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1 Introduction
In this paper, we consider traveling wave solutions of the following reaction–diffusion
equations with a nonlinear convection term:

ut +
(
g(u)

)
y = �u + f (u), (x, y) ∈R

2, t > 0, (1.1)

where f is the nonlinear reaction term and (g(u))y is the nonlinear convection term. In
general, the term (g(u))y represents a convective or advective phenomenon, with g ′(u)
denoting a nonlinear velocity function. As a matter of fact, reaction–diffusion equations
with convection term are widely used to model some reaction–diffusion processes taking
place in moving media such as fluids, for example, combustion, atmospheric chemistry,
and plankton distributions in the sea, see Berestycki [1], Cencini et al. [6], Gilding and
Kersner [21], Murray [41], and the references therein. Of particular interest is the influence
of advection terms on the propagation of traveling wave fronts, which were studied by
many researchers, see Berestycki [1], Crooks [8–10], Crooks and Mascia [11], Crooks and
Toland [12], Crooks and Tsai [13], Gilding [20], Gilding and Kersner [21], Malaguti and
Marcelli [36, 37], Malaguti et al. [38], Volpert et al. [52].

In this paper we assume that f ∈ C2(R) satisfies the following conditions:
(F) (i) f (0) = f (1) = 0, f ′(0) < 0, f ′(1) < 0;

(ii) {r ∈ [0, 1] : f (r) = 0} = {0,λ, 1} with f ′(λ) > 0;
(iii)

∫ 1
0 f (r) dr > 0;

(iv) f (r) < 0, f ′(r) < 0 for r > 1; f (r) > 0, f ′(r) < 0 for r < 0.
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A typical example of such f is the cubic function, namely

f (u) = u(u – a)(1 – u),

where a ∈ (0, 1
2 ) is a given number. In addition, we assume that the flux g satisfies the

following condition:
(G) g(r) ∈ C2+γ0 (R), γ0 ∈ (0, 1); g ′′(r) ≤ 0 for r ∈ [0, 1].

It is obvious that the functions g(u) = ρu(1 – u) and g(u) = –ρu2 satisfy assumption (G),
where ρ > 0 is a positive constant.

For each θ ∈ [0, 2π ], a planar traveling front of (1.1) with direction θ means a function
u(x, y, t) = Uθ (X), X = x cos θ + y sin θ + cθ t satisfying

⎧
⎨

⎩
–U ′′

θ + (cθ + g ′(Uθ ) sin θ )U ′
θ – f (Uθ ) = 0, X ∈ R,

Uθ (–∞) = 0, Uθ (+∞) = 1,
(1.2)

where cθ ∈ R is called the wave speed. It is obvious that the existence of the solution pair
(Uθ , cθ ) satisfying (1.2) is equivalent to the existence of traveling wave fronts of the follow-
ing equation in a one-dimensional space:

vt + sin θ
(
g(v)

)
x = vxx + f (v), x ∈R, t > 0,

which has been extensively studied. In 1998, Crooks and Toland [12] considered traveling
wave fronts of the more general reaction–diffusion-convection system

ut = Duxx + G(u, ux)ux + F(u), u(x, t) ∈R
N , x ∈R, t ∈ [0,∞), (1.3)

where D is a positive-definite diagonal matrix, F : RN →R
N is continuously differentiable

and is of bistable type, G is a continuously differentiable, diagonal-matrix-valued function
on R

N × R
N , and there exist continuous functions β ,γ : [0,∞) → [0,∞) such that, for

each u, v ∈R
N , G satisfies

∥
∥G(u, v)

∥
∥ ≤ γ

(‖u‖)(1 + β
(‖v‖)),

where β is increasing and β(p)/p → 0 as p → ∞. They showed that there exists a unique
speed c for which (1.3) has an increasing traveling front φ satisfying

Dφ′′ + cφ′ + G
(
φ,φ′)φ′ + F(φ) = 0

and connecting two stable equilibria of (1.3). Furthermore, Crooks [8] showed the global
stability of traveling front φ if the initial-value u0(x) is bounded, uniformly continuously
differentiable and such that ‖φ(x) – u0(x)‖ is small when |x| is large.

Later, Crooks [9] studied the existence and stability of traveling-front solutions for the
following gradient-dependent system:

ut = Duxx + f (u, ux), x ∈R, t > 0, u(x, t) ∈ R
N , (1.4)
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where D is a positive-definite diagonal matrix and f is a “monostable” function. Crooks
[9] showed that if f satisfies some given conditions, then there exists a critical wave speed
c∗ ∈ R such that there exists a monotone traveling front solution if and only if c ≥ c∗.
Furthermore, the stability of traveling front solutions for system (1.4) was proved.

It should be emphasized that a special interest is to consider the case that the diffusion
coefficient D of (1.3) and (1.4) is vanished. In 1997, Mascia [39] established the existence
of entropy traveling fronts for the balance law

ut +
(
g(u)

)
x = f (u), x ∈R, t > 0, u(x, t) ∈ R, (1.5)

where g is a convex function while f is bistable or monostable. In 2000, Mascia [40] proved
the existence of entropy traveling front solutions for (1.5) with nonconvex flux g and
monostable reaction f , that is, the flux g is assumed to be smooth and is allowed to have
finitely many points of inflection.

Thanks to Crooks [9] and Mascia [39, 40], Crooks and Mascia [11] considered the con-
vergence as ε → 0 of traveling front speeds for the parabolic equation

ut +
(
g(u)

)
x = εuxx + f (u), (1.6)

to front speeds for the balance law (1.5). They assumed that the flux g is smooth and may
have points of inflection and the reaction term f is of monostable type, with simple zeroes
at 0 and 1 and negative in between. They proved that the minimal speed c∗ of fronts for
(1.5) defined by using entropy criteria coincides with the vanishing-diffusion limit of the
minimal speeds c∗

ε for (1.6). Afterwards, Crooks [10] established the L1(R)-convergence of
corresponding traveling-front profiles wε with speed cε (minimal or non-minimal speed)
and wε(0) = 1/2 for (1.6) in the limit ε → 0. Namely,

wε → w in L1(R),

as ε → 0, where w is the profile of the unique entropy traveling-front solution of (1.5) with
speed c (minimal or non-minimal speed) and w(0) = 1/2. More recently, Crooks and Tsai
[13] established the existence and uniqueness of entire solutions for both monostable and
bistable nonlinearity. Especially, they also considered the case that ε → 0.

Assume that assumptions (F) and (G) hold. It follows from [12] that, for each fixed di-
rection θ ∈ (0,π/2), there exist a unique wave speed c = cθ and a unique function Uθ (·)
(up to translation) satisfying (1.2). Furthermore, U ′

θ (X) > 0 for X ∈ R. In contrast to that,
for the reaction–diffusion equation without advection, the planar wave speed cθ of (1.1)
depends on the direction θ ∈ (0,π/2). Instead of planar traveling wave fronts, in this paper
we consider non-planar traveling wave fronts of (1.1) in a two-dimensional space. To do
it, in the following we set θ ∈ (0, π

2 ) satisfying the following assumption:
(C) cθ + g ′(r) sin θ > 0 for any r ∈ [0, 1].

Here we would like to point out that assumption (C) is reasonable. We only consider the
function g(u) = ρu(1 – u) with ρ > 0. In fact, it follows from assumption (F) that c0 > 0,
where c0 is independent of the function g(u). Then the function v(x, t) = Uθ (x + (cθ +
ρ sin θ )t) is a supersolution of the following equation:

vt = vxx + f (v), x ∈R, t > 0.
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Since U0(x + c0t – ξ – σδ(1 – e–βt)) – δe–βt with suitable constants σ > 0, δ > 0, and β > 0
is a subsolution of the last equation (see [8, 48, 57]), then for sufficiently large ξ > 0 the
comparison principle yields

Uθ

(
x + (cθ + ρ sin θ )t

) ≥ U0
(
x + c0t + ξ – σδ

(
1 – e–βt)) – δe–βt , ∀x ∈ R, t > 0.

Using this inequality, we can get cθ + ρ sin θ ≥ c0 > 0. It is clear that

cθ + g ′(u) sin θ = cθ + ρ sin θ – 2uρ sin θ ≥ c0 – 2uρ sin θ > 0

for any u ∈ [0, 1] if either ρ > 0 or θ ∈ (0, π
2 ) is small enough. Thus, we have either that

assumption (C) holds for any θ ∈ (0, π
2 ) if ρ > 0 is small enough, or for the fixed ρ > 0,

assumption (C) holds for θ ∈ (0, π
2 ) small enough.

Assume that (F) and (G) hold. Let θ ∈ (0, π
2 ) satisfy (C). Let (Uθ (·), cθ ) be defined by (1.2).

Let sθ = cθ
sin θ

. Then we have

⎧
⎨

⎩
–U ′′

θ + (cθ + cθ
sθ

g ′(Uθ ))U ′
θ – f (Uθ ) = 0, U ′

θ (X) > 0, X ∈R,

Uθ (–∞) = 0, Uθ (+∞) = 1.
(1.7)

From Crooks and Toland [12, Theorem 3.6], we know that there exist positive constants
C1 and β1 such that

∣
∣Uθ (X) – 1

∣
∣ +

∣
∣Uθ (–X)

∣
∣ +

∣
∣U ′

θ (±X)
∣
∣ +

∣
∣U ′′

θ (±X)
∣
∣ ≤ C1e–β1X , ∀X ≥ 0. (1.8)

Set u(x, y, t) = w(x, z, t) with z = y + sθ t, then equation (1.1) reduces to

wt – wxx – wzz +
(
sθ + g ′(w)

)
wz – f (w) = 0, (x, z) ∈ R

2, t > 0. (1.9)

To establish the existence of non-planar traveling wave fronts of (1.1) in a two-dimensional
space, we need to find a function v(x, z) satisfying

L[v] := –vxx – vzz +
(
sθ + g ′(v)

)
vz – f (v) = 0, (x, z) ∈R

2. (1.10)

Moreover, to give the stability of the non-planar traveling wave front v(x, y + sθ t) of (1.1),
we need to consider the initial problem of equation (1.9). As said by Crooks [9, p. 59],
BUC1(R2) is a suitable space for the initial data u0(x, y) due to the nonlinear convection.
Namely, we consider the stability of the non-planar traveling wave front v(x, y+ sθ t) of (1.1)
with initial value u0 ∈ BUC1(R2). Let

m∗ := cot θ .

It is obvious that m∗ =
√

s2
θ – c2

θ /cθ when cθ > 0. Then Uθ ( 1
sin θ

(z + x cot θ )) and Uθ ( 1
sin θ

(z –
x cot θ )) are two planar traveling wave fronts of (1.1). Let

v–(x, z) := max

{
Uθ

(
1

sin θ
(z + x cot θ )

)
, Uθ

(
1

sin θ
(z – x cot θ )

)}

= Uθ

(
1

sin θ

(
z + |x| cot θ

))
, (1.11)



Niu and Liu Advances in Difference Equations        (2020) 2020:484 Page 5 of 27

where (x, z) ∈ R
2. It is clear that v–

z (x, z) > 0 for all (x, z) ∈ R
2. We now describe the main

results of this paper.

Theorem 1.1 Assume that (F) and (G) hold. Let θ ∈ (0, π
2 ) satisfy assumption (C). Let

sθ = cθ
sin θ

. Then there exists a solution u(x, y, t) = v∗(x, y + sθ t) of (1.1) satisfying (1.10) and

lim
R→∞ sup

x2+z2≥R2

∣∣v∗(x, z) – v–(x, z)
∣∣ = 0, (1.12)

0 ≤ v–(x, z) < v∗(x, z) ≤ 1,

where z = y + sθ t, v–(x, z) is defined in (1.11). Furthermore, for any initial value u0 ∈
BUC1(R2) satisfying

u0(x, z) ≥ v–(x, z)

and

lim
R→∞ sup

x2+z2≥R2

∣
∣u0(x, z) – v–(x, z)

∣
∣ = 0, (1.13)

the solution u(x, y, t; u0) of (1.1) with initial value u0 satisfies

lim
t→∞

∥∥u(x, y, t; u0) – v∗(x, y + sθ t)
∥∥

L∞(R2) = 0. (1.14)

In the following, we call v(x, y + sθ t) defined in Theorem 1.1 a traveling curved front of
(1.1). The shapes and the contour lines of the traveling curved front v are similar to Figs. 1
and 2 of Wang [54, p. 2432] (see also Ninomiya and Taniguchi [43]). From Theorem 1.1, we
find that traveling curved front v satisfying (1.10) and (1.12) is unique. In the following,
we only give the proof of Theorem 1.1 for the case cθ > 0. In fact, for the case cθ ≤ 0,
Theorem 1.1 can be proved by that for the case cθ > 0. Now we suppose that Theorem 1.1
has been proved for the case cθ > 0. Fix θ ∈ (0,π/2) satisfying (C). Suppose that cθ ≤ 0.
Denote c̃θ := 1

2 (cθ + minr∈[0,1] g ′(r) sin θ ) > 0. Define g̃(u) = cθ –c̃θ
sin θ

u + g(u). Consider a new
equation:

ũt +
(
g̃(ũ)

)
y = �ũ + f (ũ), (x, y) ∈R

2, t > 0. (1.15)

Clearly, for the solution u(x, y, t) of (1.1), the function ũ(x, y, t) := u(x, y – cθ –c̃θ
sin θ

t, t) is a so-
lution of (1.15). In particular, the function Ũθ (x cos θ + y sin θ + c̃θ t) := Uθ (x cos θ + y sin θ +
c̃θ t) is also a traveling wave front of (1.15) along the direction θ ∈ (0,π/2). Because of
c̃θ + g̃ ′(r) sin θ = cθ + g ′(r) sin θ > 0 for all r ∈ [0, 1], we can get a traveling curved front
ṽ∗(x, y + s̃θ t) for equation (1.15) by Theorem 1.1 for the case cθ > 0. Let v∗(x, y + sθ t) :=
ṽ∗(x, y + sθ t), then v∗ is a traveling curved front of (1.1) with speed sθ which satisfies all
the conditions in Theorem 1.1. Thus we complete the proof of Theorem 1.1 for the case
cθ ≤ 0.

Here we would like to point out that the results of Theorem 1.1 have been obtained by
Ninomiya and Taniguchi [43, 44] when the nonlinear advection is absent. Similar results
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were also established for bistable reaction–diffusion systems and time-periodic reaction–
diffusion equations, see [54, 60]. In fact, recently many researchers have paid attention to
non-planar traveling wave solutions for the following reaction–diffusion equations:

ut(x, t) = �u(x, t) + f
(
u(x, t)

)
, x ∈ R

N , t > 0, (1.16)

with various reaction terms f , where N ≥ 2. We refer to [2, 24, 25] for conical traveling
wave fronts of (1.16) with ignition nonlinearity, [7, 26, 27] for conical traveling wave fronts
of (1.16) with bistable nonlinearity, [33, 47, 49–51] for pyramidal traveling wave fronts
of (1.16) with bistable nonlinearity, and [3, 28, 32] for multi-dimensional traveling wave
fronts of (1.16) with Fisher-KPP nonlinearity. For more results on non-planar traveling
wave solutions of reaction–diffusion equations, we refer to [4, 5, 15–17, 22, 23, 29–31, 42,
53, 56]; for reaction–diffusion systems, we refer to [45, 46, 58, 59].

Here we would like to mention that the main method of this paper comes from Ni-
nomiya and Taniguchi [43] and Wang [54]. Nevertheless, to the best of our knowledge,
this paper is the first to consider traveling curved fronts for a reaction–diffusion equation
with nonlinear convection in R

2. This paper is organized as follows: In Sect. 2, we prove
the existence of the traveling curved front v by constructing an appropriate supersolu-
tion of (1.10). In Sect. 3, we show the asymptotic stability of the traveling curved front v,
namely, we prove (1.14).

In the remainder of this paper we always assume that (F) and (G) hold and θ ∈ (0, π
2 )

satisfies assumption (C). Moreover, we also assume that cθ > 0. Let (Uθ (·), cθ ) be defined
by (1.2), and let sθ := cθ

sin θ
> 0. In this case, we also have

v–(x, z) := Uθ

(
cθ

sθ

(
z + m∗|x|)

)
.

For the sake of convenience, in the sequel we always denote (Uθ (·), cθ ) and sθ by (U(·), c)
and s, respectively.

2 Existence
In this section we show the existence of traveling curved fronts of (1.1).

It follows from Ninomiya and Taniguchi [43] that there exists a unique function ϕ(x)
with asymptotic lines y = m∗|x| satisfying

s =
ϕxx

1 + ϕ2
x

+ c
√

1 + ϕ2
x .

The readers can refer to Fig. 3 in Ninomiya and Taniguchi [43] for the shape of the func-
tion ϕ. It follows from Ninomiya and Taniguchi [43, Lemma 2.1] that there exist positive
constants β2 := sm∗, Cj (j = 2, 3, 4) and ν± such that

max
{∣∣ϕ′′(x)

∣∣,
∣∣ϕ′′′(x)

∣∣} ≤ C2 sech(β2x), (2.1)

C3 sech(β2x) ≤ s
√

1 + ϕ2
x

– c ≤ C4 sech(β2x), (2.2)

m∗|x| ≤ ϕ(x) ≤ m∗|x| + M∗, (2.3)
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ν– ≤ ν(x) ≤ ν+ (2.4)

for all x ∈R, where M∗ is a bounded positive constant and

ν(x) =
s(ϕ(x) – m∗|x|)

s – c
√

1 + ϕ2
x

.

We note that β2 = sm∗ = s
√

s2–c2
c > 0 and that the curvature of ϕ = ϕ(x) is calculated as

ϕ′′(x)
(1 + ϕ′2(x))3/2 =

s
√

1 + ϕ′2(x)
– c.

From (2.1) and (2.2), one observes that

∣∣ϕ′(x)
∣∣ ≤ m∗,

∣∣ϕ′′(x)
∣∣ ≤ C2. (2.5)

Assumption (F) implies that there exists a positive constant δ1 (0 < δ1 < 1
4 ) with

–f ′(r) ≥ ω for r < δ1 or r > 1 – δ1,

where

ω :=
1
2

min
{

–f ′(0), –f ′(1)
}

> 0.

Since U(X) is increasing in X ∈ R, we define that positive constants A and B are large
enough satisfying

U(–A) ≤ δ1

2
, U(B) ≥ 1 –

δ1

2
,

respectively. Then, if

δ1

2
≤ U(X) ≤ 1 –

δ1

2
,

we have that –A ≤ X ≤ B. Furthermore, it follows from assumption (G) that there exist
positive constants l1 and l2 such that

∣
∣g ′(r)

∣
∣ ≤ l1,

∣
∣g ′′(r)

∣
∣ ≤ l2 for all r ∈ [–1, 2]. (2.6)

Now, we give the definitions of supersolution and subsolution of (1.9).

Definition 2.1 A function ū(x, z, t) ∈ C2,1(R2 × (0,∞)) is called a supersolution of (1.9) if

ūt – ūxx – ūzz +
(
s + g ′(ū)

)
ūz – f (ū) ≥ 0, (x, z) ∈R

2, t > 0. (2.7)

Similarly, we can define a subsolution u(x, z, t) by reversing the inequality in (2.7).

The next lemma gives a supersolution of (1.9).
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Lemma 2.2 There exist a positive constant ε+
0 and a positive function α+

0 (ε) such that, for
0 < ε < ε+

0 ≤ 1 and 0 < α ≤ α+
0 (ε) ≤ 1, the function

v+(x, z; ε,α) := U
(

z + ϕ(αx)/α
√

1 + ϕ′2(αx)

)
+ ε sech(β2αx)

is a supersolution of (1.9) with

lim
R→∞ sup

x2+z2≥R2

∣∣v+(x, z; ε,α) – v–(x, z)
∣∣ ≤ 2ε, (2.8)

v–(x, z) < v+(x, z; ε,α) for (x, z) ∈R
2, (2.9)

v+
z (x, z; ε,α) > 0 for (x, z) ∈R

2. (2.10)

Proof Set ξ := αx, σ (ξ ) := ε sech(β2ξ ) and

ζ :=
z + ϕ(αx)/α
√

1 + ϕ′2(αx)
,

where ε > 0 will be chosen later. A direct calculation yields (see also Ninomiya and
Taniguchi [43])

ζx = –
αϕ′ϕ′′

1 + ϕ′2 ζ +
ϕ′

√
1 + ϕ′2 ,

ζxx = –
α2(ϕ′′2 + ϕ′ϕ′′′)

1 + ϕ′2 ζ +
3α2ϕ′2ϕ′′2

(1 + ϕ′2)2 ζ +
α(1 – ϕ′2)ϕ′′

(1 + ϕ′2)3/2 .

Note that v+(x, z; ε,α) = U(ζ ) + σ (ξ ) and 0 ≤ v+(x, z; ε,α) ≤ 2. Using (1.7), we have

L
[
v+]

= –v+
xx – v+

zz +
(
s + g ′(v+))

v+
z – f

(
v+)

= –
1

1 + ϕ′2(ξ )
U ′′(ζ ) –

(
U ′(ζ )ζx

)
x +

[
s + g ′(U(ζ ) + σ (ξ )

)] 1
√

1 + ϕ′2(ξ )
U ′(ζ )

– f
(
U(ζ ) + σ (ξ )

)
– α2σ ′′(ξ )

=
(

1 –
1

1 + ϕ′2(ξ )
– ζ 2

x

)
U ′′(ζ ) – ζxxU ′(ζ )

+
1
s
(
s + g ′(U(ζ )

))
(

s
√

1 + ϕ′2(ξ )
– c

)
U ′(ζ )

+
1

√
1 + ϕ′2(ξ )

(
g ′(U(ζ ) + σ (ξ )

)
– g ′(U(ζ )

))
U ′(ζ )

+ f
(
U(ζ )

)
– f

(
U(ζ ) + σ (ξ )

)
– α2σ ′′(ξ )

= I1 + I2 + I3 + I4 + I5,

where

I1 :=
(

1 –
1

1 + ϕ′2(ξ )
– ζ 2

x

)
U ′′(ζ ) = –α

((
ϕ′ϕ′′

1 + ϕ′2

)2

αζ 2 –
2ϕ′2ϕ′′

(1 + ϕ′2)3/2 ζ

)
U ′′(ζ ),
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I2 := –ζxxU ′(ζ ) = α

(
ϕ′′2 + ϕ′ϕ′′′

1 + ϕ′2 αζ –
3ϕ′2ϕ′′2

(1 + ϕ′2)2 αζ +
(ϕ′2 – 1)ϕ′′

(1 + ϕ′2)3/2 ζ

)
U ′(ζ ),

I3 :=
1
s
(
s + g ′(U(ζ )

))( s
√

1 + ϕ′2(ξ )
– c

)
U ′(ζ ),

I4 :=
1

√
1 + ϕ′2(ξ )

(
g ′(U(ζ ) + σ (ξ )

)
– g ′(U(ζ )

))
U ′(ζ )

=
1

√
1 + ϕ′2(ξ )

g ′′(U(ζ ) + ϑ0σ (ξ )
)
U ′(ζ )σ (ξ ),

I5 := f
(
U(ζ )

)
– f

(
U(ζ ) + σ (ξ )

)
– α2σ ′′(ξ ),

where 0 < ϑ0 < 1. By (1.8) and (2.1), we can easily show that

|I1| ≤ C5α sech(β2ξ ), |I2| ≤ C6α sech(β2ξ )

for 0 < α ≤ 1. From (2.5), we have

√
1 + ϕ′2 < s/c. (2.11)

By assumption (C), we have

ε := s + min
r∈[0,1]

g ′(r) > 0. (2.12)

Following from (2.2), (2.11), and (2.12), we have

I3 ≥ ε

s

(
s

√
1 + ϕ′2(ξ )

– c
)

U ′(ζ ) ≥ ε

s
C3 sech(β2ξ )U ′(ζ ) = C7 sech(β2ξ )U ′(ζ ) > 0,

where C7 = ε
s C3 > 0. Letting

0 < ε < ε+
0 ≤ δ1

2
, (2.13)

it follows that

0 < σ (ξ ) <
δ1

2
. (2.14)

If U(ζ ) ≤ U(–A) ≤ δ1
2 or U(ζ ) ≥ U(B) ≥ 1 – δ1

2 , then ζ ≤ –A or ζ ≥ B. By (2.14), we have
that U(ζ ) + ϑσ (ξ ) < δ1 or U(ζ ) + ϑσ (ξ ) > 1 – δ1

2 > 1 – δ1, where 0 < ϑ < 1. Then

I5 = –f ′(U(ζ ) + ϑσ (ξ )
)
σ (ξ ) – α2σ ′′(ξ )

≥ ωσ (ξ ) – C8α
2ε sech(β2ξ ) =

(
ω – C8α

2)ε sech(β2ξ ).

From (1.8), we have

|I4| =
1

√
1 + ϕ′2(ξ )

∣
∣g ′′(U(ζ ) + θ0σ (ξ )

)∣∣U ′(ζ )ε sech(β2ξ )

≤ l2C1ε sech(β2ξ )e–β1|ζ |, (2.15)
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where l2 is defined in (2.6). Since ζ ≤ –A or ζ ≥ B, we can take A and B large enough such
that

min{A, B} > max

{
1,

1
β1

ln
2l2C1

ω

}
,

then we have

|I4| ≤ ω

2
ε sech(β2ξ ).

It follows that

L
[
v+] ≥ (

ω – C8α
2)ε sech(β2ξ ) –

ω

2
ε sech(β2ξ ) – (C5 + C6)α sech(β2ξ )

=
(

ω

2
– C8α

2
)

ε sech(β2ξ ) – (C5 + C6)α sech(β2ξ )

≥ ω

4
ε sech(β2ξ ) > 0

provided that

0 < α ≤ min

{
1,

√
ω

8C8
,

ω

8(C5 + C6)
ε

}
. (2.16)

If U(–A) ≤ U(ζ ) ≤ U(B), namely –A ≤ ζ ≤ B, then we have

I3 ≥ C7U ′(ζ ) sech(β2ξ ) ≥ C7q sech(β2ξ ),

|I5| ≤ C9ε sech(β2ξ ) + C8α
2ε sech(β2ξ ) ≤ (C9 + C8α)ε sech(β2ξ ),

where

q := min
–A≤ζ≤B

U ′(ζ ) > 0. (2.17)

Moreover, from (2.15), we have |I4| ≤ l2C1ε sech(β2ξ ). Eventually, we have

L
[
v+] ≥ C7q sech(β2ξ ) – (C5 + C6 + C8ε)α sech(β2ξ ) – (l2C1 + C9)ε sech(β2ξ )

≥ 1
2

C7q sech(β2ξ ) > 0

if

0 < ε ≤ min

{
1,

δ1

2
,

C7q
4(l2C1 + C9)

}
(2.18)

and

0 < α ≤ min

{
1,

C7q
4(C5 + C6 + εC8)

}
. (2.19)



Niu and Liu Advances in Difference Equations        (2020) 2020:484 Page 11 of 27

Take ε and α satisfying (2.13), (2.16), (2.18), and (2.19), then we have

L
[
v+] ≥ 1

4
min{ωε, 2C7q} sech(β2ξ ) > 0 in R

2.

Thus we proved that v+ is a supersolution.
Furthermore, if we take α < εe2c2β2

1 ν–
4C1C4s , where e is the exponential, we can prove (2.9) by

an argument similar to inequality (2.3) of Ninomiya and Taniguchi [43] and (2.7) of Wang
and Wu [60]. The proof of (2.8) is similar to (2.2) of Ninomiya and Taniguchi [43] and (2.6)
of Wang and Wu [60], we omit the details. In addition, (2.10) immediately follows from
the definition of v+.

Take

ε+
0 := min

{
1,

δ1

2
,

C7q
4(l2C1 + C9)

}

and

α+
0 := min

{
1,

√
ω

8C8
,

ω

8(C5 + C6)
ε,

C7q
4(C5 + C6 + εC8)

,
εe2c2β2

1ν–

4C1C4s

}
.

It follows that (2.8)–(2.10) hold for (x, z) ∈R
2 if 0 < ε < ε+

0 and 0 < α < α+
0 (ε). This completes

the proof. �

In the following, we give the existence of traveling curved fronts of (1.1).

Theorem 2.3 There exists a traveling wave solution u(x, y, t) = v∗(x, y + st) of (1.1) satisfy-
ing (1.10) and

lim
R→∞ sup

x2+z2≥R2

∣∣v∗(x, z) – v–(x, z)
∣∣ = 0,

v–(x, z) < v∗(x, z) < min
{

1, v+(x, z; ε,α
}

, ∀(x, z) ∈R
2,

v∗(x, z) = v∗(–x, z), ∀(x, z) ∈R
2,

∂

∂z
v∗(x, z) > 0, ∀(x, z) ∈R

2,

∂

∂x
v∗(x, z) > 0, ∀(x, z) ∈ (0,∞) ×R.

Proof To establish a traveling curved front of (1.1), we first construct a classical solution
v∗ of the stationary equation (1.10).

Let

N := sup
r∈[–1,2]

∣∣f ′(r)
∣∣ + C1l2,

where C1 and l2 are as in (1.8) and (2.6), respectively. Consider the following linear initial
value problem:

⎧
⎨

⎩
ut – uxx – uzz + (s + g ′(v–(x, z)))uz + Nu = Nv–(x, z) + f (v–(x, z)),

u(x, z, 0) = v–(x, z),
(2.20)
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where (x, z) ∈R
2, t ≥ 0. By Lunardi [35, Theorem 5.1.3], there exists a smooth solution

u
(
x, z, t; v–) ∈ C2+α,1+ α

2
(
R

2 × (0, +∞)
) ∩ C

(
R

2 × [0, +∞)
)

of problem (2.20). Furthermore, since g ′(v–(x, z)), f (v–(x, z)) ∈ Cα(R2), by Lunardi [35, The-
orem 5.1.4 (iv)], there exists a constant C > 0 such that

∥
∥u

(·, ·, t; v–)∥∥
C2+α (R2) ≤ C, ∀t > 1. (2.21)

Since v–(x, z) = v–(–x, z), then u(x, z, t; v–) = u(–x, z, t; v–) for (x, z) ∈ R
2 and t ≥ 0. There-

fore, we have ∂
∂x u(x, z, t; v–)|x=0 = 0. In addition, similar to Wang [55, Corollary 2.8] we can

prove that ∂
∂x u(–x, z, t; v–) > 0 for (x, z) ∈ (0,∞) ×R and t > 0.

Let φ+(x, z) = U( c
s (z+m∗x)) and φ–(x, z) = U( c

s (z–m∗x)), ∀(x, z) ∈R
2. Let Ω = (0,∞)×R.

Then we have

– φ+
xx – φ+

zz +
(
s + g ′(v–(x, z)

))
φ+

z + Nφ+ – Nv–(x, z) – f
(
v–(x, z)

)

= –φ+
xx – φ+

zz +
(
s + g ′(φ+(x, z)

))
φ+

z + Nφ+ – Nφ+(x, z) – f
(
φ+(x, z)

)
= 0

for any (x, z) ∈ Ω . Furthermore ∂
∂nφ+(x, z) = – c

s m∗U ′( c
s (z + m∗x)) < 0 on ∂Ω , where ∂

∂n is
the outward normal derivative on ∂Ω .

Let u+ = u – φ+, then u+ satisfies the following inequalities:

⎧
⎪⎪⎨

⎪⎪⎩

u+
t – u+

xx – u+
zz + (s + g ′(v–(x, z)))u+

z + Nu+ ≥ 0, (x, z, t) ∈ Ω × (0,∞),

u+(x, z, 0) = u(x, z, 0) – φ+(x, z) = v–(x, z) – φ+(x, z) ≥ 0, (x, z) ∈ Ω ,
∂
∂n u+(x, z, t) ≥ 0, (x, z, t) ∈ ∂Ω × (0,∞).

Using the comparison principle [14, Theorem 25.6], we have u+(x, z, t) ≥ 0, which implies

u
(
x, z, t; v–) ≥ φ+(x, z), ∀(x, z, t) ∈ Ω × [0,∞).

Similarly, if we let u– = u – φ– and Ω ′ = (–∞, 0] ×R, we can show that

u
(
x, z, t; v–) ≥ φ–(x, z), ∀(x, z, t) ∈ Ω ′ × [0,∞).

It follows that

u
(
x, z, t; v–) ≥ v–(x, z), ∀(x, z, t) ∈R

2 × [0,∞). (2.22)

On the other hand, since v+ = v+(x, z; ε,α) is a supersolution of (1.9), we get that

–v+
xx – v+

zz +
(
s + g ′(v+(x, z; ε,α)

))
v+

z + Nv+ ≥ Nv+(x, z; ε,α) + f
(
v+(x, z; ε,α)

)
.

Let ν = v+ – u, we have

νt – νxx – νzz +
(
s + g ′(v–))

νz + Nν

≥ N
(
v+ – v–)

+ f
(
v+)

– f
(
v–)

–
(
g ′(v+)

– g ′(v–))
v+

z ≥ 0.
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From Lemma 2.2, the function ν satisfies the following:

⎧
⎨

⎩
νt – νxx – νzz + (s + g ′(v–(x, z)))νz + Nν ≥ 0,

ν(x, z, 0) = v+ – v– > 0.

Also, by the comparison principle [14, Theorem 25.6], we get that ν(x, z, t) ≥ 0. Then

v+(x, z; ε,α) ≥ u
(
x, z, t; v–)

, ∀(x, z, t) ∈R
2 × [0,∞). (2.23)

Combining (2.22) and (2.23), we obtain that

v–(x, z) ≤ u
(
x, z, t; v–) ≤ v+(x, z; ε,α), ∀(x, z, t) ∈R

2 × [0,∞).

Next, we will prove that u(x, z, t; v–) is monotone increasing with respect to t ∈ (0,∞).
In fact, from (2.22), we know that, for ∀ε > 0, u(·, ·, ε; v–) > u(·, ·, 0; v–) = v–(·, ·), the com-
parison principle [14, Theorem 25.6] implies that

u
(·, ·, t + ε; v–)

> u
(·, ·, t; v–)

.

Then we have proved that u(·, ·, t; v–) is monotone increasing with respect to t.
Let us show that u(x, z, t; v–) is monotone increasing with respect to z. Taking the deriva-

tive of equation (2.20) with respect to z, we have

⎧
⎪⎪⎨

⎪⎪⎩

(uz)t – (uz)xx – (uz)zz + s(uz)z + Nuz + g ′′(v–(x, z))v–
z (x, z)uz + g ′(v–(x, z))(uz)z

= Nv–
z (x, z) + f ′(v–(x, z))v–

z (x, z),

uz(x, z, 0) = v–
z (x, z) > 0.

Therefore
⎧
⎨

⎩
(uz)t – (uz)xx – (uz)zz + (s + g ′(v–(x, z)))(uz)z + (N + g ′′(v–(x, z))v–

z (x, z))uz ≥ 0,

uz(x, z, 0) = v–
z (x, z) > 0.

Using the comparison principle [14, Theorem 25.6], we have uz(x, z, t; v–) > 0.
As above, we conclude that the limit limt→∞ u(x, z, t; v–) := u1(x, z) exists. It follows from

(2.21) that u1(x, z) ∈ C2+α(R2) and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v–(x, z) ≤ u1(x, z) ≤ v+(x, z; ε,α), ∀(x, z) ∈R
2,

u1(x, z) = u1(–x, z), ∀(x, z) ∈R
2,

u1
z (x, z) ≥ 0, ∀(x, z) ∈R

2,

u1
x(x, z) ≥ 0, ∀(x, z) ∈ (0,∞) ×R.

Now we show that u1 further satisfies

–u1
xx – u1

zz +
(
s + g ′(v–(x, z)

))
u1

z + Nu1 = Nv–(x, z) + f
(
v–(x, z)

)
, ∀(x, z) ∈R

2. (2.24)
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Let φ ∈ C∞
0 (R2). Since g ′(v–(x, z)) is differentiable on z ∈R, we have

∫

R2

∂

∂t
uφ dz dx –

∫

R2
u�φ dz dx –

∫

R2
u

∂

∂z
((

s + g ′(v–))
φ
)

dz dx + N
∫

R2
uφ dz dx

=
∫

R2

(
Nv–(x, z) + f

(
v–(x, z)

))
φ(x, z) dz dx.

For T > 0, multiplying both sides of the aforementioned equality by 1
T and integrating over

(T , 2T), we obtain

∫

R2

u(x, z, 2T) – u(x, z, T)
T

φ dz dx –
∫

R2

1
T

∫ 2T

T
u dt�φ dz dx

–
∫

R2

1
T

∫ 2T

T
u dt

∂

∂z
((

s + g ′(v–))
φ
)

dz dx + N
∫

R2

1
T

∫ 2T

T
u dtφ dz dx

=
∫

R2

(
Nv–(x, z) + f

(
v–(x, z)

))
φ(x, z) dz dx.

Letting T → +∞ yields

–
∫

R2
u1�φ dz dx –

∫

R2
u1 ∂

∂z
((

s + g ′(v–))
φ
)

dz dx + N
∫

R2
u1φ dz dx

=
∫

R2

(
Nv–(x, z) + f

(
v–(x, z)

))
φ(x, z) dz dx,

which implies that

∫

R2
(–�u1 +

(
s + g ′(v–)

u1
z + Nu1 – Nv1 – f

(
v–))

φ dz dx = 0.

Due to the arbitrariness of φ ∈ C∞
0 (R2), we conclude that equality (2.24) holds.

By virtue of assumption (G) and the definition of N , we have

–u1
xx – u1

zz +
(
s + g ′(u1))u1

z + Nu1

=
(
g ′(u1) – g ′(v–))

u1
z + Nv– + f

(
v–) ≤ Nu1 + f

(
u1), (x, z) ∈R

2. (2.25)

By (2.24) and (2.25), we know that u1(x, z) is a subsolution of the following problem:

⎧
⎨

⎩
wt – wxx – wzz + (s + g ′(w))wz – f (w) = 0, (x, z) ∈R

2, t > 0,

w(x, z, 0) = u1(x, z), (x, z) ∈R
2.

The local existence of a unique solution w(x, z, t; u1) of the last equation follows from [35,
Theorem 7.1.2, Propositions 7.1.9 and 7.1.10, and Remark 7.1.12], see also [8, Proposi-
tion A.3]. Since u1(x, z) and v+(x, z; ε,α) are sub- and supersolutions of the last equation
respectively, we have that the unique solution w(x, z, t; u1) exists globally. It follows from
[34, Chapter V, Theorem 3.1; Chapter VII, Theorem 5.1] that there exists K > 0 such that

∥∥w
(·, t; u1)∥∥

C2(R2) ≤ K , ∀t ≥ 1.
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Consequently, there exists K ′ > 0 such that

∥
∥w

(
x, z, ·; u1)∥∥

C1([1,∞)) ≤ K ′, ∀(x, z) ∈R
2.

Now by [35, Theorem 5.1.4] there exists a constant C > 0 such that

∥
∥w

(·, t; u1)∥∥
C2+α (R2) ≤ C, ∀t > 2.

By the arguments similar to those for u(x, z, t; v–) and u1(x, z), we have that w(x, z, t; u1)
is monotone increasing in t > 0 and the limit function

v∗(x, z) := lim
t→∞ w

(
x, z, t; u1) (2.26)

exists. In particular, v∗(x, z) satisfies ‖v∗(·)‖C2+α (R2) ≤ C with some constant C > 0 and

L[v∗] = 0, v∗(–x, z) = v∗(x, z), and
∂

∂z
v∗(x, z) > 0, ∀(x, z) ∈ R

2,

∂

∂x
v∗(x, z) > 0, ∀(x, z) ∈ (0,∞) ×R,

v–(x, z) ≤ v∗(x, z) ≤ v+(x, z; ε,α), ∀(x, z) ∈R
2. (2.27)

Since ε ∈ (0, ε+
0 ) and α ∈ (0,α+

0 ) are arbitrary, it follows from (2.8) that

lim
R→∞ sup

x2+z2≥R2

∣∣v∗(x, z) – v–(x, z)
∣∣ = 0.

In addition, it is clear that v∗(x, z) < 1 for any (x, z) ∈R
2. This completes the proof. �

3 Global asymptotic stability
In this section we develop the arguments of Ninomiya and Taniguchi [43] to establish the
stability of traveling curved front v∗ obtained in Sect. 2. We prove that (1.14) holds true
for u0(x, z) ≥ v–(x, z). See Theorem 3.6. Consider the following initial value problem:

⎧
⎨

⎩
wt – wxx – wzz + (s + g ′(w))wz – f (w) = 0, (x, z) ∈R

2, t > 0,

w(x, z, 0) = u0(x, z), (x, z) ∈R
2,

(3.1)

where u0 ∈ BUC1(R2) is a given initial function. The global existence of a unique solu-
tion w(x, z, t; u0) of equation (3.1) follows from [35, Theorem 7.1.2, Propositions 7.1.9 and
7.1.10, and Remark 7.1.12] and assumptions (F) and (G), see also [8, Proposition A.3 and
Theorem A.7]. In particular, w(t; u0)(·) ∈ C1((0,∞), BUC(R2)) ∩ C((0,∞), BUC2(R2)) ∩
C([0,∞), BUC1(R2)), where w(t; u0)(x, z) := w(x, z, t; u0). It follows from [34, Chapter V,
Theorem 3.1] that there exists a constant K(u0) > 0 such that

∥∥w(·, t; u0)
∥∥

C1(R2) < K(u0), t ≥ 0. (3.2)

Using [34, Chapter VII, Theorem 5.1], we further have that there exists K ′(u0) > 0 such
that ‖w(·, t; u0)‖C2(R2) ≤ K ′(u0) for any t ≥ 1 and ‖w(x, z, ·; u0)‖C1([1,∞)) ≤ K ′(u0) for any
(x, z) ∈R

2.
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Let w1(t) be defined by

⎧
⎨

⎩
w′

1(t) = f (w1(t)) for t > 0,

w1(0) = min{0, inf(x,z)∈R2 u0(x, z)} ≤ 0,

and w2(t) be defined by

⎧
⎨

⎩
w′

2(t) = f (w2(t)) for t > 0,

w2(0) = max{1, sup(x,z)∈R2 u0(x, z)} ≥ 1.

Then w1(t) and w2(t) are solutions of (3.1) with w1(0) ≤ u0(x, z) ≤ w2(0). The comparison
principle [14, Theorem 25.6] implies

w1(t) ≤ w(x, z, t; u0) ≤ w2(t) for (x, z) ∈R
2, t > 0.

Since limt→∞ w1(t) = 0 and limt→∞ w2(t) = 1, then we have

0 ≤ lim inf
t→∞ w(x, z, t; u0) ≤ lim sup

t→∞
w(x, z, t; u0) ≤ 1 for (x, z) ∈R

2. (3.3)

The following theorem shows the continuous dependence of solutions of (3.1) on initial
values.

Lemma 3.1 Let w(j)(x, z, t) be the solution of

⎧
⎨

⎩
w(j)

t + L[w(j)] = 0 for (x, z) ∈R
2, t > 0,

w(j)(x, z, 0) = w(j)
0 (x, z) for (x, z) ∈R

2,

where j = 1, 2. Assume that w(j)
0 (x, z) ∈ BUC1(R2) (j = 1, 2) and

–1 ≤ w(j)
0 (x, z) ≤ 2 for (x, z) ∈R

2, j = 1, 2,

then there exists a constant A0 > 1 such that

∥
∥w(2)(·, t) – w(1)(·, t)

∥
∥

C1(R2) ≤ At+1
0

∥
∥w(2)

0 (·) – w(1)
0 (·)∥∥C1(R2), t ∈ [0,∞).

Proof Since –1 ≤ w(j)
0 (x, z) ≤ 2, the comparison principle [14, Theorem 25.6] implies –1 ≤

w(j)(x, z, t) ≤ 2 for any (x, z) ∈ R
2 and t > 0, j = 1, 2. It follows from (3.2) that there exists

K∗ > 0 such that

∣
∣w(j)

z (x, z, t)
∣
∣ ≤ K∗, (x, z) ∈R

2, t ∈ [0,∞), j = 1, 2. (3.4)

Define ŵ(x, z, t) = w(2)(x, z, t) – w(1)(x, z, t) satisfying

⎧
⎨

⎩
ŵt – ŵxx – ŵzz + G1(x, z, t)ŵz + G2(x, z, t)ŵ = 0, (x, z) ∈R

2, t > 0,

ŵ(x, z, 0) = w(2)
0 (x, z) – w(1)

0 (x, z), (x, z) ∈R
2,

(3.5)
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where

G1(x, z, t) = s – g ′(w(1)),

G2(x, z, t) = g ′′(θ1w(2) + (1 – θ1)w(1))w(2)
z – f ′(θ2w(2) + (1 – θ2)w(1)).

From (2.6) and (3.4), we have |G2(x, z, t)| ≤ l2K∗ + M, where

M := sup
–1≤r≤2

∣∣f ′(r)
∣∣. (3.6)

Since g ∈ C2+γ0 (R) and G1(x, z, t) is bounded and continuous in R
2 × R

+, Friedman [18,
Chapter 1, Theorem 12] implies that the solution ŵ(x, z, t) of problem (3.5) can be ex-
pressed as

ŵ(x, z, t) =
∫

R2

1
4π t

e–
η2

1+η2
2

4t ŵ(x – η1, z – η2, 0) dη1 dη2

+
∫ t

0

∫

R2

1
4π (t – τ )

e– (x–η1)2+(z–η2)2
4(t–τ )

× (
G1(η1,η2, τ )ŵη2 (η1,η2, τ ) + G2(η1,η2, τ )ŵ(η1,η2, τ )

)
dη1 dη2 dτ .

Then we have the following estimate:

∥∥ŵ(·, t)
∥∥

L∞(R2) ≤ ∥∥ŵ(·, 0)
∥∥

L∞(R2) + K1

∫ t

0

∥∥ŵ(·, τ )
∥∥

C1(R2) dτ , (3.7)

where K1 = s + l1 + l2K∗ + M. Taking the derivative of function ŵ(x, z, t) with respect to x,
we have

ŵx(x, z, t) =
∫

R2

1
4π t

e–
η2

1+η2
2

4t ŵx(x – η1, z – η2, 0) dη1 dη2

+
∫ t

0

∫

R2

1
4π (t – τ )

e– (x–η1)2+(z–η2)2
4(t–τ )

(
–

x – η1

2(t – τ )

)

× (
G1(η1,η2, τ )ŵη2 (η1,η2, τ ) + G2(η1,η2, τ )ŵ(η1,η2, τ )

)
dη1 dη2 dτ ,

and then

∥
∥ŵx(·, t)

∥
∥

L∞(R2) ≤ ∥
∥ŵx(·, 0)

∥
∥

L∞(R2) +
K1√
π

∫ t

0

∥
∥ŵ(·, τ )

∥
∥

C1(R2)(t – τ )– 1
2 dτ . (3.8)

Similarly, we have

∥∥ŵz(·, t)
∥∥

L∞(R2) ≤ ∥∥ŵz(·, 0)
∥∥

L∞(R2) +
K1√
π

∫ t

0

∥∥ŵ(·, τ )
∥∥

C1(R2)(t – τ )– 1
2 dτ . (3.9)

If we set t ∈ [0, 1], since 1 ≤ (t – τ )– 1
2 , from (3.7) we have

∥
∥ŵ(·, t)

∥
∥

L∞(R2) ≤ ∥
∥ŵ(·, 0)

∥
∥

L∞(R2) + K1

∫ t

0

∥
∥ŵ(·, τ )

∥
∥

C1(R2)(t – τ )– 1
2 dτ . (3.10)
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Combining (3.8), (3.9), and (3.10), we have

∥∥ŵ(·, t)
∥∥

C1(R2) ≤ ∥∥ŵ(·, 0)
∥∥

C1(R2) +
(

1 +
2√
π

)
K1

∫ t

0

∥∥ŵ(·, τ )
∥∥

C1(R2)(t – τ )– 1
2 dτ .

Gronwall’s inequality [35, Lemma 7.0.3] implies that there exists a constant A0 > 1, which
only depends on K∗ > 0, such that

∥∥ŵ(·, t)
∥∥

C1(R2) ≤ A0
∥∥ŵ(·, 0)

∥∥
C1(R2), t ∈ [0, 1].

Notice that w(x, z, t + n; u0) = w(x, z, t; w(·, n; u0)) for (x, z) ∈ R
2 and t > 0, where n ∈ N.

Repeating the above argument, we easily get

∥
∥ŵ(·, t)

∥
∥

C1(R2) ≤ A0
∥
∥ŵ(·, n)

∥
∥

C1(R2), t ∈ [n, n + 1], ∀n ∈N,

which implies that

∥∥ŵ(·, t)
∥∥

C1(R2) ≤ At+1
0

∥∥ŵ(·, 0)
∥∥

C1(R2), t ∈ [0,∞).

This completes the proof. �

Similar to Ninomiya and Taniguchi [43, Lemma 4.3], we have the following lemma.

Lemma 3.2 There exists a positive constant β3 > 0 such that, for (x, z) ∈ R
2, there hold

(v∗)z(x, z) ≥ β3 if δ1 ≤ v∗(x, z) ≤ 1 – δ1, (3.11)
(
v+)

z(x, z) ≥ β3 if δ1 ≤ v+(x, z) ≤ 1 – δ1. (3.12)

The following two lemmas establish some super- and subsolutions of (3.1).

Lemma 3.3 Let v̄ be a supersolution to (1.9) with

v̄z(x, z) > 0, –δ1 < v̄(x, z) < 1 + δ1 for (x, z) ∈R
2,

v̄z(x, z) > β3, δ1 ≤ v̄(x, z) ≤ 1 – δ1 for (x, z) ∈R
2.

Let v be a subsolution to (1.9) with

vz(x, z) > 0, –δ1 < v(x, z) < 1 + δ1 for (x, z) ∈R
2,

vz(x, z) > β3, δ1 ≤ v(x, z) ≤ 1 – δ1 for (x, z) ∈R
2,

where β3 and δ1 are defined in Lemma 3.2. Then there exist a large positive constant ρ and
a positive constant β small enough such that, for any δ ∈ (0, δ1/2], w+ and w– defined by

w+(x, z, t; v̄) := v̄
(
x, z + ρδ

(
1 – e–βt)) + δe–βt

and

w–(x, z, t; v) := v
(
x, z – ρδ

(
1 – e–βt)) – δe–βt

are a supersolution and a subsolution of (3.1), respectively.
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Proof From the definition of w+ and w–, we have

w+
t + L

[
w+]

= δβe–βt(ρv̄z – 1) – v̄xx – v̄zz +
[
s + g ′(v̄ + δe–βt)]v̄z – f

(
v̄ + δe–βt)

= –v̄xx – v̄zz +
(
s + g ′(v̄)

)
v̄z – f (v̄) + δβe–βt(ρv̄z – 1)

+
(
g ′(v̄ + δe–βt) – g ′(v̄)

)
v̄z + f (v̄) – f

(
v̄ + δe–βt)

≥ δβe–βt(ρv̄z – 1) +
(
g ′(v̄ + δe–βt) – g ′(v̄)

)
v̄z + f (v̄) – f

(
v̄ + δe–βt)

= δe–βt
((

ρβ +
∫ 1

0
g ′′(v̄ + ηδe–βt)dη

)
v̄z – β –

∫ 1

0
f ′(v̄ + ηδe–βt)dη

)

and

w–
t + L

[
w–]

≤ –δe–βt
((

ρβ +
∫ 1

0
g ′′(v – ηδe–βt)dη

)
vz – β –

∫ 1

0
f ′(v – ηδe–βt)dη

)
,

where v̄ = v̄(x, z + ρδ(1 – e–βt)) and v = v(x, z – ρδ(1 – e–βt)). For convenience, let v be either
v̄ or v. By the assumptions, for δ1 ≤ v ≤ 1 – δ1, we have

(
ρβ +

∫ 1

0
g ′′(v ± ηδe–βt)dη

)
vz – β –

∫ 1

0
f ′(v ± ηδe–βt)dη

≥ (ρβ – l2)vz – β – M

> (ρβ – l2)β3 – β – M > 0

if ρ > β+M
ββ3

+ l2
β

. Here M is defined in (3.6) and l2 is as in (2.6). For v < δ1 or v > 1 – δ1, we
have

(
ρβ +

∫ 1

0
g ′′(v ± ηδe–βt)dη

)
vz – β –

∫ 1

0
f ′(v ± ηδe–βt)dη ≥ ω – β > 0,

if we set 0 < β < ω and ρ > l2
β

.
Take β > 0 and ρ > 0 such that 0 < β < ω and ρ > β+M

ββ3
+ l2

β
. Then we obtain w+

t +L[w+] ≥
0 and w–

t + L[w–] ≤ 0. Thus, we have proved that w+ and w– are a supersolution and a
subsolution, respectively. This completes the proof. �

To prove the asymptotical stability of the traveling curved front v∗, we also need the
following important auxiliary lemmas.

Lemma 3.4 Let w(x, z, t) be the solution of (3.1) with (1.13). Then

lim
R→∞ sup

x2+z2≥R2

∣∣w(x, z, T) – v–(x, z)
∣∣ = 0

holds true for any fixed T > 0.

Proof Define

V (x, z) = U
(

z + ϕ(x)
√

1 + ϕ′2(x)

)
.
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By (1.8) and (2.1)–(2.4), we have

lim
R→∞ sup

x2+x2≥R2

∣
∣v–(x, z) – V (x, z)

∣
∣ = 0,

which combined with (1.13) implies

lim
R→∞ sup

x2+z2≥R2

∣
∣u0(x, z) – V (x, z)

∣
∣ = 0.

Define

W (x, z, t) = w(x, z, t) – V (x, z).

Then we have

Wt – Wxx – Wzz +
(
s + g ′(W + V )

)
Wz – f (W + V ) + f (V ) = h(x, z, t).

Here

h(x, z, t) = –L[V ] –
(
g ′(W + V ) – g ′(V )

)
Vz

= Vxx + Vzz –
(
s + g ′(W + V )

)
Vz + f (V )

satisfies

lim
R→∞ sup

x2+z2≥R2

∣∣h(x, z, t)
∣∣ = 0 uniformly for t ≥ 0.

Using –f (W + V ) + f (V ) = –f ′(V + �W )W for some 0 < �(x, z, t) < 1, we arrive at

⎧
⎨

⎩
Wt – Wxx – Wzz + (s + g ′(W + V ))Wz – f ′(V + �W )W = h(x, z),

W (x, z, 0) = u0(x, z) – V (x, z),
(3.13)

where (x, z) ∈R
2 and t > 0. Let

g1(x, z, t) = –
(
s + g ′(W + V )

)
, g2(x, z, t) = f ′(V + �W ).

Instead of (3.13), we consider
⎧
⎨

⎩
W̃t = W̃xx + W̃zz + g1(x, z, t)W̃z + g2(x, z, t)W̃ + |h(x, z, t)|, (x, z) ∈R

2, t > 0,

W̄ (x, z, 0) = |u0(x, z) – V (x, z)|, (x, z) ∈R
2.

(3.14)

Since u0 ∈ BUC1(R2), by the previous discussion we have that g1(x, z, t), g2(x, z, t), and
h(x, z, t) are uniformly continuous in (x, z, t) ∈ R

2 × [0,∞) and Hölder continuous in
(x, z) ∈R

2 (the exponent is uniform for (x, z, t) ∈R
2 × [0,∞)). Using the comparison prin-

ciple, we easily get

W̃ (x, z, t) ≥ ∣∣W (x, z, t)
∣∣, ∀(x, z, t) ∈R

2 × [0,∞).
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Friedman [18, Chapter 9, Theorem 2] implies that the fundamental solution Γ (x, z, ξ1, ξ2,
t, τ ) of problem (3.14) satisfies

Γ (x, z, ξ1, ξ2, t, τ ) ≤ c1

t – τ
e–c2

(x–ξ1)2+(z–ξ2)2
t–τ for 0 ≤ τ < t ≤ T ,

where c1, c2 are positive constants depending only on T . Then the solution W̃ (x, z, t) of
problem (3.14) can be decomposed as

W̃ (x, z, t) = I(x, z, t) + J(x, z, t),

where

I(x, z, t) :=
∫

R2
Γ (x, z, ξ1, ξ2, t, 0)W̃ (x, z, 0) dξ1 dξ2,

J(x, z, t) :=
∫ t

0
dτ

∫

R2
Γ (x, z, ξ1, ξ2, t, τ )

∣
∣h(ξ1, ξ2, τ )

∣
∣dξ1 dξ2.

Then we have

I ≤ c1

∫

R2
e–c2(η2

1+η2
2)W̃ (x +

√
tη1, z +

√
tη2, 0) dη1 dη2. (3.15)

On the other hand, there exists 0 < t1 < t < T with

J = t
∫

R2
Γ (x, z, ξ1, ξ2, t, t1)

∣∣h(ξ1, ξ2, t1)
∣∣dξ1 dξ2,

which yields

J ≤ c1T
∫

R2
e–c2(η2

1+η2
2)∣∣h(x +

√
t – t1η1, z +

√
t – t1η2, t1)

∣∣dη1 dη2. (3.16)

Combining (3.15) and (3.16), we have limR→∞ supx2+z2≥R2 W̃ (x, z, T) = 0, which implies

lim
R→∞ sup

x2+z2≥R2

∣∣W (x, z, T)
∣∣ = 0

for fixed T > 0. Hence, we obtain

lim
R→∞ sup

x2+z2≥R2

∣
∣w(x, z, T) – v–(x, z)

∣
∣ = 0.

This completes the proof. �

Fix ε ∈ (0, 1
2ε+

0 ) and α ∈ (0,α+(ε)). By (2.27) and the comparison principle, we have

v–(x, z) < v∗(x, z) < w
(
x, z, t; v+)

< v+(x, z; ε,α) for (x, z) ∈R
2 and t > 0.

Since v+(x, z; ε,α) is a supersolution of (1.9), we have that w(x, z, t; v+) is monotone de-
creasing in t and the limit function

v∗(x, z) := lim
t→∞ w

(
x, z, t; v+)

(3.17)
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exists. By the argument similar to that for v∗, we have that v∗ satisfies L[v∗] = 0 and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v∗(–x, z) = v∗(x, z) for (x, z) ∈R
2,

∂
∂z v∗(x, z) > 0 for (x, z) ∈ R

2,
∂
∂x v∗(x, z) > 0 for (x, z) ∈ (0,∞) ×R,

v–(x, z) ≤ v∗(x, z) ≤ v∗(x, z) ≤ min{1, v+(x, z; ε,α)} for (x, z) ∈R
2.

Lemma 3.5 Let v∗ and v∗ be as in (2.26) and (3.17). Then

v∗(·, ·) ≡ v∗(·, ·) in R
2.

The proof of the lemma is similar to that of Ninomiya and Taniguchi [43, Lemma 4.6],
so we omit it. The following theorem shows that the traveling curved front v∗ is asymp-
totically stable for the initial data u0 ∈ BUC1(R2) with u0 ≥ v–.

Theorem 3.6 Let u0(x, z) ∈ BUC1(R2) satisfy v–(x, z) ≤ u0(x, z) for (x, z) ∈R
2 and

lim
R→∞ sup

x2+z2≥R2

∣
∣u0(x, z) – v∗(x, z)

∣
∣ = 0.

Then the solution w(x, z, t; u0) of (3.1) satisfies

lim
t→∞

∥∥w(·, ·, t; u0) – v∗(·, ·)∥∥L∞(R2) = 0.

Proof Denote w(x, z, t; u0) by w(x, z, t) for convenience. To complete the proof, it is suffi-
cient to show that, for any ε∗ > 0, there exists a positive constant T∗ such that

sup
(x,z)∈R2

∣∣w(x, z, t) – v∗(x, z)
∣∣ ≤ ε∗, ∀t > T∗.

First, we choose δ small enough such that

v∗(x, z + ρδ) ≤ v∗(x, z) +
ε∗
3

, 0 < δ < ε+
0 , (3.18)

where ε+
0 and ρ are defined in Lemma 2.2 and 3.3, respectively.

Next, we find a suitable supersolution. It follows from (3.3) that there exists Tδ > 0 with

w(x, z, t; v∗) ≤ w(x, z, t) < 1 +
δ

2
, (x, z) ∈ R

2, t ≥ Tδ .

Lemma 3.4 implies that

w(x, z, Tδ) ≤ v–(x, z) +
δ

2
, x2 + z2 ≥ R2

for some R > 0. Choose α small enough so that

0 < α < min

{
α+

0 (δ),
ϕ(0)

R + s
c U–1(1 – δ

2 )

}
.
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Then we have

ζ =
z + ϕ(ξ )/α
√

1 + ϕ′(ξ )2
≥ c

s
(
–R + ϕ(0)/α

) ≥ U–1
(

1 –
δ

2

)

for x2 + z2 ≤ R2, and hence

v+(x, z) ≥ 1 –
δ

2
, x2 + z2 ≤ R2,

where v+(x, z) = v+(x, z; δ,α). From the above inequalities, we obtain

w(x, z, Tδ) < v+(x, z) + δ, ∀(x, z) ∈ R
2.

It follows from Lemma 3.3 and the comparison principle that

w(x, z, t + Tδ ; v∗) ≤ w(x, z, t + Tδ) ≤ w+(
x, z, t; v+)

, t ≥ 0.

Again applying Lemma 3.3 and the comparison principle, we obtain

w
(
x, z, t + t′ + Tδ ; v∗

) ≤ w
(
x, z, t + t′ + Tδ

) ≤ w
(
x, z, t′; ut) (3.19)

for t′ ≥ 0, where

ut(x, z) := w+(
x, z, t; v+)

.

Since w(x, z, t; v+) monotonically converges to v∗(x, z) as t → ∞, there exists a positive
constant t′′ with

sup
(x,z)∈R2

∣
∣w

(
x, z, t′′; v+,δ) – v∗(x, z + ρδ)

∣
∣ ≤ ε∗

3
, (3.20)

where

v+,δ(x, z) := v+(x, z + ρδ).

Lemma 3.1 implies

∣∣w
(
x, z, t′′; ut) – w

(
x, z, t′′; v+,δ)∣∣

C1 ≤ At′′+1
0

∣∣ut(x, z) – v+,δ(x, z)
∣∣
C1 , (3.21)

where A0 > 1 depends on ‖v+‖C1 . Since w+(x, z, t; v+) = v+(x, z + ρδ(1 – e–βt)) + δe–βt ,
w+

x (x, z, t; v+) = v+
x (x, z + ρδ(1 – e–βt)), and w+

z (x, z, t; v+) = v+
z (x, z + ρδ(1 – e–βt)), we can take

T1 > 0 large enough to satisfy

At′′+1
0

∣∣ut(x, z) – v+,δ(x, z)
∣∣
C1 = At′′+1

0
∣∣w+(

x, z, t; v+)
– v+(x, z + ρδ)

∣∣
C1 ≤ ε∗

3
(3.22)

for t ≥ T1. Combining (3.21) and (3.22), we have

∣∣w
(
x, z, t′′; ut) – w

(
x, z, t′′; v+,δ)∣∣ ≤ ε∗

3
(3.23)
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for t ≥ T1. Then, by (3.20) and (3.23), we get

∣∣w
(
x, z, t′′; ut) – v∗(x, z + ρδ)

∣∣

≤ ∣∣w
(
x, z, t′′; ut) – w

(
x, z, t′′; v+,δ)∣∣ +

∣∣w
(
x, z, t′′; v+,δ) – v∗(x, z + ρδ)

∣∣ ≤ 2
3
ε∗

for any t ≥ T1, which implies

w
(
x, z, t + t′′ + Tδ

) ≤ w
(
x, z, t′′; ut) ≤ v∗(x, z + ρδ) +

2
3
ε∗, ∀t ≥ T1. (3.24)

By (3.18), (3.19), (3.24), and Lemma 3.5, we obtain

w(x, z, t; v∗) ≤ w(x, z, t) ≤ v∗(x, z) + ε∗ = v∗(x, z) + ε∗

for (x, z) ∈R
2 and t ≥ t′′ +T1 +Tδ . Let T∗ := t′′ +T1 +Tδ . Since v∗(x, z) = limt→∞ w(x, z, t; v∗),

we have v∗(x, z) ≤ w(x, z, t) ≤ v∗(x, z) + ε∗ for all (x, z) ∈ R
2 and t > T∗. This completes the

proof. �

Remark 3.7 Combining Theorems 2.3 and 3.6, we can complete the proof of Theorem 1.1.
Theorem 3.6 also asserts that v∗ is a unique traveling curved front satisfying (1.10) and
(1.12).

4 Discussion
In this paper, under assumptions (F) and (G), we establish the existence and stability of
traveling curved front v∗ of (1.1) in R

2 for every direction θ ∈ (0,π/2) satisfying (C). For
such a reaction–convection-diffusion equation, as mentioned in the first section, the pla-
nar traveling wave profile Uθ of (1.1) and the corresponding wave speed cθ depend on the
propagation direction θ ∈ [0, 2π ). Clearly, in this paper we only consider a simple convec-
tion term (g(u))y = ∇ · (0, g(u)), namely, it is supposed that the nonlinear convection only
occurs in the y-direction. Let Uθ (x cos θ + y sin θ + cθ t) be the traveling wave front of (1.1)
along the direction θ ∈ (0,π/2) (or (cos θ , sin θ )). Due to such an assumption, we always
have that Uθ (–x cos θ + y sin θ + cθ t) is a planar traveling wave front of (1.1) along the direc-
tion π – θ (or (– cos θ , sin θ )). Hence, we can prove the main results of this paper by using
the method similar to those in Ninomiya and Taniguchi [43] and Wang [54]. Beyond all
doubt, it is more reasonable to consider the following convection term:

∇ · (h(u), g(u)
)
.

But in this case, the function Uθ (–x cos θ + y sin θ + cθ t) is no longer a traveling wave front
of the equation along the direction π – θ (or (– cos θ , sin θ )). Thus, the supersolution con-
structed in Lemma 2.2 does not work in this case and we cannot get the existence and
stability of traveling curved fronts by the arguments of this paper. Therefore, to consider
traveling curved fronts of (1.1) with a convection term ∇ · (h(u), g(u)) is a very interesting
and difficult problem, and we leave it as a future work.

Here we also would like to give more comments on conditions (F)(iii) and (C). In fact,
for every θ ∈ [0, 2π ), the existence of traveling wave front Uθ (x cos θ + y sin θ + cθ t) of (1.1)
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follows from conditions (F)(i), (F)(ii), (F)(iv), and (G). Consequently, we can get c0 > 0 by
condition (F)(iii). As discussed in Sect. 1, it follows from c0 > 0 that there exists a subset
of (0,π/2) in which every θ satisfies condition (C) (at least, there exists θ∗ ∈ (0,π/2) such
that each θ ∈ [0, θ∗) satisfies condition (C)). On this basis, for each θ ∈ (0,π/2) which satis-
fies (C), we can establish the corresponding traveling curved front v∗(x, y + sθ t) with speed
sθ = cθ

sin θ
, see Theorem 1.1. Clearly, to establish the existence of traveling curved fronts

by the method of this paper, the supersolution constructed in Lemma 2.2 plays a crucial
role. Observing the proof of Lemma 2.2, we find that inequality (2.12) seems indispens-
able. Thus, condition (C) is necessary for using the method of this paper to establish the
existence of traveling curved fronts. By a direct calculation, we have

∫ 1

0
f (r) dr =

∫ +∞

–∞

(
cθ + g ′(Uθ (r)

)
sin θ

)(
U ′

θ (r)
)2 dr.

Under assumption (F)(iii), the inequality cθ + supr∈[0,1] g ′(r) sin θ < 0 cannot hold, be-
cause the inequality implies that

∫ 1
0 f (r) dr < 0. Thus, under conditions (F) and (G), for

θ ∈ (0,π/2) which does not satisfy (C), do traveling curved fronts of (1.1) exist or not?
How to establish the traveling curved front of (1.1) in this case? These are very interesting
questions.
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