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Abstract
In this manuscript, we obtain sufficient conditions required for the existence of
solution to the following coupled system of nonlinear fractional order differential
equations:

Dγ ω(�) =F(�,ω(λ�),υ(λ�)),

Dδυ(�) =F(�,ω(λ�),υ(λ�)),

with fractional integral boundary conditions

a1ω(0) – b1ω(η) – c1ω(1) =
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1φ(ρ ,ω(ρ))dρ and

a2υ(0) – b2υ(ξ ) – c2υ(1) =
1

Γ (δ)

∫ 1

0
(1 – ρ)δ–1ψ(ρ ,υ(ρ))dρ ,

where � ∈ Z = [0, 1], γ ,δ ∈ (0, 1], 0 < λ < 1, D denotes the Caputo fractional derivative
(in short CFD), F ,F : Z×R×R →R and φ ,ψ : Z×R→ R are continuous
functions. The parameters η, ξ are such that 0 < η,ξ < 1, and ai ,bi , ci (i = 1, 2) are real
numbers with ai �= bi + ci (i = 1, 2). Using topological degree theory, sufficient results
are constructed for the existence of at least one and unique solution to the concerned
problem. For the validity of our result, an appropriate example is presented in the end.

MSC: 34A08; 35R11
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1 Introduction
It has been proved that fractional differential equations (in short FDEs) are a powerful tool
for modeling various phenomena of physical and chemical as well as biological sciences.
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Besides, it has also been proved that FDEs have numerous applications in various scientific
and engineering disciplines such as chemistry, physics, biology, and optimization theory
[1–5].

Many mathematicians give much attention to the existence theory of FDEs with multi-
point boundary conditions, and there is rapidly growing area of research due to its wide
range of applications in real world problems [6–10]. For the existence and uniqueness of
solutions of FDEs, different methods are used like topological degree theory and fixed
point theory. Here we use topological degree theory. After studying the present litera-
ture, we noticed that FDEs having fractional integral type boundary conditions are not
well examined through topological degree theory. Very few articles used topological de-
gree theory for simple initial and boundary value problems (BVPs) having CFD [11–15]. If
viewed carefully, the existence of solutions to FDEs having integral boundary conditions
has a wide range of applications in optimization theory, viscoelasticity, fluid mechanics,
and quantitative theory which have been studied by many researchers [16–21]. Keeping
in mind the applications of topological degree theory, Ali et al. [22] studied the existence
of solutions to the following FDE:

cDγ ω(�) = F
(
�,ω(�)

)
, 1 < γ ≤ 2,� ∈ Z,

a1ω(0) + b1ω(1) = F1(ω),

a2ω
′(0) + b2ω

′(1) = F2(ω),

where F1,F2 : C(Z,R) → R and F : Z × R → R are continuous functions and ai, bi are
real numbers with ai +bi �= 0, i = 1, 2. Using fixed point theory, Cabada et al. [23] discussed
the following problem:

cDγ ω(�) + F
(
�,ω(�)

)
= 0, � ∈ (0, 1),

ω(0) + ω′′(0) = 0, ω(1) = a

∫ 1

0
ω(ρ) dρ,

where 2 < γ < 3, 0 < a < 2, D is the CFD and F : Z× [0,∞) → [0,∞).
Motivated by [22] and [23], we examine the results for the existence of solution to the

following nonlinear coupled system of FDEs through topological degree theory:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dγ ω(�) = F (�,ω(λ�),υ(λ�)),

Dδυ(�) = F (�,ω(λ�),υ(λ�)),

a1ω(0) – b1ω(η) – c1ω(1) = 1
Γ (γ )

∫ 1
0 (1 – ρ)γ –1φ(ρ,ω(ρ)) dρ,

a2υ(0) – b2υ(ξ ) – c2υ(1) = 1
Γ (δ)

∫ 1
0 (1 – ρ)δ–1ψ(ρ,υ(ρ)) dρ,

(1.1)

where � ∈ Z, γ , δ ∈ (0, 1], 0 < λ < 1, D denotes the CFD. Further F ,F : Z×R×R→R and
φ,ψ : Z×R →R are continuous functions. The parameters η, ξ are such that 0 < η, ξ < 1
and ai,bi, ci (i = 1, 2) are real numbers with ai �= bi + ci.

2 Preliminaries
In this section we recollect some facts, definitions, and results. Throughout this work
U = C(Z,R), V = C(Z,R) represent the Banach spaces for all continuous function defined
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on Z into R with norm ‖ω‖ = sup{|ω(�)| : 0 ≤ � ≤ 1}. The product space U ×V is a Banach
space with norm ‖(ω,υ)‖ = ‖ω‖ + ‖υ‖.

Definition 2.1 ([24]) Let H : V → U be a continuous bounded map, where V ⊆ U . Then
H is

(1) σ -Lipschitz if there exists � ≥ 0 such that σ (H(S)) ≤ �σ (S) for all bounded subsets
S ⊆ V ;

(2) strict σ -contraction if there exists 0 ≤ � < 1 with σ (H(S)) ≤ �σ (S) for all bounded
subsets S ⊆ V ;

(3) σ -condensing if σ (H(S)) < σ (S) for all bounded subsets S ⊆ V having σ (S) > 0. In
other words, σ (H(S)) ≥ σ (S) implies σ (S) = 0.

Moreover, H : V → U is Lipschitz whenever there is � > 0 such that

∥∥H(ω) – H(υ)
∥∥ ≤ �|ω – υ| for all ω,υ ∈ V .

Further H will be a strict contraction if � < 1.

Proposition 2.1 ([25]) If H, G : V → U are σ -Lipschitz with constants �1 and �2 respec-
tively, then H + G is σ -Lipschitz with constant �1 + �2.

Proposition 2.2 ([25]) If H : V → U is Lipschitz with constant �, then H is σ -Lipschitz
with the same constant �.

Proposition 2.3 ([25]) IfH : V → U is compact, thenH is σ -Lipschitz with constant � = 0.

Theorem 2.1 ([25]) Let H : U → U be σ -condensing such that

Λ = {ω ∈ U : there exists 0 ≤ ϑ ≤ 1 such that ω = ϑHω}.

If Λ is bounded in U , so there exists r > 0 such that Λ ⊂ Sr(0), then the degree

D
(
I – ϑH, Sr(0), 0

)
= 1 for all ϑ ∈ [0, 1].

Consequently, H has at least one fixed point which lies in Sr(0).

Definition 2.2 ([26]) The fractional order integral of a function F : R+ → R is defined
by

IγF (�) =
1

Γ (γ )

∫ �

0
(� – ρ)γ –1F (ρ) dρ. (2.1)

Definition 2.3 ([26]) The CFD of order γ > 0 of a function F : R+ →R is defined by

DγF (�) =
1

Γ (n – γ )

∫ �

0
(� – ρ)n–γ –1F (n)(ρ) dρ. (2.2)
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Lemma 2.1 ([26]) Let γ > 0, then

Iγ
[cDγ h(�)

]
= h(�) + c0 + c1� + c2�

2 + · · · + cn–1�
n–1

for arbitrary ci ∈R, i = 0, 1, 2, . . . , n – 1.

3 Main results
In this section, we discuss the existence and uniqueness criteria for BVP (1.1). Before we
start our main work, we need the following hypotheses.

(C1) For arbitrary ω,υ,ω,υ ∈R, there exist constants kφ , kψ ∈ [0, 1) such that

∣∣φ(ρ,ω) – φ(ρ,ω)
∣∣ ≤ kφ‖ω – ω‖,

∣∣ψ(ρ,υ) – ψ(ρ,υ)
∣∣ ≤ kψ‖υ – υ‖.

(C2) For arbitrary ω,υ ∈R, there exist constants cφ , cψ , Mφ , Mψ ≥ 0 and q1 ∈ [0, 1) such
that

∣∣φ(ρ,ω)
∣∣ ≤ cφ‖ω‖q1 + Mφ ,

∣∣ψ(ρ,υ)
∣∣ ≤ cψ‖υ‖q1 + Mψ .

(C3) For arbitrary ω,υ ∈ R, there exist constants ci, di (i = 1, 2), MF , MF and q2 ∈ [0, 1)
such that

∣∣F(
ρ,ω(λρ),υ(λρ)

)∣∣ ≤ c1‖ω‖q2 + c2‖υ‖q2 + MF ,
∣∣F(

ρ,ω(λρ),υ(λρ)
)∣∣ ≤ d1‖ω‖q2 + d2‖υ‖q2 + MF .

(C4) For arbitrary ω,υ,ω,υ ∈R, there exist constants LF , LF > 0 such that

∣∣F(
ρ,ω(λρ),υ(λρ)

)
– F

(
ρ,ω(λρ),υ(λρ)

)∣∣ ≤ LF
(‖ω – ω‖ + ‖υ – υ‖),

∣∣F(
ρ,ω(λρ),υ(λρ)

)
– F

(
ρ,ω(λρ),υ(λρ)

)∣∣ ≤ LF
(‖ω – ω‖ + ‖υ – υ‖).

Lemma 3.1 If h : Z →R is a γ times integrable function, then the FDE

Dγ ω(�) = h(�), 0 < γ ≤ 1,� ∈ Z,

with integral type boundary conditions

a1ω(0) – b1ω(η) – c1ω(1) =
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1φ

(
ρ,ω(ρ)

)
dρ,

has a solution

ω(�) =
1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1φ

(
ρ,ω(ρ)

)
dρ

+
1

Γ (γ )

∫ �

0
(� – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ



Ali et al. Advances in Difference Equations        (2020) 2020:470 Page 5 of 14

+
c1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
b1

a1 – (c1 + b1)
1

Γ (γ )

∫ η

0
(η – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ.

Proof Applying fractional integrable operator Iγ to Dγ ω(�) = h(�) and using Lemma 2.1,
we get

ω(�) = c0 + Iγ h(�). (3.1)

On applying boundary conditions to (3.1), we have

c0(a1 – b1 – c1) – b1Iγ h(η) – c1Iγ h(1) =
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1φ

(
ρ,ω(ρ)

)
dρ.

By rearranging, we get

c0 =
1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1φ

(
ρ,ω(ρ)

)
dρ

+
c1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
b1

a1 – (c1 + b1)
1

Γ (γ )

∫ η

0
(η – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ. �

By Lemma 3.1, the solution of system (1.1) is a solution of the following system of integral
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(�) = 1
a1–(c1+b1)

1
Γ (γ )

∫ 1
0 (1 – ρ)γ –1φ(ρ,ω(ρ)) dρ

+ 1
Γ (γ )

∫ �

0 (� – ρ)γ –1F (ρ,ω(λρ),υ(λρ)) dρ

+ c1
a1–(c1+b1)

1
Γ (γ )

∫ 1
0 (1 – ρ)γ –1F (ρ,ω(λρ),υ(λρ)) dρ

+ b1
a1–(c1+b1)

1
Γ (γ )

∫ η

0 (η – ρ)γ –1F (ρ,ω(λρ),υ(λρ)) dρ,

υ(�) = 1
a2–(c2+b2)

1
Γ (δ)

∫ 1
0 (1 – ρ)δ–1ψ(ρ,υ(ρ)) dρ

+ 1
Γ (δ)

∫ �

0 (� – ρ)δ–1F (ρ,ω(λρ),υ(λρ)) dρ

+ c2
a2–(c2+b2)

1
Γ (δ)

∫ 1
0 (1 – ρ)δ–1F (ρ,ω(λρ),υ(λρ)) dρ

+ b2
a2–(c2+b2)

1
Γ (δ)

∫ ξ

0 (ξ – ρ)δ–1F (ρ,ω(λρ),υ(λρ)) dρ.

(3.2)

Define the operator J : U × V → U × V by

J (ω,υ)(�) =
(
J1ω(�),J2υ(�)

)
,

where

J1ω(�) =
1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1φ

(
ρ,ω(ρ)

)
dρ

and

J2υ(�) =
1

a2 – (c2 + b2)
1

Γ (δ)

∫ 1

0
(1 – ρ)δ–1ψ

(
ρ,υ(ρ)

)
dρ.
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Also define the operator G : U × V → U × V by

G(ω,υ)(�) =
(
G1(ω,υ)(�),G2(ω,υ)(�)

)
,

where

G1(ω,υ)(�) =
c1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
b1

a1 – (c1 + b1)
1

Γ (γ )

∫ η

0
(η – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
1

Γ (γ )

∫ �

0
(� – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

and

G2(ω,υ)(�) =
c2

a2 – (c2 + b2)
1

Γ (δ)

∫ 1

0
(1 – ρ)δ–1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
b2

a2 – (c2 + b2)
1

Γ (δ)

∫ ξ

0
(ξ – ρ)δ–1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
1

Γ (δ)

∫ �

0
(� – ρ)δ–1F

(
ρ,ω(λρ),υ(λρ)

)
dρ.

Further, we define T = J + G . Then the system of integral equations (3.2) can be written
as an operator form

(ω,υ) = T (ω,υ) = J (ω,υ) + G(ω,υ),

which is the solution of system (1.1) in the operator form.

Lemma 3.2 The operator J satisfies the Lipschitz condition

∥∥J (ω,υ) – J (ω,υ)
∥∥ ≤ k

∥∥(ω,υ) – (ω,υ)
∥∥. (3.3)

Proof For arbitrary (ω,υ), (ω,υ) ∈ U × V , we have

|J1ω – J1ω| =
∣∣∣∣ 1
a1 – (c1 + b1)

1
Γ (γ )

∫ 1

0
(1 – ρ)γ –1φ

(
ρ,ω(ρ)

)
dρ

–
1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1φ

(
ρ,ω(ρ)

)
dρ

∣∣∣∣

=
∣∣∣∣ 1
a1 – (c1 + b1)

1
Γ (γ )

∫ 1

0
(1 – ρ)γ –1[φ(

ρ,ω(ρ)
)

– φ
(
ρ,ω(ρ)

)]
dρ

∣∣∣∣,

which implies that

‖J1ω – J1ω‖ ≤ kφ

|a1 – (c1 + b1)| ‖ω – ω‖. (3.4)
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Similarly,

‖J2υ – J2υ‖ ≤ kψ

|a2 – (c2 + b2)| ‖υ – υ‖. (3.5)

From (3.4) and (3.5), we have

∥∥J (ω,υ) – J (ω,υ)
∥∥ =

∥∥J1ω(�) – J1ω(�) + J2υ(�) – J2υ(�)
∥∥

≤ kφ

|a1 – (c1 + b1)| ‖ω – ω‖ +
kψ

|a2 – (c2 + b2)| ‖υ – υ‖

≤ k
∥∥(ω,υ) – (ω,υ)

∥∥,

where k = max( kφ

|a1–(c1+b1)| ,
kψ

|a2–(c2+b2)| ). Thus J is Lipschitz with constant k, and therefore
by Proposition 2.2, J is σ -Lipschitz with constant k. �

Lemma 3.3 The operator G : U × V → U × V is continuous.

Proof Consider a sequence {(ωn,υn)}n∈N in a bounded set

Br =
{∥∥(ω,υ)

∥∥ ≤ r : (ω,υ) ∈ U × V
}

such that (ωn,υn)n∈N → (ω,υ) as n → +∞ in Br . To check that G is continuous, we have
to prove that

∥∥G(ωn,υn)(�) – G(ω,υ)(�)
∥∥ → 0 as n → +∞.

For this, we have

∣∣G1(ωn,υn)(�) – G1(ω,υ)(�)
∣∣

=
∣∣∣∣ c1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1F

(
ρ,ωn(λρ),υn(λρ)

)
dρ

+
1

Γ (γ )

∫ �

0
(� – ρ)γ –1F

(
ρ,ωn(λρ),υn(λρ)

)
dρ

+
b1

a1 – (c1 + b1)
1

Γ (γ )

∫ η

0
(η – ρ)γ –1F

(
ρ,ωn(λρ),υn(λρ)

)
dρ

–
1

Γ (γ )

∫ �

0
(� – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

–
c1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

–
b1

a1 – (c1 + b1)
1

Γ (γ )

∫ η

0
(η – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

∣∣∣∣
≤ |c1|

|a1 – (c1 + b1)|
1

Γ (γ )

×
∫ 1

0
(1 – ρ)γ –1∣∣F(

ρ,ωn(λρ),υn(λρ)
)

– F
(
ρ,ω(λρ),υ(λρ)

)∣∣dρ
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+
|b1|

|a1 – (c1 + b1)|
1

Γ (γ )

×
∫ η

0
(η – ρ)γ –1∣∣F(

ρ,ωn(λρ),υn(λρ)
)

– F
(
ρ,ω(λρ),υ(λρ)

)∣∣dρ

+
1

Γ (γ )

∫ �

0
(� – ρ)γ –1∣∣F(

ρ,ωn(λρ),υn(λρ)
)

– F
(
ρ,ω(λρ),υ(λρ)

)∣∣dρ.

From the continuity of F , it follows that

F
(
ρ,ωn(λρ),υn(λρ)

) →F
(
ρ,ω(λρ),υ(λρ)

)
as n → +∞.

For every � ∈ Z and by using (C3), we get

∫ �

0

(� – ρ)γ –1

Γ (γ )
∣∣F(

ρ,ωn(λρ),υn(λρ)
)

– F
(
ρ,ω(λρ),υ(λρ)

)∣∣dρ → 0 as n → +∞.

Similarly other terms approach 0 as n → +∞. It follows that

∥∥G1(ωn,υn)(�) – G1(ω,υ)(�)
∥∥ → 0 as n → +∞.

That is, G1 is continuous. Proceeding the same way as above, we can show that

∥∥G2(ωn,υn)(�) – G2(ω,υ)(�)
∥∥ → 0 as n → +∞.

That is, G2 is continuous and hence G is continuous. �

Lemma 3.4 The operators J and G satisfy the following growth conditions:

∥∥J (ω,υ)
∥∥ ≤ C

∥∥(ω,υ)
∥∥q1 + M for each (ω,υ) ∈ U × V (3.6)

and

∥∥G(ω,υ)
∥∥ ≤ �

(∥∥(ω,υ)
∥∥q2 + M∗) for each (ω,υ) ∈ U × V , (3.7)

respectively, where c = max(c1, c2), d = max(d1, d2), C = max( cφ
|a1–(c1+b1)| ,

cψ
|a2–(c2+b2)| ), � =

max( c[2|c1|+2|b1|+|a1|]
|a1–(c1+b1)| , d[2|c2|+2|b2|+|a2|]

|a2–(c2+b2)| ).

Proof For the growth condition on J , consider

∥∥J (ω,υ)
∥∥ =

∥∥(
J1ω(�),J2υ(�)

)∥∥
=

∥∥J1ω(�)
∥∥ +

∥∥J2υ(�)
∥∥

=
∥∥∥∥ 1
a1 – (c1 + b1)

1
Γ (γ )

∫ 1

0
(1 – ρ)γ –1φ

(
ρ,ω(ρ)

)
dρ

+
1

a2 – (c2 + b2)
1

Γ (δ)

∫ 1

0
(1 – ρ)δ–1ψ

(
ρ,υ(ρ)

)
dρ

∥∥∥∥
≤ cφ‖ω‖q1

|a1 – (c1 + b1)| + Mφ +
cψ‖υ‖q1

|a2 – (c2 + b2)| + Mψ

≤ C
∥∥(ω,υ)

∥∥q1 + M,
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where M = max(Mφ , Mψ ), which is the growth condition for J . Now, for the growth con-
dition on G , we have

∣∣G1(ω,υ)(�)
∣∣ =

∣∣∣∣ c1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
1

Γ (γ )

∫ �

0
(� – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
b1

a1 – (c1 + b1)
1

Γ (γ )

∫ η

0
(η – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

∣∣∣∣
≤ |c1|

|a1 – (c1 + b1)|
(
c1‖ω‖q2 + c2‖υ‖q2 + MF

)

+
|b1|ηγ

|a1 – (c1 + b1)|
(
c1‖ω‖q2 + c2‖υ‖q2 + MF

)

+ �γ
(
c1‖ω‖q2 + c2‖υ‖q2 + MF

)
,

which implies that

∥∥G1(ω,υ)(�)
∥∥ ≤

(
2|c1| + 2|b1| + |a1|

|a1 – (c1 + b1)|
)

c1‖ω‖q2 + c2‖υ‖q2 + MF . (3.8)

Similarly,

∥∥G2(ω,υ)(�)
∥∥ ≤

(
2|c2| + 2|b2| + |a2|

|a2 – (c2 + b2)|
)

d1‖ω‖q2 + d2‖υ‖q2 + MF . (3.9)

Now, from (3.8) and (3.9), we have

∥∥G(ω,υ)(�)
∥∥ =

∥∥G1(ω,υ)(�)
∥∥ +

∥∥G2(ω,υ)(�)
∥∥

≤
(

2|c1| + 2|b1| + |a1|
|a1 – (c1 + b1)|

)
c1‖ω‖q2 + c2‖υ‖q2 + MF

+
(

2|c2| + 2|b2| + |a2|
|a2 – (c2 + b2)|

)
d1‖ω‖q2 + d2‖υ‖q2 + MF

≤ �
(∥∥(ω,υ)

∥∥q2 + M∗),

where M∗ = max(MF , MF ). Hence G satisfies the growth condition. �

Lemma 3.5 The operator G : U × V → U × V is compact.

Proof Let B be a bounded subset of Br ⊆ U ×V and {(ωn,υn)}n∈N be a sequence in B, then
by using the growth condition of G , it is clear that G(B) is bounded in U × V . Now, we
need to show that G is equicontinuous. Let 0 ≤ � ≤ τ ≤ 1, then we have

∣∣G1(ωn,υn)(�) – G1(ωn,υn)(τ )
∣∣

=
∣∣∣∣ 1
Γ (γ )

∫ �

0
(� – ρ)γ –1F (ρ,ωn(λρ),υn(λρ) dρ

–
1

Γ (γ )

∫ τ

0
(τ – ρ)γ –1F (ρ,ωn(λρ),υn(λρ) dρ

∣∣∣∣
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=
∣∣∣∣ 1
Γ (γ )

∫ �

0

[
(� – ρ)γ –1 – (τ – ρ)γ –1]F (ρ,ωn(λρ),υn(λρ) dρ

–
1

Γ (γ )

∫ τ

�

(τ – ρ)γ –1F (ρ,ωn(λρ),υn(λρ) dρ

∣∣∣∣

≤ 1
Γ (γ )

∫ �

0

[
(� – ρ)γ –1 – (τ – ρ)γ –1]∣∣F (ρ,ωn(λρ),υn(λρ)

∣∣dρ

+
1

Γ (γ )

∫ τ

�

(τ – ρ)γ –1∣∣F (ρ,ωn(λρ),υn(λρ)
∣∣dρ

≤ 1
Γ (γ + 1)

[
�γ – τ γ – 2(� – τ )γ

]
c1‖ω‖q2 + c2‖υ‖q2 + MF .

Taking limit as � → τ , we get

∥∥G1(ωn,υn)(�) – G1(ωn,υn)(τ )
∥∥ → 0.

That is, there exists ε > 0 such that

∣∣G1(ωn,υn)(�) – G1(ωn,υn)(τ )
∣∣ <

ε

2
. (3.10)

Similarly,

∣∣G2(ωn,υn)(�) – G2(ωn,υn)(τ )
∣∣ <

ε

2
. (3.11)

From (3.10) and (3.11), it follows that

∣∣G(ωn,υn)(�) – G(ωn,υn)(τ )
∣∣ < ε. (3.12)

Hence G is equicontinuous. Therefore G(B) is compact in U × V and hence by Proposi-
tion 2.1, G is σ -Lipschitz with constant zero. �

Theorem 3.1 Under assumptions (C1)–(C3), BVP (1.1) has at least one solution (ω,υ) ∈
U × V . Moreover, the solution set of (1.1) is bounded in U × V .

Proof From Lemma 3.2, J is Lipschitz with constant k ∈ [0, 1), and from Lemma 3.5, G
is Lipschitz with constant 0. It follows by Proposition 2.1 that T is a σ -contraction with
constant k. Define

B =
{

(ω,υ) ∈ U × V : there exist � ∈ Z, (ω,υ) = �T (ω,υ)
}

.

We have to show that B is bounded in U × V . Choose (ω,υ) ∈B, then by using (3.6) and
(3.7) we have

∥∥(ω,υ)
∥∥ =

∥∥�T (ω,υ)
∥∥

= �
(∥∥J (ω,υ) + G(ω,υ)

∥∥)

≤ �
(∥∥J (ω,υ)

∥∥ +
∥∥G(ω,υ)

∥∥)

≤ �
(
C

∥∥(ω,υ)
∥∥q1 + M + �

(∥∥(ω,υ)
∥∥q2 + M∗))

= �
(
C

∥∥(ω,υ)
∥∥q1 + �

∥∥(ω,υ)
∥∥q2) + �

(
M + �M∗).
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Thus B is bounded in U × V . Therefore Theorem 2.1 guarantees that T has at least one
fixed point; consequently, BVP (1.1) has at least one solution. �

Theorem 3.2 Under assumptions (C1)–(C4), assume that G∗ < 1, then BVP (1.1) has a
unique solution, where

G∗ = k +
LF [2|c1| + 2|b1| + |a1|]

|a1 – (c1 + b1)| +
LF [2|c2| + 2|b2| + |a2|]

|a2 – (c2 + b2)| .

Proof To find the unique solution of system (1.1), we use the Banach contraction theorem,
that is, we have to show that T is a contraction. For this, let (ω,υ), (ω,υ) ∈ U × V , then
from (3.3) in Lemma 3.2, we showed that

∣∣J (ω,υ) – J (ω,υ)
∣∣ ≤ k

∥∥(ω,υ) – (ω,υ)
∥∥. (3.13)

Next

∣∣G1(ω,υ) – G1(ω,υ)
∣∣

=
∣∣∣∣ c1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
1

Γ (γ )

∫ �

0
(� – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

+
b1

a1 – (c1 + b1)
1

Γ (γ )

∫ η

0
(η – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

–
1

Γ (γ )

∫ �

0
(� – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

–
c1

a1 – (c1 + b1)
1

Γ (γ )

∫ 1

0
(1 – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

–
b1

a1 – (c1 + b1)
1

Γ (γ )

∫ η

0
(η – ρ)γ –1F

(
ρ,ω(λρ),υ(λρ)

)
dρ

∣∣∣∣
≤ |c1|

|a1 – (c1 + b1)|
1

Γ (γ )

×
∫ 1

0
(1 – ρ)γ –1∣∣F(

ρ,ω(λρ),υ(λρ)
)

– F
(
ρ,ω(λρ),υ(λρ)

)∣∣dρ

+
|b1|

|a1 – (c1 + b1)|
1

Γ (γ )

×
∫ η

0
(η – ρ)γ –1∣∣F(

ρ,ω(λρ),υ(λρ)
)

– F
(
ρ,ω(λρ),υ(λρ)

)∣∣dρ

+
1

Γ (γ )

∫ �

0
(� – ρ)γ –1∣∣F(

ρ,ω(λρ),υ(λρ)
)

– F
(
ρ,ω(λρ),υ(λρ)

)∣∣dρ

≤ |c1|
|a1 – (c1 + b1)|LF

(|ω – ω| + |υ – υ|) +
|b1|

|a1 – (c1 + b1)|LF
(|ω – ω| + |υ – υ|)

+ LF
(|ω – ω| + |υ – υ|),
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which implies that

∥∥G1(ω,υ) – G1(ω,υ)
∥∥ ≤ 2|c1| + 2|b1| + |a1|

|a1 – (c1 + b1)| LF
∥∥(ω,υ) + (ω,υ)

∥∥. (3.14)

Similarly,

∥∥G2(ω,υ) – G2(ω,υ)
∥∥ ≤ 2|c2| + 2|b2| + |a2|

|a2 – (c2 + b2)| LF
∥∥(ω,υ) + (ω,υ)

∥∥. (3.15)

From (3.14) and (3.15), it follows that

∥∥G(ω,υ) – G(ω,υ)
∥∥ =

∥∥G1(ω,υ) – G1(ω,υ)
∥∥ +

∥∥G2(ω,υ) – G2(ω,υ)
∥∥

≤ 2|c1| + 2|b1| + |a1|
|a1 – (c1 + b1)| LF

∥∥(ω,υ) + (ω,υ)
∥∥

+
2|c2| + 2|b2| + |a2|

|a2 – (c2 + b2)| LF
∥∥(ω,υ) + (ω,υ)

∥∥,

which implies that

∥∥G(ω,υ) – G(ω,υ)
∥∥

≤
(

LF [2|c1| + 2|b1| + |a1|]
|a1 – (c1 + b1)| +

LF [2|c2| + 2|b2| + |a2|]
|a2 – (c2 + b2)|

)∥∥(ω,υ) + (ω,υ)
∥∥. (3.16)

Now, from (3.13) and (3.16), it follows that

∣∣T (ω,υ) – T (ω,υ)
∣∣ ≤ ∣∣J (ω,υ) – J (ω,υ)

∣∣ +
∣∣G(ω,υ) – G(ω,υ)

∣∣
≤ k

∥∥(ω,υ) + (ω,υ)
∥∥

+
(

LF [2|c1| + 2|b1| + |a1|]
|a1 – (c1 + b1)| +

LF [2|c2| + 2|b2| + |a2|]
|a2 – (c2 + b2)|

)

× ∥∥(ω,υ) + (ω,υ)
∥∥

=
(

k +
LF [2|c1| + 2|b1| + |a1|]

|a1 – (c1 + b1)| +
LF [2|c2| + 2|b2| + |a2|]

|a2 – (c2 + b2)|
)

× ∥∥(ω,υ) + (ω,υ)
∥∥,

which implies that

∥∥T (ω,υ) – T (ω,υ)
∥∥ ≤ G∗∥∥(ω,υ) + (ω,υ)

∥∥. (3.17)

Thus T is a contraction and hence problem (1.1) has a unique solution. �

To illustrate our results, we provide the following example.
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Example 3.1 Consider the following BVP:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D2/3ω(�) = e–π�

10 + sin |ω( �
2 )|+sin |υ( �

2 )|
51+�2 , � ∈ [0, 1],

D3/4υ(�) = e–50�

20 + sin |ω( �
2 )|+υ( �

2 )
60+(�+1)2 , � ∈ [0, 1],

1
5ω(0) – 1

2ω( 1
2 ) – 7ω(1) = 1

Γ ( 2
3 )

∫ 1
0 (1 – ρ) –1

2 cosω(ρ)
2 dρ,

1
6υ(0) – 1

8υ( 1
2 ) – 9υ(1) = 1

Γ ( 3
4 )

∫ 1
0 (1 – ρ) –1

2 e–υ(ρ)

3 dρ.

(3.18)

Here, F = e–π�

10 + sin |ω( �
2 )|+sin |υ( �

2 )|
51+�2 , F = e–50�

20 + sin |ω( �
2 )|+υ( �

2 )
60+(�+1)2 , γ = 2

3 , δ = 3
4 , a1 = 1

5 , b1 = 1
2 , c1 = 7,

a2 = 1
6 , b2 = 1

8 , c2 = 9, η = ξ = 1
2 . Let � = 1

2 , then by routine calculation we can easily find
that kφ = cφ = 1

2 , kψ = cψ = 1
3 , Mφ = Mψ = 0, c1 = c2 = LF = 1

51 , d1 = d2 = LF = 1
61 , MF = 1

10 ,
MF = 1

20 , hence assumptions (C1)–(C4) are satisfied. Further

∣∣J (ω,υ)(�) – J (ω,υ)(�)
∣∣ ≤ 1

17.890

∫ 1

0
(1 – ρ)

–1
2
∣∣cos(ω) – cos(ω)

∣∣dρ

+
1

36.387

∫ 1

0
(1 – ρ)

–1
2
∣∣e–υ(ρ) – e–υ(ρ)∣∣dρ

≤ 2
17.890

‖ω – ω‖ +
2

36.387
‖υ – υ‖

≤ 0.112
∥∥(ω,υ) – (ω,υ)

∥∥,

which means that J is σ -Lipschitz with constant 0.112 and G is σ -Lipschitz with constant
zero, this implies that T is strict σ -Lipschitz with constant 0.112. Since

B =
{

(ω,υ) ∈ U × V : there exists � ∈ Z, (ω,υ) = �T (ω,υ)
}

,

then, by routine calculation, we get

∥∥(ω,υ)
∥∥ ∼= 0.0076 ≤ 1,

which implies that B is bounded, and in the light of Theorem 3.1, BVP (3.18) has at least
one solution. Moreover, G∗ ∼= 0.3348 < 1. Hence the problem has a unique solution.
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4. Todorčević, V.: Subharmonic behavior and quasiconformal mappings. Anal. Math. Phys. 9(3), 1211–1225 (2019)
5. Sher, M., Shah, K., Rassias, J.: On qualitative theory of fractional order delay evolution equation via the prior estimate

method. Math. Methods Appl. Sci. 43, 6464–6475 (2020)
6. Wang, J., Xiang, H., Liu, Z.: Positive solution to nonzero boundary values problem for a coupled system of nonlinear

fractional differential equations. Int. J. Differ. Equ. 2010, Article ID 186928 (2010)
7. Agarwal, R.P., Ahmad, B., Alsaedi, A., Shahzad, N.: Existence and dimension of the set of mild solutions to semilinear

fractional differential inclusions. Adv. Differ. Equ. 2012, Article ID 74 (2012)
8. Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with

three-point boundary conditions. Comput. Math. Appl. 58(9), 1838–1843 (2009)
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