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Abstract
In this paper, we study the dynamics property of a stochastic HIV model with
Beddington–DeAngelis functional response. It has a unique uninfected steady state.
We prove that the model has a unique global positive solution. Furthermore, if the
basic reproductive number is not larger than 1, the asymptotic behavior of the
solution is stochastically stable. Otherwise, it fluctuates randomly around the infected
steady state of the corresponding deterministic HIV model. Finally, some numerical
simulations are carried out to verify our results.
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1 Introduction
Acquired Immune Deficiency Syndrome (AIDS) has been one of the most dangerous epi-
demic diseases in the world since its discovery in 1981. It is caused by the HIV virus, which
invades the CD4+ T cells of the human body, depletes them, and leads to the destruction
of the immune system. To block the spread of AIDS, HIV viral dynamics urgently requires
study. Abundant research of the dynamic characteristics of the HIV virus has played an
important role in preventing the spread of AIDS [1–3].

Hernandez-Vargas and Middleton [1] noted that a typical HIV infection response has
three stages: an initial acute infection, a long asymptomatic period, and a final increase
in viral load with simultaneous collapse in healthy CD4+ T cell counts. A deterministic
model was proposed to explain the three stages of the infection, including the progres-
sion of AIDS. Nowak et al. [2] established mathematical models based on HIV infection
responses, which can provide nonintuitive insights into the dynamics of host responses
to infectious agents and new avenues for experimentation. Motivated by the research of
Nowak et al., Huang et al. [3] investigated the global stability of a deterministic virus dy-
namics model with a Beddington–DeAngelis infection rate which is given by

⎧
⎪⎨

⎪⎩

ẋ = λ – qx – βxv
1+ax+bv ,

ẏ = βxv
1+ax+bv – py,

v̇ = ky – uv.
(1.1)
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Here x(t), y(t), and v(t) denote the concentration of uninfected CD4+ T cells, the concen-
tration of infected CD4+ T cells that produce the virus, and the concentration of HIV virus
at time t, respectively. The parameters in the model are interpreted as follows:

λ: the growth rate of uninfected CD4+ T cells,
β : the transmission coefficient between uninfected cells and infected virus particles,
q: the death rate of uninfected CD4+ T cells,
p: the death rate of infected CD4+ T cells,
u: the rate at which virus particles are removed from the model,
k: the rate at which new viruses are produced from the division of the infected cells.

All the parameters above are nonnegative. βxv
1+ax+bv is the Beddington–DeAngelis functional

response of the infection rate of HIV, where a, b ≥ 0 are constants.
The Beddington–DeAngelis functional response [4, 5] can reflect that mutual interfer-

ence between HIV viruses and the concentration of uninfected CD4+ T cells influences
the infection rate. It can describe nonlinear incidence rate including bilinear functional
response [6, 7], Holling type II functional response [8] and saturation response [9]. So it
can provide a better description of the process showing how HIV infects healthy CD4+ T
cells, and the model is more realistic than most models.

The basic reproductive ratio of the virus for the model (1.1) is R0 = λβk
pqu+apuλ

in [3]. If
R0 ≤ 1, the model (1.1) has a unique uninfected steady state E0 = ( λ

q , 0, 0). If R0 > 1, there
exists an infected steady state E∗ = (x∗, y∗, v∗) which is given by

x∗ =
λbk + pu

kβ + bkq – apu
,

y∗ =
λβk

p(kβ + bkq – apu)

(

1 –
1

R0

)

,

v∗ =
λβk2

pu(kβ + bkq – apu)

(

1 –
1

R0

)

.

The steady states are always globally asymptotically stable for the model (1.1).
Yan et al. [10] proposed a mathematical model injected with a combination of HIV la-

tency activators to reduce persistent HIV reservoirs, and they achieved the optimal time
for cessation of treatment by combining the basic reproductive ratio of virus and therapy
of inducers and antibodies.

In fact, the transmission process of epidemic diseases is often affected by random fac-
tors. In a complex and changing environment, biochemical reactions have randomness.
The randomness is introduced into the process of infection of CD4+ T cells and the tran-
sitions from uninfected to latently or actively infected cells by chance mechanisms in the
early period of infection. Using the stochastic analyses can provide a more accurate quan-
titative basis than deterministic in real systems [11]. And the effective population size may
be rather small in the initial stage of infection. Under the present circumstances, the HIV
model is best described by a stochastic evolutionary model. Deterministic models are only
appropriate when population sizes are large [12, 13].

The stochasticity is often described by white noise ξ (·) [14–16]. In the early work,
asymptotic behavior of the solution of stochastic HIV virus models with white noise has
been studied and compared to the corresponding deterministic model. The dynamic be-
havior of these HIV models provides a strong theoretical basis for the prevention and treat-
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ment of AIDS. Dalal et al. [6] built a stochastic model representing HIV internal virus dy-
namics in which the death rate of uninfected CD4+ T cells is disturbed by white noise, and
they analyzed the asymptotic behavior of the model. Wang et al. [17] gave the asymptotic
dynamics of the model depend on the general incidence function and noise intensities. Liu
et al. [18] claimed a stochastic predator–prey system with Beddington–DeAngelis func-
tional response, which can provide better descriptions of predator feeding over a range
of predator–prey abundances. But the asymptotic dynamics of the stochastic model was
governed by a threshold parameter. So we concentrate on the solution in a HIV stochastic
system there being a Beddington–DeAngelis functional response or not and see what dy-
namic behavior there is, and whether the solution is affected by white noise. The existing
HIV stochastic models can be improved and generalized under certain assumptions.

In our paper, we introduce randomness to a model based on the HIV deterministic virus
model (1.1) with Beddington–DeAngelis functional response, by replacing the parameter
β by β + σ Ḃ(t), where B(t) is the standard Brownian motion and σ 2 ≥ 0 represents the
intensity of B(t). We establish this stochastic HIV model as

⎧
⎪⎪⎨

⎪⎪⎩

dx = (λ – qx – βxv
1+ax+bv ) dt – σ xv

1+ax+bv dB(t),

dy = ( βxv
1+ax+bv – py) dt + σ xv

1+ax+bv dB(t),

dv = (ky – uv) dt.

(1.2)

Obviously, if R0 ≤ 1, E0 still is in the uninfected steady state in the model (1.1), but when
R0 > 1, the infected steady state E∗ is not a steady state for the model (1.2). However, if
R0 > 1, we can discuss the asymptotic behavior of the solution of the model (1.2) around
the infected steady state E∗ of the model (1.1). We use a mathematical method based on
previous work [7, 19].

The rest of this paper is organized as follows. In Sect. 2, we prove the positivity of the
solution in model (1.2). We study whether the uninfected steady state of the model (1.2)
is stochastically stable in Sect. 3. In Sect. 4, we discuss the asymptotic behavior of the
global positive solution in model (1.2) oscillating around the infected steady state of the
model (1.1) under certain parametric conditions. We present some numerical simulations
in Sect. 5, and conclusions are offered in Sect. 6.

2 Global positive solution
Unless otherwise specified, we let (Ω ,F , {Ft}t≥0,P) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous
while F0 contains all P-null sets). B(t) is the standard Brownian motion defined on this
probability space. Moreover, let R3

+ = {(x(t), y(t), v(t)) ∈ R3 : x(t), y(t), v(t) > 0}.
We address the n-dimensional stochastic differential equation [16]

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t), t ≥ t0. (2.1)

Assuming that C2,1(Sh × [t0, +∞); R+) is the family of all nonnegative functions V (x, t) de-
fined on([t0, +∞); R+), such that they are continuously twice differentiable in x and once
in t, then

dV
(
x(t), t

)
= LV

(
x(t), t

)
dt + Vx

(
x(t), t

)
g(t) dB(t),
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where

LV
(
x(t), t

)
= Vt

(
x(t), t

)
+ Vx

(
x(t), t

)
f (t) +

1
2

tr
[
gT (t)Vxx

(
x(t), t

)
g(t)

]
, a.s.

Theorem 2.1 For any initial value (x(0), y(0), v(0)) ∈ R3
+, there is a unique solution

(x(t), y(t), v(t)) of the model (1.2) on t ≥ 0, and the solution will remain in R3
+ with proba-

bility 1.

Proof Since the coefficients of the equation are locally Lipschitz continuous, for any given
initial value (x(0), y(0), v(0)) ∈ R3

+, there is a unique local solution (x(t), y(t), v(t)) on t ∈
[0, τe), where τe is the explosion time [20, 21].

Setting N(t) = x(t) + y(t), we obtain from the model (1.2)

dN(t) = (λ – qx – py) dt,

i.e.,

dN(t)
dt

= λ – qx – py.

Because x(t) ≥ 0 and y(t) ≥ 0 on t ∈ [0, τe), we have

λ – max{p, q}N(t) ≤ dN(t)
dt

≤ λ – min{p, q}N(t).

N1(t) is the solution of the equation for any initial value (x(0), y(0), v(0)) ∈ R3
+:

⎧
⎨

⎩

dN1(t) = (λ – min{p, q}N1(t)) dt,

N1(0) = N(0),

and we get

N1(t) =
λ

min{p, q} +
(

N(0) –
λ

min{p, q}
)

exp
(
– min{p, q}t).

By the differential equation comparison theorem [19, 22], we get

N(t) ≤ N1(t) ≤ max

{
λ

min{p, q} , N(0)
}

:= Nmax

and

x(t), y(t) ≤ Nmax, t ∈ [0, τe) a.s.

Simultaneously,

N(t) ≥ min

{
λ

max{p, q} , N(0)
}

:= Nmin
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and

x(t), y(t) ≥ Nmin, t ∈ [0, τe) a.s.

For

dv(t)
dt

= ky – uv ≤ kNmax – uv,

simultaneously, we obtain

v(t) ≤ max

{
kNmax

u
, v(0)

}

:= Vmax, t ∈ [0, τe) a.s.

To show that this solution is global, we must have τe = ∞ a.s. Set k0 > 0 to be sufficiently
large so that each component of (x(0), y(0), v(0)) is in [1/k0, k0]. For each integer k ≥ k0,
define the stopping time as

τk = inf

{

t ∈ [0, τe) : x(t) /∈
(

1
k

, k
)

or y(t) /∈
(

1
k

, k
)

or v(t) /∈
(

1
k

, k
)}

,

where we set inf∅ = ∞ (∅ denotes the empty set).
Evidently, τk is monotonically increasing as k → ∞. Set τ∞ = limk→∞ τk , then τ∞ ≤ τe

a.s. If we can prove that τ∞ = ∞ a.s., then τe = ∞ and (x(t), y(t), v(t)) ∈ R3
+ a.s. are obtained

for t ≥ 0. That is, we are just to prove τ∞ = ∞. Assuming τ∞ 	= ∞ a.s., there exist constants
T > 0 and ε ∈ (0, 1) such that P{τ∞} ≤ T > ε.

So, there is an integer k1 ≥ k0, and

P{τk ≤ T} ≥ ε, ∀k ≥ k1. (2.2)

Define a positive definite Lyapunov function:

V (x, y, v) = x – 1 – ln(x) + y – 1 – ln(y) + v – 1 – ln(v).

If t ∈ [0, τk), then x(t), v(t), v(t) ∈ [1/k, k]. The non-positivity of this function can be seen
from u + 1 – ln(u) ≥ 0 for u > 0 and Itô’s formula [16, 20, 21], and we get

dV (x, y, v) = LV (x, y, v) dt +
(

1
x

–
1
y

)
σxv

1 + ax + bv
dB(t),

where

LV (x, y, v) =
(

1 –
1
x

)(

λ – qx –
βxv

1 + ax + bv

)

+
(

1 –
1
y

)(
βxv

1 + ax + bv
– py

)

+
(

1 –
1
v

)

(ky – uv) +
1
2

1
x2

(

–
σxv

1 + ax + bv

)2

+
1
2

1
y2

(
σxv

1 + ax + bv

)2

≤ λ + q + p + u + ky +
βv

1 + ax + bv
+

σ 2v2

2(1 + ax + bv)2 +
σ 2x2v2

2y2(1 + ax + bv)2

≤ λ + q + p + u + ky + βv +
1
2
σ 2v2 +

1
2

σ 2x2v2

y2
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≤ λ + q + p + u + kNmax + βVmax +
1
2
σ 2V 2

max +
1
2

σ 2N2
maxV 2

max

N2
min

:= F .

So, we obtain

dV (x, y, v) ≤ F dt + G dB(t)

where G = ( 1
x – 1

y ) σxv
1+ax+bv .

If 0 < t1 < T , then

∫ τk∧t1

0
dV

(
x(t), y(t), v(t)

) ≤
∫ τk∧t1

0
F dt +

∫ τk∧t1

0
G dB(t).

Therefore,

E
(
V

(
x(τk ∧ t1), y(τk ∧ t1), v(τk ∧ t1)

))

≤ V
(
x(0), y(0), v(0)

)
+ E

∫ τk∧t1

0
F dt

= V
(
x(0), y(0), v(0)

)
+ FE(τk ∧ t1) ≤ V

(
x(0), y(0), v(0)

)
+ FT . (2.3)

Set Ωk = {τk ≤ T} for k ≥ k1. Then, by (2.2), P(Ωk) ≥ ε. Note that, for every ω ∈ Ωk ,
there is x(τk ,ω), y(τk ,ω) or v(τk ,ω) that equals either k or 1/k. V (x(τk ,ω), y(τk ,ω), v(τk ,ω))
is no smaller than either

k + 1 – ln(k) or 1/k + 1 – ln(1/k) = 1/k + 1 + ln(k).

Hence

V
(
x(τk ,ω), y(τk ,ω), v(τk ,ω)

) ≥ [
k + 1 – ln(k)

] ∧ [
1/k + 1 + ln(k)

]
.

It follows from (2.3) that

V
(
x(0), y(0), v(0)

)
+ FT ≥ E

[
1Ωk V

(
x(τk ,ω), y(τk ,ω), v(τk ,ω)

)]

≥ ε
([

k + 1 – ln(k)
] ∧ [

1/k + 1 + ln(k)
])

,

where 1Ωk is the indicator function of Ωk . Letting k → ∞, we obtain V (x(0), y(0), v(0)) +
FT ≥ ∞, leading to the contradiction with V (x(0), y(0), v(0)) + FT < ∞. So, we must have
τ∞ = ∞ a.s. �

Remark 2.2 For any initial value (x(0), y(0), v(0)) ∈ R3
+, we have Nmin ≤ x(t) + y(t) ≤ Nmax,

v(t) ≤ Vmax a.s. for the model (1.2) on t ≥ 0, where

Nmax = max

{
λ

min{p, q} , N(0)
}

, Nmin = min

{
λ

max{p, q} , N(0)
}

,

N(0) = x(0) + y(0), Vmax = max

{
kNmax

u
, v(0)

}

.
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3 Stochastic stability of uninfected steady state for the stochastic HIV model
If R0 ≤ 1, there is a globally asymptotically stable uninfected steady state E0 = ( λ

q , 0, 0) in
deterministic model (1.1). Obviously, E0 is also an uninfected steady state of the stochastic
HIV model (1.2). We now prove the stochastic asymptotic stability of the uninfected steady
state E0.

Lemma 3.1 ([16]) There exists a positive definite function V (x, t) ∈ C2,1(Sh × [t0, +∞); R+)
such that LV (x, t) ≤ 0, then the trivial solution of Eq. (2.1) is stochastically stable.

Theorem 3.2 Assuming that R0 ≤ 1 and σ 2 < 2pub
k(1+aNmax+bNmax)x0

, then, for any given initial
value (x(0), y(0), z(0)) ∈ R+, the infection-free equilibrium E0 for the model (1.2) is stochas-
tically stable.

Proof Define a Lyapunov function,

V1(x, y, v) =
x0

1 + ax0

(
x
x0

– 1 – ln
x
x0

)

+ y +
p
k

v,

where x0 = λ
q , and V1 is a positive definite function with respect to (x – x0, y, v). Utilizing

Itô’s formula, we compute

dV1(x, y, v) = LV1(x, y, v) dt +
[

1 –
x0

1 + ax0

(
1
x0

–
1
x

)]
σxv

1 + ax + bv
dB(t).

In detail,

LV1(u, v, z) =
x0

1 + ax0

(
1
x0

–
1
x

)(

λ – qx –
βxv

1 + ax + bv

)

+
1
2

· x0

1 + ax0

· 1
x2 ·

(

–
σxv

1 + ax + bv

)2

+
βxv

1 + ax + bv
– py +

p
k

(ky – uv)

=
qx0

1 + ax0

(

2 –
x
x0

–
x0

x

)

+
βxv

1 + ax + bv
+

1
1 + ax0

· βx0v
1 + ax + bv

–
1

1 + ax0
· βxv

1 + ax + bv
–

pu
k

v +
σ 2x0v2

2(1 + ax0)(1 + ax + bv)2

≤ qx0

1 + ax0

(

2 –
x
x0

–
x0

x

)

+
pu(1 + ax)v

k(1 + ax + bv)
(R0 – 1)

–
[

pub
k(1 + ax + bv)

–
σ 2x0

2

]

v2

≤ qx0

1 + ax0

(

2 –
x
x0

–
x0

x

)

+
pu(1 + ax)v

k(1 + ax + bv)
(R0 – 1)

–
[

pub
k(1 + aNmax + bNmax)

–
σ 2x0

2

]

v2.
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If σ 2 < 2pub
k(1+aNmax+bNmax)x0

, then

LV1(x, y, v) ≤ qx0

1 + ax0

(

2 –
x
x0

–
x0

x

)

+
puv(1 + ax)

k(1 + ax + bv)
(R0 – 1)

–
[

pub
k(1 + aNmax + bNmax)

–
σ 2x0

2

]

v2

≤ 0.

So, the infection-free equilibrium E0 in model (1.2) is stochastically stable according to
Lemma 3.1. The proof is completed. �

4 Asymptotic behavior around infected steady state of the deterministic
model

If R0 > 1, the infected steady state E∗ = (x∗, y∗, v∗) of the deterministic model (1.1) is glob-
ally asymptotically stable. However, E∗ is not the infected steady state of the stochastic
model (1.2). Hence, we discuss asymptotic behavior of the solution for the stochastic
model (1.2) around E∗ = (x∗, y∗, v∗).

Theorem 4.1 Assuming that R0 > 1 and

σ 2 < min

{
q

N2
mB

,
A

N2
mB

}

,

the solution of the model (1.2) for any given initial value (x(0), y(0), v(0)) ∈ R3
+ has the fol-

lowing properties:

lim sup
t→∞

1
t

E
∫ t

0

[(
x(r) – x∗)2 +

(
y(r) – y∗)2 +

(
v(r) – v∗)2]dr ≤ K

M
,

where

Nm = max{Nmax, Vmax}, c1 =
Nm[1 + (a + b)Nm](p + q)2

2pq(1 + bv∗)
,

A =
pu2

4k2 +
c1bpy∗

v∗[1 + (a + b)Nm]2 , B = c1

(
1 + bv∗

βv∗x∗2 +
y∗

N2
min

)

,

K = max
{

BN2
2 σ 2x∗2, BN2

2 σ 2v∗2}, M = min

{

q – BNmσ 2, A – BNmσ 2,
p
4

}

.

Proof From the model (1.1), we have

λ = qx∗ + py∗,
pu
k

=
py∗

v∗ , py∗ =
βx∗v∗

1 + ax∗ + bv∗ .

Define a Lyapunov function:

V2(x, y, v) = V21(x, y, v) +
pu
2k2 V22(x, y, v) + c1V23(x, y, v),



Wang et al. Advances in Difference Equations        (2020) 2020:493 Page 9 of 14

where c1 is the positive constant given by Theorem 4.1, and

V21(x, y, v) =
1
2
(
x – x∗ + y – y∗)2,

V22(x, y, v) =
1
2
(
v – v∗)2,

V23(x, y, v) = x – x∗ –
∫ x

x∗

py∗
βτv∗

1+aτ+bv∗
dτ + y – y∗ – y∗ ln

y
y∗

+
p
k

(

1 +
bv∗

1 + ax∗

)(

v – v∗ –
∫ v

v∗

py∗
βx∗τ

1+ax∗+bτ

dτ

)

.

With Itô’s formula, we get

dV21(x, y, v) = LV21(x, y, v) dt,

dV22(x, y, v) = LV22(x, y, v) dt,

dV23(x, y, v) = LV23(x, y, v) dt +
[

py∗(1 + ax + bv∗)
βxv∗ –

y∗

y

]
σxv

1 + ax + bv
dB(t).

In detail,

LV21(x, y, v) =
(
x – x∗ + y – y∗)(λ – qx – py)

≤ –q
(
x – x∗)2 –

p
2
(
y – y∗)2 +

(p + q)2

2p
(
x – x∗)2,

LV22(x, y, v) =
(
v – v∗)(ky – uv)

≤ –
u
2
(
v – v∗)2 +

k2

2u
(
y – y∗)2,

LV23(x, y, v) =
[

1 –
py∗(1 + ax + bv∗)

βxv∗

](

λ – qx –
βxv

1 + ax + bv

)

+
(

1 –
y∗

y

)

·
(

βxv
1 + ax + bv

– py
)

+
p
k

(

1 +
bv∗

1 + ax∗

)[

1 –
py∗(1 + ax∗ + bv)

βx∗v

]

· (ky – uv) +
σ 2x2v2

2(1 + ax + bv)2

(
1 + bv∗

βv∗x∗2 +
y∗

y2

)

= qx∗ + py∗ – qx – py∗ · v
v∗ –

x∗

x
· 1 + ax + bv∗

1 + ax∗ + bv∗ · qx∗ –
x∗

x

· 1 + ax + bv∗

1 + ax∗ + bv∗ · py∗ +
1 + ax + bv∗

1 + ax∗ + bv∗ · qx∗ +
v
v∗ · 1 + ax + bv∗

1 + ax + bv
· py∗

–
y∗

y
·
(

βxv
1 + ax + bv

– py
)

–
pv∗

kv
(ky – uv) +

σ 2x2v2

2(1 + ax + bv)2

·
(

1 + bv∗

βv∗x∗2 +
y∗

y2

)

≤ –
q(1 + bv∗)

x(1 + ax∗ + bv∗)
(
x – x∗)2 –

py∗b(1 + ax)
v∗[1 + (a + b)Nm](1 + ax + bv∗)

· (v – v∗)2 +
1
2

(σxv)2
(

1 + bv∗

βv∗x∗2 +
y∗

N2
min

)
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≤ –
q(1 + bv∗)

Nm[1 + (a + b)Nm]
(
x – x∗)2 –

bpy∗

v∗[1 + (a + b)Nm]2

(
v – v∗)2

+
1
2

(σxv)2
(

1 + bv∗

βv∗x∗2 +
y∗

N2
min

)

,

where Nm = max{Nmax, Vmax}.
Hence

LV2(x, y, v)

= LV21(x, y, v) +
pu
2k2 LV22(x, y, v) + c1LV23(x, y, v)

≤ –q
(
x – x∗)2 –

p
2
(
y – y∗)2 +

(p + q)2

2p
(
x – x∗)2

+
pu
2k2

[

–
u
2
(
v – v∗)2 +

k2

2u
(
y – y∗)2

]

+ c1

{

–
q(1 + bv∗)

Nm[1 + (a + b)Nm]

· (x – x∗)2 –
bpy∗

v∗[1 + (a + b)Nm]2 · (v – v∗)2 +
1
2

(σxv)2
(

1 + bv∗

βv∗x∗2 +
y∗

N2
min

)}

.

From the constant c1 = Nm[1+(a+b)Nm](p+q)2

2pq(1+bv∗) in Theorem 4.1 and the inequality a2 ≤ 2(a –
b∗)2 + 2b∗2, we get

LV2(x, y, v)

≤ –q
(
x – x∗)2 –

p
4
(
y – y∗)2 – A

(
v – v∗)2 +

B
2

(σxv)2

≤ –q
(
x – x∗)2 –

p
4
(
y – y∗)2 – A

(
v – v∗)2 + BNmσ 2[(x – x∗)2 + x∗2]

≤ –
(
q – BNmσ 2)(x – x∗)2 –

p
4
(
y – y∗)2 – A

(
v – v∗)2 + K , (4.1)

or

LV2(x, y, v)

≤ –q
(
x – x∗)2 –

p
4
(
y – y∗)2 – A

(
v – v∗)2 +

B
2

(σxv)2

≤ –q
(
x – x∗)2 –

p
4
(
y – y∗)2 – A

(
v – v∗)2 + BNmσ 2[(v – v∗)2 + v∗2]

≤ –q
(
x – x∗)2 –

p
4
(
y – y∗)2 –

(
A – BNmσ 2)(v – v∗)2 + K , (4.2)

where

A =
pu2

4k2 +
c1bpy∗

v∗[1 + (a + b)Nm]2 ,

B = c1

(
1 + bv∗

βv∗x∗2 +
y∗

N2
min

)

,

K = max
{

BN2
2 σ 2x∗2, BN2

2 σ 2v∗2}.



Wang et al. Advances in Difference Equations        (2020) 2020:493 Page 11 of 14

Hence

dV2(x, y, v) ≤
{

–
(
q – BNmσ 2)(x – x∗)2 –

p
4
(
y – y∗)2 – A

(
v – v∗)2 + K

}

dt

+ c1

[
py∗(1 + ax + bv∗)

βxv∗ –
y∗

y

]
σxv

1 + ax + bv
dB(t),

or

dV2(x, y, v) ≤
{

–q
(
x – x∗)2 –

p
4
(
y – y∗)2 –

(
A – BNmσ 2)(v – v∗)2 + K

}

dt

+ c1

[
py∗(1 + ax + bv∗)

βxv∗ –
y∗

y

]
σxv

1 + ax + bv
dB(t).

Integrating both sides of (4.1) and (4.2) from 0 to t and taking expectations, we obtain

0 ≤ E
[
V2

(
x(t), y(t), v(t)

)]

≤ E
[
V2

(
x(0), y(0), v(0)

)]

+ E
∫ t

0

{

–
(
q – BNmσ 2)(x – x∗)2 –

p
4
(
y – y∗)2 – A

(
v – v∗)2 + K

}

dr,

or

0 ≤ E
[
V2

(
x(t), y(t), v(t)

)]

≤ E
[
V2

(
x(0), y(0), v(0)

)]

+ E
∫ t

0

{

–q
(
x – x∗)2 –

p
4
(
y – y∗)2 –

(
A – BNmσ 2)(v – v∗)2 + K

}

dr.

This implies that

E
∫ t

0

{
(
q – BNmσ 2)(x – x∗)2 +

p
4
(
y – y∗)2 + A

(
v – v∗)2

}

dr

≤ E
[
V

(
x(0), y(0), v(0)

)]
+ Kt,

or

E
∫ t

0

{

q
(
x – x∗)2 +

p
4
(
y – y∗)2 +

(
A – BNmσ 2)(v – v∗)2

}

dr

≤ E
[
V

(
x(0), y(0), v(0)

)]
+ Kt.

Then

lim sup
t→∞

1
t

E
∫ t

0

{
(
q – BNmσ 2)(x – x∗)2 +

p
4
(
y – y∗)2 + A

(
v – v∗)2

}

dr ≤ K ,

or

lim sup
t→∞

1
t

E
∫ t

0

{

q
(
x – x∗)2 +

p
4
(
y – y∗)2 +

(
A – BNmσ 2)(v – v∗)2

}

dr ≤ K .
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By the conditions of the theorem, σ 2 < min{ q
N2

mB , A
N2

mB }, and setting

M = min

{

q – BNmσ 2, A – BNmσ 2,
p
4

}

,

we have

lim sup
t→∞

1
t

E
∫ t

0

[(
x(r) – x∗)2 +

(
y(r) – y∗)2 +

(
v(r) – v∗)2]dr ≤ K

M
.

The theorem is proved. �

5 Numerical simulations
To verify our analytical results, we conduct numerical simulations of the solution of model
(1.2) using the Euler–Maruyama method [23]. Then the discretization equation of the
model (1.2) is

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 = xn + (λ – qxn – βxnvn
1+axn+bvn

)
t – σ xnvn
1+axn+bvn

√

tζ ,

yn+1 = yn + ( βxnvn
1+axn+bvn

– pyn)
t + σ xnvn
1+axn+bvn

ζ ,

vn+1 = vn + (kyn – unvn)
t,

(5.1)

where 
t > 0, and ζ consists of N(0, 1)-distributed independent random variables.
In Theorem 3.2, we take the initial value (6, 9, 14) and parameters λ = 4.8, β = 0.11,

k = 0.8, q = 0.3, p = 0.4, u = 0.5, a = 0.4, b = 0.3, 
t = 10–2, and we compute that R0 ≈
0.9514 < 1 and the uninfected steady state E0 = (16, 0, 0). The intensity of white noise is
relevant to the value of σ . In the simulation, we take different values σ : 0.06 and 0.1, which
conform to the conditions in Theorem 3.2. Figure 1 shows that the solution of the model
(1.2) is stochastically stable under certain conditions, which is consistent with the conclu-
sion of Theorem 3.2. The fluctuations reduce as the noise intensity σ 2 decreases before
the solution up to the uninfected steady state.

Let β = 0.13, and the other parameters be the same as above, then R0 ≈ 1.1243 > 1, and
the infected steady state E∗ ≈ (14.0833, 1.4375, 2.3). Let σ = 0.02 and σ = 0.06, respec-
tively, satisfying conditions of Theorem 4.1. In Fig. 2, the solution of the model (1.2) fluc-
tuates randomly around E∗ ≈ (14.0833, 1.4375, 2.3) of the model (1.1). When σ 2 is smaller,
the fluctuation intensity is smaller and closer to E∗. However, when σ = 0, the conclusions
of models (1.2) and (1.1) are the same.

6 Conclusion
We proposed a new stochastic HIV model with a Beddington–DeAngelis functional re-
sponse in our work, and discussed unique positivity globally and asymptotic behavior of
the solution in the model by constructing various types of Lyapunov functions. More pre-
cisely, when the basic reproductive number is smaller than or equal to 1, the asymptotic
behavior of uninfected steady state is stochastically stable. When the basic reproductive
number is higher than 1, it oscillates randomly around the infected steady state in the
corresponding deterministic HIV model. In the numerical simulations, we take different
noise intensities under certain conditions and the transmission coefficients but keep the
other parameters unchanged to be verify our results. Moreover, when the noise intensity
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Figure 1 Given R0 < 1, the relationship between trajectories of deterministic model (1.1) and stochastic
model (1.2)

Figure 2 Given R0 > 1, the relationship between trajectories of deterministic model (1.1) and stochastic
model (1.2)

decreases, oscillations around the corresponding deterministic model reduce. Our model
can well reflect the mutual interference between the concentration of uninfected CD4+ T
cells and HIV viruses biologically. The Beddington–DeAngelis functional response of the
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infection rate of HIV with additional noise conforms to the randomness in real systems.
These results can extend HIV models but the threshold of the noise intensity was rather
small, which is improved in this paper.
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