 1, 2, 3, and gj, j = 1, . . . , 5.
We present the following lemma according to Proposition 2.4 if Case A is established.

Lemma 3.1 The following formula holds:

Yc < Y ∗
3 < Y ∗

2 < Y ∗
1 ⇔ g1 < g3 < g4 < I∗

3 < I∗
2 < I∗

1 .

For g4 < g5 < I∗
1 , we have the following three situations.

(i) Case A.1: g1 < g3 < g4 < g5 < I∗
3 < I∗

2 < I∗
1 ;

(ii) Case A.2: g1 < g3 < g4 < I∗
3 < g5 < I∗

2 < I∗
1 ;

(iii) Case A.3: g1 < g3 < g4 < I∗
3 < I∗

2 < g5 < I∗
1 .

3.1 Case A.1: g1 < g3 < g4 < g5 < I∗3 < I∗2 < I∗1
3.1.1 Case A.11: Ic < g4 < g5

In Case A.11, E1 is a virtual equilibrium, whilst E3 is a real equilibrium, denoted by EV
1

and ER
3 , respectively. The sliding mode Σ1 = {(Y , I) ∈ Ω1 : h1 < Y < h2}, however, Ep1 /∈ Σ1,

while the sliding mode Σ2 does not exist. The existence of the sliding mode Σ3 depends.
However, Ep3 is never a pseudoequilibrium even if Σ3 exists.

Proposition 3.1 Suppose that g1 < g3 < g4 < g5 < I∗
3 < I∗

2 < I∗
1 and Ic < g4 < g5, then we have

Ep1 /∈ Σ1 ⊂ Ω1, and
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(i) if Ic < g1 < g3, then Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2};
(ii) if g1 < Ic < g3, then Σ3 depends on Ic and g2;

(iii) if g3 < Ic < g4, then Σ3 does not exist.

The global asymptotic stability of ER
3 can be obtained by excluding the existence of limit

cycles using a modified Dulac function.

Theorem 3.1 ER
3 is globally asymptotically stable if g1 < g3 < g4 < g5 < I∗

3 < I∗
2 < I∗

1 and
Ic < g4 < g5.

Proof Existence of limit cycles in regions Gi, i = 1, 2, 3, can be excluded by applying Dulac
function B = 1

SI . Note that the Dulac function cannot only be applicable to continuous
systems but to systems with discontinuous right-hand side where the vector field is neither
smooth nor continuous at the discontinuity surface Y = Yc and I = Ic in system (1) with (2).
In the following, we extend the method used in [27] with one threshold value and construct
a modified Dulac function [28] that avoids the sliding modes to exclude the existence of the
limit cycle in system (1) with (2). Suppose that there exists a closed trajectory Γ (shown
in Fig. 3) passing through the discontinuity manifolds Ω1 and Ω2 that surrounds the real
equilibrium ER

3 and the sliding mode Σ1. Denote Γ = Γ1 + Γ2 + Γ3, where Γi = Γ ∩ Gi,
i = 1, 2, 3. Let D be the bounded region delimited by Γ and Di = D ∩ Gi for i = 1, 2, 3.
Denote the first and second components of the right-hand side of system (1) by f1 and f2.

Let the Dulac function be B = 1
YI , we have

3∑
i=1

(
∂(BFi1)

∂Y
+

∂(BFi2)
∂I

)
= –3

(
β1

Λ
m

Y 2 +
Kβp

I2

)
< 0.

Thus

∫ ∫
D

[
∂(Bf1)
∂Y

+
∂(Bf2)

∂I

]
dY dI =

3∑
i=1

∫ ∫
Di

[
∂(BFi1)

∂Y
+

∂(BFi2)
∂I

]
dY dI < 0.

Figure 3 Schematic diagram illustrating the non-existence of a closed trajectory in system (1) with (2) in
Case A.11 when ER3 is a real equilibrium
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Let D̃i be the region bounded by Γ̃i, P̃i and Q̃i, where D̃i and Γ̃i depend on ε and converge
to Di and Γi as ε approaches 0, i = 1, 2, 3. We get

∫ ∫
Di

(
∂(BFi1)

∂Y
+

∂(BFi2)
∂I

)
dY dI = lim

ε→0

∫ ∫
D̃i

(
∂(BFi1)

∂Y
+

∂(BFi2)
∂I

)
dY dI.

Since dY = F11 dt and dI = F12 dt along Γ̃i and dI = 0 along P̃i, then applying Green’s
theorem to region D̃1, we have

∫ ∫
D̃1

[
∂(BF11)

∂Y
+

∂(BF12)
∂I

]
dY dI =

∮
∂D̃1

BF11 dI – BF12 dY

=
∫

Γ̃1

BF11 dI – BF12 dY +
∫

P̃1

BF11 dI – BF12 dY

= –
∫

P̃1

BF12 dY .

Similarly, applying Green’s theorem to regions D̃2 and D̃3, we have

∫ ∫
D̃2

[
∂(BF21)

∂Y
+

∂(BF22)
∂I

]
dY dI = –

∫
P̃2

BF22 dY +
∫

Q̃2

BF21 dI,

∫ ∫
D̃3

[
∂(BF31)

∂Y
+

∂(BF32)
∂I

]
dY dI = –

∫
P̃3

BF32 dY +
∫

Q̃3

BF31 dI.

Denote the intersection points of the closed trajectory Γ and the line I = Ic by M1 =
(M11, Ic) and M2 = (M21, Ic), and the intersection point of Γ and the line Y = Yc in the
region of I > Ic by N1 = (Yc, N12), additionally, denote Ec = (Yc, Ic).

Since M11 < Yc < M21 and Ic < N12, then from the above discussions, we have

0 >
3∑

i=1

∫ ∫
Di

[
∂(BFi1)

∂Y
+

∂(BFi2)
∂I

]
dY dI = lim

ε→0

3∑
i=1

∫ ∫
Di

[
∂(BFi1)

∂Y
+

∂(BFi2)
∂I

]
dY dI

= lim
ε→0

(
–

∫
P̃1

BF12 dY –
∫

P̃2

BF22 dY +
∫

Q̃2

BF21 dI –
∫

P̃3

BF32 dY +
∫

Q̃3

BF31 dI
)

= –
∫ M11

M21

(
βpY (K – I)

YI
–

ω

Y

)
dY –

∫ Yc

M11

(
βpY (K – I)

YI
–

ω + q
Y

)
dY

+
∫ N12

Ic

(
β1( Λ

m – Y )
Y

–
m
I

)
dI –

∫ M21

Yc

(
βpY (K – I)

YI
–

ω + q
Y

)
dY

+
∫ Ic

N12

(
β1( Λ

m – Y )
Y

–
m + v

I

)
dI

= q ln
M21

M11
+ v ln

N12

Ic
> 0,

which is a contradiction. Thus there are no limit cycles surrounding the sliding mode and
the equilibrium ER

3 . Consequently, ER
3 is globally asymptotically stable. �

Throughout this paper, the Y-nullclines and I-nullclines of system (1) with (2) are repre-
sented by blue dashed curves and blue dash-dot lines, respectively. The curve {(Y , I) ∈
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Figure 4 ER3 is globally asymptotically stable in Case A.11 corresponding to different sliding modes Σ3.
(A1) Yc = 5, Ic = 4. Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2}. (A2) Yc = 5, Ic = 6. Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}. (A3) Yc = 5,
Ic = 7.75. Σ3 does not exist. (A2) and (A3) are omitted here

G1(G2) : I = mY
β1( Λ

m –Y )
} is the Y-nullcline of F1 (F2), denoted by gY

1 (gY
2 ), while the curve

{(Y , I) ∈ G3 : I = (m+v)Y
β1( Λ

m –Y )
} is the Y-nullcline of F3, denoted by gY

3 . The curve {(Y , I) ∈ G1 : I =
KβpY
βpY +ω

} is the I-nullcline of F1, denoted by gI
1, while the curve {(Y , I) ∈ G2(G3) : I = KβpY

βpY +ω+q }
is the I-nullcline of F2 (F3), denoted by gI

2 (gI
3).

The phase portrait in Fig. 4 shows that all solutions of system (1) with (2) will converge
to ER

3 as t → ∞. The parameter values in Fig. 4 and the following figures are Λ = 5, m = 0.2,
β1 = 0.01, βp = 0.02, ω = 0.3, K = 40, q = 0.1, v = 0.1 (refer to Ref [13] and the references
therein).

3.1.2 Case A.12: g4 < Ic < g5

In Case A.12, E1 is a virtual equilibrium, whilst E3 is a real equilibrium, denoted by EV
1 and

ER
3 , respectively. The sliding mode Σ1 = {(Y , I) ∈ Ω1 : h1 < Y < Yc}, Σ2 = {(Y , I) ∈ Ω1 : Yc <

Y < h2}, however, Ep1 /∈ Σ1, Ep2 /∈ Σ2. Since g2 < g3 if Yc < Y ∗
3 , the sliding mode Σ3 does

not exist. Applying a similar method to Theorem 3.1 to the proof of the non-existence of
limit cycles, we can derive the following result.

Theorem 3.2 ER
3 is globally asymptotically stable if g1 < g3 < g4 < g5 < I∗

3 < I∗
2 < I∗

1 and
g4 < Ic < g5.

The phase portrait in this case is similar to Fig. 6(A), we just omit it.

3.1.3 Case A.13: g4 < g5 < Ic

In this case, the sliding mode Σ2 = {(Y , I) ∈ Ω1 : h1 < Y < h2}, while Σ1 and Σ3 do not
exist. From Proposition 2.2, we can obtain the following results.

Theorem 3.3 According to the threshold value Ic, we have
(i) if g5 < Ic < I∗

3 , Ep2 /∈ Σ2 ⊂ Ω1, E1 is a virtual equilibrium, while E3 is a real
equilibrium, denoted by EV

1 and ER
3 , respectively; then ER

3 is globally asymptotically
stable; as can be seen in Fig. 5(A);
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Figure 5 Global dynamics in Case A.13. (A) ER3 is globally asymptotically stable. Yc = 4, Ic = 8.65. (B) Ep2 is
globally asymptotically stable. Yc = 4, Ic = 15.5. (C) ER1 is globally asymptotically stable. Yc = 4, Ic = 20

(ii) if g5 < I∗
3 < Ic < I∗

1 , Ep2 ∈ Σ2 ⊂ Ω1, E1 and E3 are virtual equilibria, denoted by EV
1

and EV
3 , respectively; then Ep2 is globally asymptotically stable; as can be seen in

Fig. 5(B);
(iii) if g5 < I∗

3 < I∗
1 < Ic, Ep2 /∈ Σ2 ⊂ Ω1, E1 is a real equilibrium, while E3 is a virtual

equilibrium, denoted by ER
1 and EV

3 , respectively; then ER
1 is globally asymptotically

stable; as can be seen in Fig. 5(C).
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The phase portrait in Fig. 5(A) shows that the infected plants will finally converge to a
level above the infected plant threshold value Ic, while for Fig. 5(B) and (C), the infected
plants will finally stabilize at a level equal to or below Ic.

3.2 Case A.2: g1 < g3 < g4 < I∗3 < g5 < I∗2 < I∗1
3.2.1 Case A.21: Ic < g4 < g5

In this case, the discussion is similar to Case A.11, and we omit it.

3.2.2 Case A.22: g4 < Ic < g5

In Case A.22, E1 is a virtual equilibrium, denoted by EV
1 . The sliding mode Σ1 = {(Y , I) ∈

Ω1 : h1 < Y < Yc}, Σ2 = {(Y , I) ∈ Ω1 : Yc < Y < h2}, however, Ep1 /∈ Σ1. The sliding mode Σ3

does not exist. From Proposition 2.2, we can obtain the following results.

Theorem 3.4 According to the threshold value Ic, we have
(i) if g4 < Ic < I∗

3 < g5, Ep2 /∈ Σ2 ⊂ Ω1, E3 is a real equilibrium, denoted by ER
3 ; then ER

3 is
globally asymptotically stable; as can be seen in Fig. 6(A);

(ii) if g4 < I∗
3 < Ic < g5, Ep2 ∈ Σ2 ⊂ Ω1, E3 is a virtual equilibrium, denoted by EV

3 ; then
Ep2 is globally asymptotically stable; as can be seen in Fig. 6(B).

Figure 6 Global dynamics in Case A.22. (A) ER3 is globally asymptotically stable. Yc = 4, Ic = 7.5. (B) Ep2 is
globally asymptotically stable. Yc = 5, Ic = 9
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It can be seen from Fig. 6(A) and (B) that the infected plants will finally converge to a
level either above or equal to Ic.

3.2.3 Case A.23: g4 < g5 < Ic

In this case, the sliding mode Σ2 = {(Y , I) ∈ Ω1 : h1 < Y < h2}, while Σ1 and Σ3 do not
exist. From Proposition 2.2, we can obtain the following results.

Theorem 3.5 According to the threshold value Ic, we have
(i) if g4 < I∗

3 < g5 < Ic < I∗
1 , Ep2 ∈ Σ2 ⊂ Ω1, E1 and E3 are virtual equilibria, denoted by

EV
1 and EV

3 , respectively; then Ep2 is globally asymptotically stable;
(ii) if g4 < I∗

3 < g5 < I∗
1 < Ic, Ep2 /∈ Σ2 ⊂ Ω1, E1 is a real equilibrium, while E3 is a virtual

equilibrium, denoted by ER
1 and EV

3 , respectively; then ER
1 is globally asymptotically

stable.

The phase portrait in this case is similar to that in Fig. 5(B) and (C), we just omit it.

3.3 Case A.3: g1 < g3 < g4 < I∗3 < I∗2 < g5 < I∗1
3.3.1 Case A.31: Ic < g4 < g5

In this case, the discussion is similar to Case A.11, and we omit it.

3.3.2 Case A.32: g4 < Ic < g5

In Case A.32, E1 is a virtual equilibrium, denoted by EV
1 . The sliding mode Σ1 = {(Y , I) ∈

Ω1 : h1 < Y < Yc}, Σ2 = {(Y , I) ∈ Ω1 : Yc < Y < h2}, however, Ep1 /∈ Σ1. The sliding mode Σ3

does not exist. From Proposition 2.2, we can obtain the following results.

Theorem 3.6 According to the threshold value Ic, we have
(i) if g4 < Ic < I∗

3 < g5, Ep2 /∈ Σ2 ⊂ Ω1, E1 is a virtual equilibrium, while E3 is a real
equilibrium, denoted by EV

1 and ER
3 , respectively; then ER

3 is globally asymptotically
stable;

(ii) if g4 < I∗
3 < Ic < g5, Ep2 ∈ Σ2 ⊂ Ω1, E1 and E3 are virtual equilibria, denoted by EV

1

and EV
3 , respectively; then Ep2 is globally asymptotically stable.

The phase portrait in this case is similar to that in Fig. 6, we just omit it.

3.3.3 Case A.33: g4 < g5 < Ic

In this case, the discussion is similar to Case A.23 and is omitted here.

4 Global behavior in Case B: Y∗
3 < Yc < Y∗

2 < Y∗
1

In Case B, where Y ∗
3 < Yc < Y ∗

2 , both E2 and E3 are virtual equilibria, denoted by EV
2 and EV

3 ,
respectively. We first present the following lemma according to Proposition 2.4 if Case B
is established.

Lemma 4.1 The following formula holds:

Y ∗
3 < Yc < Y ∗

2 < Y ∗
1 ⇔ I∗

3 < g1 < g4 < I∗
2 < I∗

1 and g1 < I∗
3 < g4 < I∗

2 < I∗
1 .

For g4 < g3 < g5 < I∗
1 , we have the following three situations.
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(i) Case B.1: I∗
3 < g1 < g4 < g3 < g5 < I∗

2 < I∗
1 (g1 < I∗

3 < g4 < g3 < g5 < I∗
2 < I∗

1 );
(ii) Case B.2: I∗

3 < g1 < g4 < g3 < I∗
2 < g5 < I∗

1 (g1 < I∗
3 < g4 < g3 < I∗

2 < g5 < I∗
1 );

(iii) Case B.3: I∗
3 < g1 < g4 < I∗

2 < g3 < g5 < I∗
1 (g1 < I∗

3 < g4 < I∗
2 < g3 < g5 < I∗

1 ).

Note that the results when g1 < I∗
3 is the same with I∗

3 < g1, hence we only present the
situations when I∗

3 < g1.

4.1 Case B.1: I∗3 < g1 < g4 < g3 < g5 < I∗2 < I∗1
4.1.1 Case B.11: Ic < g4 < g5

In Case B.11, E1 is a virtual equilibrium, denoted by EV
1 . The sliding mode Σ1 = {(Y , I) ∈

Ω1 : h1 < Y < h2}, however, Ep1 /∈ Σ1 ⊂ Ω1, while the sliding mode Σ2 does not exist. The
sliding mode Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2} if Ic < g1 < g4, while Σ3 = {(Y , I) ∈ Ω2 : Ic < I <
g2} if g1 < Ic < g4, and Ep3 ∈ Σ3 ⊂ Ω2. We can get the global asymptotic stability of Ep3 by
excluding the existence of limit cycles.

Theorem 4.1 Ep3 is globally asymptotically stable if I∗
3 < g1 < g4 < g3 < g5 < I∗

2 < I∗
1 and

Ic < g4 < g5.

The phase portrait in Fig. 7 finally stabilizes at a level above the infected plant threshold
level Ic.

4.1.2 Case B.12: g4 < Ic < g5

In Case B.12, E1 is a virtual equilibrium, denoted by EV
1 . The sliding mode Σ1 = {(Y , I) ∈

Ω1 : h1 < Y < Yc}, Σ2 = {(Y , I) ∈ Ω1 : Yc < Y < h2}, however, Ep1 /∈ Σ1. The sliding mode
Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2} if g4 < Ic < g3 < g5, while Σ3 depends on g2 and Ic if g4 < g3 <
Ic < g5. Ep3 is never a pseudoequilibrium even if the sliding mode Σ3 exists.

Theorem 4.2 According to the threshold value Ic, we have

Figure 7 Ep3 is globally asymptotically stable in Case B.11 corresponding to different sliding modes Σ3.
(A1) Yc = 9, Ic = 10. Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2}. (A2) Yc = 9, Ic = 12. Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}. (A2) is
omitted here
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Figure 8 Global dynamics in Case B.12. (A) Ec is globally asymptotically stable. Yc = 7.4, Ic = 11. (B1) Ep2 is
globally asymptotically stable. Yc = 7.4, Ic = 12.5. Σ3 does not exist. (B2) Ep2 is globally asymptotically stable.
Yc = 7.4, Ic = 12. Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}. (B2) is omitted here

(i) if g4 < Ic < g3 < g5, Ep2 /∈ Σ2 ⊂ Ω1, no equilibrium exists in the system. However, all
orbits will converge in a finite time to the pseudoattractor Ec = (Yc, Ic); as can be seen
in Fig. 8(A);

(ii) if g4 < g3 < Ic < g5, Ep2 ∈ Σ2 ⊂ Ω1; then Ep2 is globally asymptotically stable; as can be
seen in Fig. 8(B1) and (B2).

It can be seen from Fig. 8 that the infected plants will finally converge to a level equal to
Ic.

4.1.3 Case B.13: g4 < g5 < Ic

In this case, the sliding mode Σ2 = {(Y , I) ∈ Ω1 : h1 < Y < h2}, while Σ1 does not exist. The
sliding mode Σ3 depends on g2 and Ic, however, Ep3 is never a pseudoequilibrium even if
the sliding mode Σ3 exists. From Proposition 2.2, we can obtain the following results.

Theorem 4.3 According to the threshold value Ic, we have
(i) if g4 < g3 < g5 < Ic < I∗

1 , Ep2 ∈ Σ2 ⊂ Ω1, E1 is a virtual equilibrium, denoted by EV
1 ;

then Ep2 is globally asymptotically stable; as can be seen in Fig. 9(A1) and (A2);



Yang and Zhang Advances in Difference Equations        (2020) 2020:465 Page 19 of 30

Figure 9 Global dynamics in Case B.13. (A1) Ep2 is globally asymptotically stable. Yc = 8, Ic = 15. Σ3 does not
exist. (A2) Ep2 is globally asymptotically stable. Yc = 9, Ic = 16. Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}. (B1) ER1 is globally
asymptotically stable. Yc = 7, Ic = 18. Σ3 does not exist. (B2) ER1 is globally asymptotically stable. Yc = 10,
Ic = 18. Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}. (A2) and (B2) are omitted here

(ii) if g4 < g3 < g5 < I∗
2 < I∗

1 < Ic, Ep2 /∈ Σ2 ⊂ Ω1, E1 is a real equilibrium, denoted by ER
1 ;

then ER
1 is globally asymptotically stable; as can be seen in Fig. 9(B1) and (B2).

It can be seen from Fig. 9 that the infected plants will finally converge to a level equal to
or below Ic.

4.2 Case B.2: I∗3 < g1 < g4 < g3 < I∗2 < g5 < I∗1
4.2.1 Case B.21: Ic < g4 < g5

In this case, the discussion is similar to Case B.11 and is omitted here.

4.2.2 Case B.22: g4 < Ic < g5

In Case B.22, E1 is a virtual equilibrium, denoted by EV
1 . The sliding mode Σ1 = {(Y , I) ∈

Ω1 : h1 < Y < Yc}, Σ2 = {(Y , I) ∈ Ω1 : Yc < Y < h2}, however, Ep1 /∈ Σ1. The sliding mode
Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2} if g4 < Ic < g3, while Σ3 depends on g2 and Ic if g4 < g3 < Ic. Ep3

is never a pseudoequilibrium even if the sliding mode Σ3 exists.

Theorem 4.4 According to the threshold value Ic, we have
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(i) if g4 < Ic < g3 < I∗
2 < g5, Ep2 /∈ Σ2 ⊂ Ω1, no equilibrium exists in the system. However,

all orbits will converge in a finite time to the pseudoattractor Ec = (Yc, Ic);
(ii) if g4 < g3 < Ic < g5, Ep2 ∈ Σ2 ⊂ Ω1; then Ep2 is globally asymptotically stable.

The phase portrait in this case is similar to that in Fig. 8, we just omit it.

4.2.3 Case B.23: g4 < g5 < Ic

In this case, the sliding mode Σ2 = {(Y , I) ∈ Ω1 : h1 < Y < h2}, while Σ1 does not exist. The
sliding mode Σ3 depends on g2 and Ic, however, Ep3 is never a pseudoequilibrium even if
the sliding mode Σ3 exists. From Proposition 2.2, we can obtain the following results.

Theorem 4.5 According to the threshold value Ic, we have
(i) if g4 < I∗

2 < g3 < g5 < Ic < I∗
1 , Ep2 ∈ Σ2 ⊂ Ω1, E1 is a virtual equilibrium, denoted by

EV
1 ; then Ep2 is globally asymptotically stable;

(ii) if g4 < I∗
2 < g3 < g5 < I∗

1 < Ic, Ep2 /∈ Σ2 ⊂ Ω1, E1 is a real equilibrium, denoted by ER
1 ;

then ER
1 is globally asymptotically stable.

The phase portrait in this case is similar to that in Fig. 9, we just omit it.

4.3 Case B.3: I∗3 < g1 < g4 < I∗2 < g3 < g5 < I∗1
4.3.1 Case B.31: Ic < g4 < g5

In this case, the discussion is the same with Case B.11 and is omitted here.

4.3.2 Case B.32: g4 < Ic < g5

In Case B.32, E1 is a virtual equilibrium, denoted by EV
1 . The sliding mode Σ1 = {(Y , I) ∈

Ω1 : h1 < Y < Yc}, Σ2 = {(Y , I) ∈ Ω1 : Yc < Y < h2}, however, Ep1 /∈ Σ1. The sliding mode
Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2} if g4 < Ic < g3, while Σ3 depends on g2 and Ic if g4 < I∗

2 < g3 < Ic.
Ep3 is never a pseudoequilibrium even if the sliding mode Σ3 exists.

Theorem 4.6 According to the threshold value Ic, we have
(i) if g4 < Ic < g3 < g5, Ep2 /∈ Σ2 ⊂ Ω1, no equilibrium exists in the system. However, all

orbits will converge in a finite time to the pseudoattractor Ec = (Yc, Ic);
(ii) if g4 < I∗

2 < g3 < Ic < g5, Ep2 ∈ Σ2 ⊂ Ω1; then Ep2 is globally asymptotically stable.

The phase portrait in this case is similar to that in Fig. 8, we just omit it.

4.3.3 Case B.33: g4 < g5 < Ic

In this case, the discussion is the same with Case B.23 and is omitted here.

5 Global behavior in Case C: Y∗
3 < Y∗

2 < Yc < Y∗
1

In Case C, where Y ∗
3 < Y ∗

2 < Yc < Y ∗
1 , E3 is a virtual equilibrium, denoted by EV

3 . We first
present the following lemma according to Proposition 2.4 if Case C is established.

Lemma 5.1 The following formula holds

Y ∗
3 < Y ∗

2 < Yc < Y ∗
1 ⇔ I∗

3 < I∗
2 < g4 < g1 < g3 < g5 < I∗

1 .
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Figure 10 Global dynamics in Case C.1. (A) ER2 is globally asymptotically stable. Yc = 11, Ic = 13. (B) Ep1 is
globally asymptotically stable. Yc = 11, Ic = 14

5.1 Case C.1: Ic < g4 < g5

In Case C.1, E1 is a virtual equilibrium, denoted by EV
1 . The sliding mode Σ1 = {(Y , I) ∈

Ω1 : h1 < Y < h2}, while the sliding mode Σ2 does not exist. The sliding mode Σ3 = {(Y , I) ∈
Ω2 : g1 < I < g2} and Ep3 is never a pseudoequilibrium.

Theorem 5.1 According to the threshold value Ic, we have
(i) if Ic < I∗

2 < g4, Ep1 /∈ Σ1 ⊂ Ω1, E2 is a real equilibrium, denoted by ER
2 ; then ER

2 is
globally asymptotically stable; as can be seen in Fig. 10(A);

(ii) if I∗
2 < Ic < g4, Ep1 ∈ Σ1 ⊂ Ω1, E2 is a virtual equilibrium, denoted by EV

2 ; then Ep1 is
globally asymptotically stable; as can be seen in Fig. 10(B).

It can be seen from Fig. 10 that the infected plants will finally converge to a level above
or equal to Ic.

5.2 Case C.2: g4 < Ic < g5

In Case C.2, both E1 and E2 are virtual equilibria, denoted by EV
1 and EV

2 , respectively. The
sliding mode Σ1 = {(Y , I) ∈ Ω1 : h1 < Y < Yc}, Σ2 = {(Y , I) ∈ Ω1 : Yc < Y < h2}. Ep3 is never
a pseudoequilibrium even if the sliding mode Σ3 exists.
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Figure 11 Global dynamics in Case C.2. (A) Ep1 is globally asymptotically stable. Yc = 11, Ic = 15. (B) Ec is
globally asymptotically stable. Yc = 11, Ic = 16.15. (C1) Ep2 is globally asymptotically stable. Yc = 10.3, Ic = 16.
Σ3 does not exist. (C2) Ep2 is globally asymptotically stable. Yc = 10.7, Ic = 16.5. Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}.
(C2) is omitted here

Theorem 5.2 According to the threshold value Ic, we have
(i) if g4 < Ic < g1 < g3 < g5, Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2}, Ep1 ∈ Σ1 ⊂ Ω1,

Ep2 /∈ Σ2 ⊂ Ω1; then Ep1 is globally asymptotically stable; as can be seen in
Fig. 11(A);
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(ii) if g4 < g1 < Ic < g3 < g5, Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}, Ep1 /∈ Σ1 ⊂ Ω1,
Ep2 /∈ Σ2 ⊂ Ω1, no equilibrium exists in the system. However, all orbits will converge
in a finite time to the pseudoattractor Ec = (Yc, Ic); as can be seen in Fig. 11(B);

(iii) if g4 < g1 < g3 < Ic < g5, Σ3 depends on g2 and Ic, Ep1 /∈ Σ1 ⊂ Ω1, Ep2 ∈ Σ2 ⊂ Ω1; then
Ep2 is globally asymptotically stable; as can be seen in Fig. 11(C1) and (C2).

It can be seen from Fig. 11 that the infected plants will finally converge to a level equal
to Ic.

Remark Note that when Y ∗
3 < Yc < Y ∗

2 , g4 < Ic < g3 or Y ∗
2 < Yc < Y ∗

1 , g1 < Ic < g3, all of EV
1 , EV

2

and EV
3 are virtual equilibria, while no pseudoequilibrium exists, then the solutions of the

system will finally stabilize at the pseudoattractor Ec = (Sc, Ic), as can be seen in Fig. 8(A)
and Fig. 11(B). When the threshold values Yc and Ic are chosen from other regions, the
system will finally stabilize at either a real equilibrium or a stable pseudoequilibrium. For
more complicated dynamics of non-smooth systems including the intersection Ec(Sc, Ic),
the interested reader can refer to [29–33].

5.3 Case C.3: g4 < g5 < Ic

In this case, E2 is a virtual equilibrium, denoted by EV
2 . The sliding mode Σ2 = {(Y , I) ∈ Ω1 :

h1 < Y < h2}, while Σ1 does not exist. The sliding mode Σ3 depends on gc and Ic, however,
Ep3 is never a pseudoequilibrium even if the sliding mode Σ3 exists. From Proposition 2.2,
we can obtain the following results.

Theorem 5.3 According to the threshold value Ic, we have
(i) if g5 < Ic < I∗

1 , Ep2 ∈ Σ2 ⊂ Ω1, E1 is a virtual equilibrium, denoted by EV
1 ; then Ep2 is

globally asymptotically stable; as can be seen in Fig. 12(A1) and (A2);
(ii) if g5 < I∗

1 < Ic, Ep2 /∈ Σ2 ⊂ Ω1, E1 is a real equilibrium, denoted by ER
1 ; then ER

1 is
globally asymptotically stable; as can be seen in Fig. 12(B1) and (B2).

It can be seen from Fig. 12 that the infected plants will finally converge to a level equal
to or below Ic.

6 Global behavior in Case D: Y∗
3 < Y∗

2 < Y∗
1 < Yc

In Case D, where Y ∗
3 < Y ∗

2 < Yc, E3 is a virtual equilibrium, denoted by EV
3 . We first present

the following lemma according to Proposition 2.4 if Case D is established.

Lemma 6.1 The following formula holds:

Y ∗
3 < Y ∗

2 < Y1 < Y ∗
c ⇔ I∗

3 < I∗
2 < I∗

1 < g5 < g3 < g1.

For I∗
2 < g4 < g5, we have the following two situations.

(i) Case D.1: I∗
3 < I∗

2 < g4 < I∗
1 < g5 < g3 < g1;

(ii) Case D.2: I∗
3 < I∗

2 < I∗
1 < g4 < g5 < g3 < g1.
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Figure 12 Global dynamics in Case C.3. (A1) Ep2 is globally asymptotically stable. Yc = 10.1, Ic = 17.4. Σ3 does
not exist. (A2) Ep2 is globally asymptotically stable. Yc = 10.5, Ic = 17. Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}. (B1) ER1 is
globally asymptotically stable. Yc = 11, Ic = 24. Σ3 does not exist. (B2) ER1 is globally asymptotically stable.
Yc = 11, Ic = 19. Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}. (A2) and (B2) are omitted here

6.1 Case D.1: I∗3 < I∗2 < g4 < I∗1 < g5 < g3 < g1

6.1.1 Case D.11: Ic < g4 < g5

In Case D.11, E1 is a virtual equilibrium, denoted by EV
1 . The sliding mode Σ1 = {(Y , I) ∈

Ω1 : h1 < Y < h2}, while the sliding mode Σ2 does not exist. The sliding mode Σ3 = {(Y , I) ∈
Ω2 : g1 < I < g2} and Ep3 is never a pseudoequilibrium.

Theorem 6.1 According to the threshold value Ic, we have
(i) if Ic < I∗

2 < g4, Ep1 /∈ Σ1 ⊂ Ω1, E2 is a real equilibrium, denoted by ER
2 ; then ER

2 is
globally asymptotically stable; as can be seen in Fig. 13(A);

(ii) if I∗
2 < Ic < g4, Ep1 ∈ Σ1 ⊂ Ω1, E2 is a virtual equilibrium, denoted by EV

2 ; then Ep1 is
globally asymptotically stable; as can be seen in Fig. 13(B).

It can be seen from Fig. 13 that the infected plants will finally converge to a level above
or equal to Ic.
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Figure 13 Global dynamics in Case D.11. (A) ER2 is globally asymptotically stable. Yc = 16, Ic = 12. (B) Ep1 is
globally asymptotically stable. Yc = 16, Ic = 15

6.1.2 Case D.12: g4 < Ic < g5

In Case D.12, E2 is a virtual equilibrium, denoted by EV
2 . The sliding mode Σ1 = {(Y , I) ∈

Ω1 : h1 < Y < Yc}, Σ2 = {(Y , I) ∈ Ω1 : Yc < Y < h2}, and Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2}. How-
ever, Ep3 is never a pseudoequilibrium.

Theorem 6.2 According to the threshold value Ic, we have
(i) if g4 < Ic < I∗

1 < g5, Ep1 ∈ Σ1 ⊂ Ω1, Ep2 /∈ Σ2 ⊂ Ω1, E1 is a virtual equilibrium,
denoted by EV

1 ; then Ep1 is globally asymptotically stable; as can be seen in Fig. 14(A);
(ii) if g4 < I∗

1 < Ic < g5, Ep1 /∈ Σ1 ⊂ Ω1, Ep2 /∈ Σ2 ⊂ Ω1, E1 is a real equilibrium, denoted
by ER

1 ; then ER
1 is globally asymptotically stable; as can be seen in Fig. 14(B).

It can be seen from Fig. 14 that the infected plants will finally converge to a level below
or equal to Ic.

6.1.3 Case D.13: g4 < g5 < Ic

In this case, E1 is a real equilibrium, E2 is a virtual equilibrium, denoted by ER
1 and EV

2 ,
respectively. The sliding mode Σ2 = {(Y , I) ∈ Ω1 : h1 < Y < h2}, while Σ1 does not exist,
Ep2 /∈ Σ2 ⊂ Ω1. Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2} if g5 < Ic < g1, while Σ3 depends on g2 and
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Figure 14 Global dynamics in Case D.12. (A) Ep1 is globally asymptotically stable. Yc = 12, Ic = 16. (B) ER1 is
globally asymptotically stable. Yc = 14, Ic = 18

Ic if g1 < Ic. However, Ep3 is never a pseudoequilibrium. According to Proposition 2.2, we
can obtain the following result.

Theorem 6.3 ER
1 is globally asymptotically stable if I∗

3 < I∗
2 < g4 < I∗

1 < g5 < g3 < g1 and
g4 < g5 < Ic.

As can be seen in Fig. 15, the phase portrait will finally stabilize at a level below the
infected threshold value Ic.

6.2 Case D.2: I∗3 < I∗2 < I∗1 < g4 < g5 < g3 < g1

6.2.1 Case D.21: Ic < g4 < g5

In Case D.21, the sliding mode Σ1 = {(Y , I) ∈ Ω1 : h1 < Y < h2}, while the sliding mode
Σ2 does not exist. The sliding mode Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2} and Ep3 is never a
pseudoequilibrium.

Theorem 6.4 According to the threshold value Ic, we have
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Figure 15 ER1 is globally asymptotically stable in Case D.13 corresponding to different sliding modes Σ3.
(A1) Yc = 15, Ic = 25. Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2}. (A2) Yc = 13, Ic = 26. Σ3 = {(Y , I) ∈ Ω2 : Ic < I < g2}.
(A3) Yc = 12, Ic = 28. Σ3 does not exist. (A2) and (A3) are omitted here

Figure 16 ER1 is globally asymptotically stable in Case D.21. Yc = 17, Ic = 18

(i) if Ic < I∗
2 < I∗

1 < g4, Ep1 /∈ Σ1 ⊂ Ω1, E1 is a virtual equilibrium, E2 is a real
equilibrium, denoted by EV

1 and ER
2 , respectively; then ER

2 is globally asymptotically
stable;

(ii) if I∗
2 < Ic < I∗

1 < g4, Ep1 ∈ Σ1 ⊂ Ω1, both E1 and E2 are virtual equilibria, denoted by
EV

1 and EV
2 , respectively; then Ep1 is globally asymptotically stable;

(iii) if I∗
2 < I∗

1 < Ic < g4, Ep1 /∈ Σ1 ⊂ Ω1, E1 is a real equilibrium, E2 is a virtual
equilibrium, denoted by ER

1 and EV
2 , respectively; then ER

1 is globally asymptotically
stable; as can be seen in Fig. 16.

The phase portrait of Theorem 6.4 (i) and (ii) is similar to that in Fig. 13, here we just
omit it. ER

1 is globally asymptotically stable as shown in Fig. 16.

6.2.2 Case D.22: g4 < Ic < g5

In Case D.22, E1 is a real equilibrium, E2 is a virtual equilibrium, denoted by ER
1 and EV

2 ,
respectively. The sliding mode Σ1 = {(Y , I) ∈ Ω1 : h1 < Y < Yc}, Σ2 = {(Y , I) ∈ Ω1 : Yc < Y <
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h2}, and Σ3 = {(Y , I) ∈ Ω2 : g1 < I < g2}. However, Ep1 /∈ Σ1 ⊂ Ω1, Ep2 /∈ Σ2 ⊂ Ω1, Ep3 is
never a pseudoequilibrium.

Theorem 6.5 ER
1 is globally asymptotically stable if I∗

3 < I∗
2 < I∗

1 < g4 < g5 < g3 < g1 and
g4 < Ic < g5.

The phase portrait in this case is similar to that in Fig. 14(B), we just omit it.

6.2.3 Case D.23: g4 < g5 < Ic

In this case, the discussion is similar to Case D.13 and is omitted here.

7 Conclusion and discussion
In this work, we proposed a Filippov–type vector-borne plant disease model by taking
roguing infected plants and spraying insecticides into account. Since roguing and vector
control are two of the most applicable and effective strategies in controlling plant disease
transmission, it is also essential to relieve the economical devastation for growers and
the damage to the environment, human health and natural enemies. Hence, we here take
the threshold policy by choosing the numbers of infected plants and vectors as reference
indices. That is, we take no control strategy if the number of infected plants is less than
an infected plant threshold level Ic; further, we remove infected plants at a rate q once
the number of infected plants exceeds Ic; meanwhile, we spay pesticides if the number of
infected vectors exceeds the infected vector threshold level Yc, which results in an induced
death rate v for the infected vectors. The main analytical results obtained are summarized
in Table 1, with the following biological implications.

Table 1 Global dynamics of system (1) with (2) summarized from Sects. 3, 4, 5 and 6

Case Condition Equilibrium Main result

Yc < Y∗
3 < Y∗

2 < Y∗
1 Ic < g4 < g5 EV1 , E

V
2 , E

R
3 (I)

Yc < Y∗
3 < Y∗

2 < Y∗
1 g4 < Ic < g5, Ic <min{I∗3 ,g5} EV1 , E

V
2 , E

R
3 (I)

Yc < Y∗
3 < Y∗

2 < Y∗
1 g4 < Ic < g5, I∗3 < Ic < g5 EV1 , E

V
2 , E

V
3 , Ep2 (II)

Yc < Y∗
3 < Y∗

2 < Y∗
1 g4 < g5 < Ic , Ic <max{I∗3 ,g5} EV1 , E

V
2 , E

R
2 (I)

Yc < Y∗
3 < Y∗

2 < Y∗
1 g4 < g5 < Ic , max{I∗3 ,g5} < Ic < I∗1 EV1 , E

V
2 , E

V
3 Ep2 (II)

Yc < Y∗
3 < Y∗

2 < Y∗
1 g4 < g5 < Ic , Ic > I∗1 ER1 , E

V
2 , E

V
3 (III)

Y∗
3 < Yc < Y∗

2 < Y∗
1 Ic < g4 < g5 EV1 , E

V
2 , E

V
3 , Ep3 (I)

Y∗
3 < Yc < Y∗

2 < Y∗
1 g4 < Ic < g5, Ic < g3 EV1 , E

V
2 , E

V
3 , Ec (II)

Y∗
3 < Yc < Y∗

2 < Y∗
1 g4 < Ic < g4, Ic > g3 EV1 , E

V
2 , E

V
3 , Ep2 (II)

Y∗
3 < Yc < Y∗

2 < Y∗
1 g4 < g5 < Ic , Ic < I∗1 EV1 , E

V
2 , E

V
3 , Ep2 (II)

Y∗
3 < Yc < Y∗

2 < Y∗
1 g4 < g5 < Ic , Ic > I∗1 ER1 , E

V
2 , E

V
3 (III)

Y∗
3 < Y∗

2 < Yc < Y∗
1 Ic < g4 < g5, Ic < I∗2 EV1 , E

R
2 , E

V
3 (I)

Y∗
3 < Y∗

2 < Yc < Y∗
1 Ic < g4 < g5, Ic < I∗2 EV1 , E

V
2 , E

V
3 , Ep1 (II)

Y∗
3 < Y∗

2 < Yc < Y∗
1 g4 < Ic < g5, Ic < g1 EV1 , E

V
2 , E

V
3 , Ep1 (II)

Y∗
3 < Y∗

2 < Yc < Y∗
1 g4 < Ic < g5, g1 < Ic < g3 EV1 , E

V
2 , E

V
3 , Ec (II)

Y∗
3 < Y∗

2 < Yc < Y∗
1 g4 < Ic < g5, Ic > g3 EV1 , E

V
2 , E

V
3 , Ep2 (II)

Y∗
3 < Y∗

2 < Yc < Y∗
1 g4 < g5 < Ic , Ic < I∗1 EV1 , E

V
2 , E

V
3 , Ep2 (II)

Y∗
3 < Y∗

2 < Yc < Y∗
1 g4 < g5 < Ic , Ic > I∗1 ER1 , E

V
2 , E

V
3 (III)

Y∗
3 < Y∗

2 < Y∗
1 < Yc Ic < g4 < g5, Ic < I∗2 EV1 , E

R
2 , E

V
3 (I)

Y∗
3 < Y∗

2 < Y∗
1 < Yc Ic < g4 < g5, I∗2 < Ic <min{I∗1 ,g4} EV1 , E

V
2 , E

V
3 , Ep1 (II)

Y∗
3 < Y∗

2 < Y∗
1 < Yc Ic < g4 < g5, I∗1 < Ic < g4 ER1 , E

V
2 , E

V
3 (III)

Y∗
3 < Y∗

2 < Y∗
1 < Yc g4 < Ic < g5, g4 < Ic <min{I∗1 ,g5} EV1 , E

V
2 , E

V
3 , Ep1 (II)

Y∗
3 < Y∗

2 < Y∗
1 < Yc g4 < Ic < g5, max{I∗1 ,g4} < Ic < g5 ER1 , E

V
2 , E

V
3 (III)

Y∗
3 < Y∗

2 < Y∗
1 < Yc g4 < g5 < Ic ER1 , E

V
2 , E

V
3 (III)



Yang and Zhang Advances in Difference Equations        (2020) 2020:465 Page 29 of 30

(I) For these cases, all trajectories of system (1) with (2) will stabilize at a globally
asymptotically stable equilibrium (ER

3 , ER
2 or Ep3) that lies above the infected

threshold value Ic (see Figs. 4, 5(A), 6(A), 7, 10(A), 13(A)). Hence, it is impossible
to avoid an epidemic for this situation. Note that, provided that the infected plant
threshold value Ic < I∗

2 , then regardless of the infected vector threshold value Yc,
this situation will meet.

(II) For these choices of Yc and Ic, all orbits of system (1) with (2) will stabilize at either
the pseudoequilibrium on I = Ic (Ep1 or Ep2) or the pseudoattractor Ec = (Yc, Ic) as
displayed in Figs. 5(B), 6(B), 8, 9(A1) and (A2), 10(B), 11, 12(A1) and (A2),
13(B), 14(A). Hence the number of infected plants will eventually converge to a
level equal to Ic. Thus there is no risk of an epidemic. Note that in these situations,
the infected plant threshold value Ic mainly lies between I∗

2 and I∗
1 .

(III) If the infected plant threshold value Ic is sufficiently high, that is, Ic > I∗
1 , then

system (1) with (2) will converge to the unique globally asymptotically stable
equilibrium ER

1 that lies below Ic, regardless of the infected threshold value Yc, as
shown in Figs. 5(C), 9(B1) and (B2), 12(B1) and (B2), 14(B), 15, 16. So the number
of infected plants will eventually stabilize at a level below Ic. Therefore, our control
objective to reduce the number of infected plants below the infected threshold
value Ic can be achieved eventually.

From Table 1 and the above three cases, we can see that the phrase portraits of system
(1) with (2) has three destinations, the first one is the unique endemic equilibrium Ei of the
subsystem in Gi; the second one is the pseudoequilibrium Epi on the three sliding modes
Σi, i = 1, 2, 3; and the third one is the pseudoattractor Ec = (Yc, Ic). The different results
depend on different choices of the infected plant and vector threshold levels Ic and Yc,
which shows the importance of the choices of the threshold values. The result in Case (I)
indicates that, for these choices of the threshold values Ic and Yc, it is a waste of resources
to take control strategy. The results in Cases (II) and (III) indicate that these choices of the
threshold values Ic and Yc can finally achieve our objective to drive the infected plants to a
level below or equal to a desired level Ic. Hence our findings can provide some theoretical
suggestions on when and whether to take control strategies according to the threshold
policy.

Note that in this work we assumed the roguing rate of the infected plants is the same
once the number of infected plants exceeds the infected plant threshold value Ic. However,
the roguing rate when Y > Yc may be larger than the case when Y < Yc, for more infected
vectors will infect more plants which results in a more severe transmission. We also as-
sumed bilinear incidence rate with the assumption of homogeneous contact, but other
possibilities should be modeled. All of these will be our future work.
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