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Abstract
The aim of this work is to study qualitative properties of solutions for a fourth-order
neutral nonlinear differential equation, driven by a p-Laplace differential operator.
Some oscillation criteria for the equation under study have been obtained by
comparison theory. The obtained results improve the well-known oscillation results
present in the literature. Some examples are provided to show the applicability of the
obtained results.
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1 Introduction
Differential equations of fourth-order appear in models concerning biological, physical,
and chemical phenomena, optimization, mathematics of networks, dynamical systems,
see [1].

We study the oscillatory behavior of the fourth-order neutral nonlinear differential
equation of the form

⎧
⎨

⎩

(r(x)|w′′′(x)|p1–2w′′′(x))′ +
∑j

i=1 qi(x)|u′′′(ϑi(x))|p2–2u′′′(ϑi(x)) = 0,

j ≥ 1, p2 ≥ p1, r(x) > 0, r′(x) ≥ 0, x ≥ x0 > 0,
(1)

where w(x) := u(x) + a(x)u(τ (x)) and the first term means the p-Laplace-type operator
(1 < pi < ∞, i = 1, 2). The main results are obtained under the following conditions:
r ∈ C[x0,∞), a, qi ∈ C[x0,∞), qi(x) > 0, 0 ≤ a(x) < a0 < 1, τ ,ϑi ∈ C[x0,∞), τ (x) ≤ x,
limx→∞ τ (x) = limx→∞ ϑi(x) = ∞, i = 1, 2, . . . , j, and under the condition

∫ ∞

x0

1
r1/(p1–1)(s)

ds = ∞. (2)

The p-Laplace equations have some significant applications in elasticity theory and con-
tinuum mechanics, see [2] (power-law fluids), and in general in nonlinear phenomena, see
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[3] (capillary phenomena). For some results concerning the oscillatory behavior of equa-
tions driven by a p-Laplace differential operator, we mention the papers [4–6].

In [7], the authors used a classical variational approach based on the critical points the-
ory to prove the existence of at least one nontrivial weak solution of a double-phase Dirich-
let problem. Here the differential operator of the problem is the sum of two p-Laplacian-
type operators with variable exponents. This fact could provide new ideas for further in-
vestigations. The authors characterized the continuous spectrum of double-phase equa-
tions (to improve the regularity theory for such a kind of operators and classify solutions).

Nastasi [8] established an existence result of a nontrivial weak solution to (p, q)- Lapla-
cian problem on a noncompact Riemannian manifold. The special setting led the author to
develop the Maz’ya’s approach, by working with isocapacitary inequalities to characterize
the compact embeddings.

2 Mathematical background—hypotheses
In this section we collect some relevant facts and auxiliary results from the existing liter-
ature. Also, we fix the notation.

Currently, researchers have become more concerned with the topic of oscillation of dif-
ferential equations in [9–27]. Li et al. [4], using the Riccati transformation together with
integral averaging technique, focused on the oscillations of the equation

⎧
⎨

⎩

(r(x)|w′′′(x)|p–2w′′′(x))′ +
∑j

i=1 qi(x)|y(δi(x))|p–2y(ϑi(x)) = 0,

1 < p < ∞, x ≥ x0 > 0.

In [28, 29], the comparison method with first and second order equations was used to
investigate every solution u of

⎧
⎨

⎩

(r(x)|u(n–1)(x)|p–2u(n–1)(x))′ +
∑j

i=1 qi(x)g(u(ϑi(x))) = 0,

j ≥ 1, x ≥ x0 > 0,

where n is even and p > 1 is a real number, in the case where ϑi(x) ≥ υ (with r ∈
C1((0,∞),R), qi ∈ C([0,∞),R), i = 1, 2, . . . , j).

We point out that Bazighifan [30] gave us some results providing information on the
oscillation of equations

⎧
⎨

⎩

(r(x)|u′′′(x)|p1–2u′′′(x))′ + q(x)|u′′′(g1(x))|p2–2u′′′(g1(x)) = 0,

r(x) > 0, r′(x) ≥ 0, p2 ≥ p1, x ≥ x0 > 0,

where n is even. This time, the author used the comparison method with second order
equations.

The authors of [31], using the Riccati technique, derived oscillation conditions of

⎧
⎨

⎩

(r(x)|u(n–1)(x)|p–2u(n–1)(x))′ + q(x)g(u(ϑ(x))) = 0,

1 < p < ∞,

where n is even.
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As we already mentioned in the Introduction, our aim here is to provide complementary
results to [28, 29, 31]. For this purpose we briefly discuss these results.

Definition 2.1 Define sequences of functions {δn(x)}∞n=0 and {σn(x)}∞n=0 as

δ0(x) = ξ∗(x) and σ0(x) = η∗(x),

δn(x) = δ0(x) +
∫ ∞

x
R1(x)δp1/(p1–1)

n–1 (s) ds, n ≥ 1

σn(x) = σ0(x) +
∫ ∞

x
σ

p1/(p1–1)
n–1 (s) ds, n ≥ 1.

(3)

We see by induction that δn(x) ≤ δn+1(x) and σn(x) ≤ σn+1(x) for x ≥ x0, n ≥ 1.

Now, we are ready to introduce the precise hypotheses on the data of (1):
(H1) u is an eventually positive solution of (1).
(H2) Let B(x) = (p1 – 1)ε ϑ2

i (x)ζϑ ′
i (x)

r1/(p1–1)(x)
and φ1(x) =

∫ ∞
x A(s) ds be such that

lim inf
x→∞

1
φ1(x)

∫ ∞

x
B(s)φ

p1
(p1–1)

1 (s) ds >
p1 – 1

pp1/(p1–1)
1

, (4)

where

A(x) =
j∑

i=1

qi(x)(1 – a0)p2–1Mp1–p2
(
ϑi(x)

)
.

(H3) For some μ ∈ (0, 1), there are positive constants M1, M2such that

lim inf
x→∞

1
ξ∗(x)

∫ ∞

x
R1(s)ξp1/(p1–1)

∗ (s) ds >
(p1 – 1)
pp1/(p1–1)

1

(5)

and

lim inf
x→∞

1
η∗(x)

∫ ∞

x0

η2
∗(s) ds >

1
4

, (6)

where

R1(x) := (p1 – 1)μ
x2

2r1/(p1–1)(x)
,

ξ (x) :=
j∑

i=1

qi(x)(1 – a0)p2–1Mp2–p1
1 ε1

(
ϑi(x)

x

)3(p2–1)

,

η(x) := (1 – a0)p2/p1 Mp2/(p1–2)
2

∫ ∞

x

(
1

r(δ)

∫ ∞

δ

j∑

i=1

qi(s)
ϑ

p2–1
i (s)
sp2–1 ds

)1/(p1–1)

dδ,

ξ∗(x) =
∫ ∞

x
ξ (s) ds and η∗(x) =

∫ ∞

x
η(s) ds.
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(H4) For some μ1 ∈ (0, 1), we have

lim sup
x→∞

(
μ1x3

6r1/(p1–1)(x)

)p1–1

δn(x) > 1 (7)

and

lim sup
x→∞

λxσn(x) > 1, (8)

for some n.
(H5) For some n, we have

∫ ∞

x0

ξ (x) exp

(∫ x

x0

R1(s)δ1/(p1–1)
n (s) ds

)

dx = ∞ (9)

and

∫ ∞

x0

η(x) exp

(∫ x

x0

σ 1/(p1–1)
n (s) ds

)

dx = ∞. (10)

3 Main results
Next, we mention some important lemmas:

Lemma 3.1 ([32]) Let w satisfy w(i)(x) > 0, i = 0, 1, . . . , n, and w(n+1)(x) < 0 eventually. Then,
for every ε1 ∈ (0, 1), w(x)/w′(x) ≥ ε1x/n eventually.

Lemma 3.2 ([10]) Let w satisfy w(x) > 0 and w(n–1)(x)w(n)(x) ≤ 0, x ≥ xw, then there exist
constants θ , 0 < θ < 1and ε > 0 such that

w′(θx) ≥ εxn–2w(n–1)(x),

for all sufficiently large x.

Lemma 3.3 ([33]) Let w satisfy w(n–1)(x)w(n)(x) ≤ 0 and limx→∞ w(x) 	= 0, then

w(x) ≥ μ

(n – 1)!
xn–1∣∣w(n–1)(x)

∣
∣ for μ ∈ (0, 1).

Lemma 3.4 ([34]) If (H1) holds, then we can distinguish the following situations:

(G1) w(k)(x) > 0, k = 1, 2, 3,

(G2) w(k)(x) > 0, k = 1, 3, and w′′(x) < 0,

for x ≥ x1, where x1 ≥ x0 is sufficiently large.

Theorem 3.1 If (H2) holds, then (1) is oscillatory.
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Proof Let (H1) hold, then there exists an x1 ≥ x0 such that u(x) > 0, u(τ (x)) > 0 and
u(ϑi(x)) > 0 for x ≥ x1. Since r′(x) > 0, we have

w(x) > 0, w′(x) > 0, w′′′(x) > 0,

w(4)(x) < 0 and
(
r(x)

(
w′′′(x)

)p1–1)′ ≤ 0,
(11)

for x ≥ x1. From the definition of w, we get

u(x) ≥ w(x) – a0u
(
τ (x)

) ≥ w(x) – a0w
(
τ (x)

) ≥ (1 – a0)w(x),

which together with (1) gives

(
r(x)

(
w′′′(x)

)p1–1)′ ≤ –
j∑

i=1

qi(x)(1 – a0)p2–1wp2–1(ϑi(x)
)
. (12)

Define

� (x) :=
r(x)(w′′′(x))p1–1

wp1–1(ζϑi(x))
, (13)

for some a constant ζ ∈ (0, 1). By differentiating the above and using (12), we get

� ′(x) ≤ –
∑j

i=1 qi(x)(1 – a0)p2–1wp2–1(ϑi(x))
wp1–1(ζϑi(x))

– (p1 – 1)
r(x)(w′′′(x))p1–1w′(ζϑi(x))ζϑ ′

i (x)
wp1 (ζϑi(x))

.

From Lemma 3.2, there exists a constant ε > 0 such that

� ′(x) ≤ –
j∑

i=1

qi(x)(1 – a0)p2–1wp2–p1
(
ϑi(x)

)

– (p1 – 1)
r(x)(w′′′(x))p1–1εϑ2

i (x)w′′′(ϑi(x))ζϑ ′
i (x)

wp1 (ζϑi(x))
,

which implies

� ′(x) ≤ –
j∑

i=1

qi(x)(1 – a0)p2–1wp2–p1
(
ϑi(x)

)
– (p1 – 1)ε

r(x)ϑ2
i (x)ζϑ ′

i (x)(w′′′(x))p1

wp1 (ζϑi(x))
.

Using (13), we find

� ′(x) ≤ –
j∑

i=1

qi(x)(1 – a0)p2–1wp2–p1
(
ϑi(x)

)
– (p1 – 1)ε

ϑ2
i (x)ζϑ ′

i (x)
r1/(p1–1)(x)

� p1/(p1–1)(x). (14)

Since w′(x) > 0, there exist an x2 ≥ x1 and a constant M > 0 such that

w(x) > M.
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Then, (14) turns into

� ′(x) ≤ –
j∑

i=1

qi(x)(1 – a0)p2–1Mp2–p1
(
ϑi(x)

)
– (p1 – 1)ε

ϑ2
i (x)ζϑ ′

i (x)
r1/(p1–1)(x)

� p1/(p1–1)(x),

that is,

� ′(x) + A(x) + B(x)� p1/(p1–1)(x) ≤ 0. (15)

Integrating (15) from x to l, we obtain

� (l) – � (x) +
∫ l

x
A(s) ds +

∫ l

x
B(s)� p1/(p1–1)(s) ds ≤ 0.

Letting l → ∞ and using � > 0 and � ′ < 0, we have

� (x) ≥ φ1(x) +
∫ ∞

x
B(s)� p1/(p1–1)(s) ds.

This implies

� (x)
φ1(x)

≥ 1 +
1

φ1(x)

∫ ∞

x
B(s)φp1/(p1–1)

1 (s)
(

� (s)
φ1(s)

)p1/(p1–1)

ds. (16)

Let λ = infx≥x � (x)/φ1(x), then obviously λ ≥ 1. So, from (4) and (16), we find

λ ≥ 1 + (p1 – 1)
(

λ

p1

)p1/(p1–1)

,

or

λ

p1
≥ 1

p1
+

(p1 – 1)
p1

(
λ

p1

)p1/(p1–1)

,

which contradicts λ ≥ 1 and (p1 – 1) > 0.
The proof is complete. �

Theorem 3.2 If (H3) holds, then (1) is oscillatory.

Proof Let (1) have a nonoscillatory solution in [x0,∞). Without loss of generality, we let
u(x) > 0. Then, there exists an x1 ≥ x0 such that u(τ (x)) > 0 and u(ϑi(x)) > 0 for x ≥ x1.
From Lemma 3.4, there are two cases (G1) and (G2).

For case (G1), define

ω(x) :=
r(x)(w′′′(x))p1–1

wp1–1(x)
. (17)

From (12), we obtain

ω′(x) ≤ –
j∑

i=1

qi(x)(1 – a0)p2–1 wp2–1(ϑi(x))
wp1–1(x)

– (p1 – 1)
r(x)(w′′′(x))p1–1

wp1 (x)
w′(x). (18)
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From Lemma 3.1, we find

w′(x)
w(x)

≤ 3
ε1x

.

Integrating again from ϑi(x) to x, we find

w(ϑi(x))
w(x)

≥ ε1
ϑ3

i (x)
x3 . (19)

It follows from Lemma 3.3 that

w′(x) ≥ μ1

2
x2w′′′(x), (20)

for all μ1 ∈ (0, 1). Since w′(x) > 0, there exists an x2 ≥ x1 such that

w(x) > M. (21)

From (18), (19), (20), and (21), we obtain

ω′(x) +
j∑

i=1

qi(x)(1 – a0)p2–1Mp2–p1
1 ε1

(
ϑi(x)

x

)3(p2–1)

+
(p1 – 1)μx2

2r1/(p1–1)(x)
ωp1/(p1–1)(x) ≤ 0,

that is,

ω′(x) + ξ (x) + R1(x)ωp1/(p1–1)(x) ≤ 0. (22)

Integrating (22) from x to l, we find

ω(l) – ω(x) +
∫ l

x
ξ (s) ds +

∫ l

x
R1(s)ωp1/(p1–1)(s) ds ≤ 0.

Letting l → ∞ and using ω > 0, ω′ < 0, we get

ω(x) ≥ ξ∗(x) +
∫ ∞

x
R1(s)ωp1/(p1–1)(s) ds. (23)

This implies

ω(x)
ξ ∗(x)

≥ 1 +
1

ξ∗(x)

∫ ∞

x
R1(s)ξp1/(p1–1)

∗ (s)
(

ω(s)
ξ∗(s)

)p1/(p1–1)

ds. (24)

Let λ = infx≥x ω(x)/ξ∗(x), then λ ≥ 1. So, from (5) and (24), we obtain

λ ≥ 1 + (p1 – 1)
(

λ

p1

)p1/(p1–1)

,

or

λ

p1
≥ 1

p1
+

(p1 – 1)
p1

(
λ

p1

)p1/(p1–1)

,



Bazighifan and Aljohani Advances in Difference Equations        (2020) 2020:454 Page 8 of 12

which contradicts λ ≥ 1 and (p1 – 1) > 0.
For case (G2), integrating (12) from x to m, we obtain

r(m)
(
w′′′(m)

)p1–1 – r(x)
(
w′′′(x)

)p1–1 ≤ –
∫ m

x

j∑

i=1

qi(s)(1 – a0)p2–1wp2–1(ϑi(s)
)

ds. (25)

From Lemma 3.1, we find

w(x) ≥ ε1xw′(x) and hence w
(
ϑi(x)

) ≥ ε1
ϑi(x)

x
w(x). (26)

For (25), letting m → ∞ and using (26), we see that

r(x)
(
w′′′(x)

)p1–1 ≥ ε1(1 – a0)p2–1wp2–1(x)
∫ ∞

x

j∑

i=1

qi(s)
ϑ

p2–1
i (s)
sp2–1 ds. (27)

Integrating (27) from x to ∞, we obtain

w′′(x) ≤ –ε1(1 – a0)p2/p1 wp2/p1 (x)
∫ ∞

x

(
1

r(δ)

∫ ∞

δ

j∑

i=1

qi(s)
ϑ

p2–1
i (s)
sp2–1 ds

)1/(p1–1)

dδ, (28)

for all ε1 ∈ (0, 1). Define

y(x) =
w′(x)
w(x)

.

By differentiating y and from (21) and (28), we see that

y′(x) ≤ –y2(x)

– (1 – a0)p2/p1 M(p2/p1)–1
∫ ∞

x

(
1

r(δ)

∫ ∞

δ

j∑

i=1

qi(s)
ϑ

p2–1
i (s)
sp2–1 ds

)1/(p1–1)

dδ, (29)

hence

y′(x) + η(x) + y2(x) ≤ 0. (30)

The rest of the proof of the case where (G2) holds is the same as that of case (G1). Thus,
the proof is complete. �

Theorem 3.3 If (H4) holds, then (1) is oscillatory.

Proof Proceeding as in the proof of Theorem 3.2, in the case (G1), we see that (20) holds.
By Lemma 3.3, we find

w(x) ≥ μ1

6
x3w′′′(x). (31)

From (17) and (31), we get

1
ω(x)

=
1

r(x)

(
w(x)

w′′′(x)

)p1–1

≥ 1
r(x)

(
μ1

6
x3

)p1–1

.
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Thus,

ω(x)
(

μ1x3

6r1/(p1–1)(x)

)p1–1

≤ 1.

Therefore,

lim sup
x→∞

ω(x)
(

μ1x3

6r1/(p1–1)(x)

)p1–1

≤ 1,

which contradicts (7).
The rest of the proof is the same as that for the case (G2). Theorem 3.3 is proved. �

Corollary 3.1 If (H5) holds, then (1) is oscillatory.

Proof Proceeding as in the proof of Theorem 3.2, in the case (G1), from (23) we obtain
ω(x) ≥ δ0(x).

By induction we can also see that ω(x) ≥ δn(x) for x ≥ x0, n > 1. Since the se-
quence {δn(x)}∞n=0 is monotone increasing and bounded above, it converges to δ(x). Using
Lebesgue’s monotone convergence theorem, we find

δ(x) = lim
n→∞ δn(x) =

∫ ∞

x
R1(x)δp1/(p1–1)(s) ds + δ0(x)

and

δ′(x) = –R1(x)δp1/(p1–1)(x) – ξ (x). (32)

Since δn(x) ≤ δ(x), it follows from (32) that

δ′(x) ≤ –R1(x)δ1/(p1–1)
n (x)δ(x) – ξ (x).

Hence, we get

δ(x) ≤ exp

(

–
∫ x

x
R1(s)δ1/(p1–1)

n (s) ds
)(

δ(x)–
∫ x

x
ξ (s) exp

(∫ s

x
R1(δ)δ1/(p1–1)

n (δ) dδ

)

ds
)

.

This implies

∫ x

x
ξ (s) exp

(∫ s

x
R1(δ)δ1/(p1–1)

n (δ)dδ

)

ds ≤ δ(x) < ∞,

which contradicts (9). The proof of the case where (G2) holds is the same as that of (G1).
Corollary 3.1 is proved. �

Example 3.1 Consider the differential equation

(

u(x) +
1
2

u
(

x
2

))(4)

+
q0

x4 u
(

x
3

)

= 0, (33)
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where q0 > 0. Let p1 = p2 = 2, r(x) = 1, a(x) = 1/2, τ (x) = x/2, ϑ(x) = x/3, and q(x) = q0/x4.
Then

A(x) =
j∑

i=1

qi(x)(1 – a0)(p2–1)Mp2–p1
(
ϑi(x)

)
=

q0

2x4 ,

B(x) = (p1 – 1)ε
ϑ2

i (x)ζϑ ′
i (x)

r1/(p1–1)(x)
=

εx2

27
,

φ1(x) =
q0

6x3

and

lim inf
x→∞

1
φ1(x)

∫ ∞

x
B(s)φp1/(p1–1)

1 (s) ds >
(p1 – 1)
pp1/(p1–1)

1

,

lim inf
x→∞

6εq0x3

972

∫ ∞

x

ds
s4 >

1
4

,

q0 > 121.5ε,

for some ε > 0. Thus, by Theorem 3.1, every solution of equation (33) is oscillatory if q0 >
121.5ε.

Example 3.2 Consider a differential equation

(
u(x) + a0u(τ0x)

)(n) +
q0

xn u(ϑ0x) = 0, q0 > 0. (34)

Let p = 2, x0 = 1, r(x) = 1, a(x) = a0, τ (x) = τ0x, ϑ(x) = ϑ0x,and q(x) = q0/xn. Then we easily
see that condition (5) holds and condition (6) is satisfied. Hence, by Theorem 3.2, every
solution of equation (34) is oscillatory.

4 Conclusions
Our aim of this article was to study the qualitative behavior of a fourth-order neutral non-
linear differential equation, driven by a p-Laplace differential operator. The obtained oscil-
lation theorems complement the well-known oscillation results present in the literature.
In this line of work, one can investigate oscillatory conditions for a fourth-order equation
of the type:

⎧
⎨

⎩

(r(x)|y′′′(x)|p1–2y′′′(x))′ + a(x)f (y′′′(x)) +
∑j

i=1 qi(x)|y(σi(x))|p2–2y(σi(x)) = 0,

x ≥ x0, σi(x) ≤ x, j ≥ 1, 1 < p2 ≤ p1 < ∞.

which is of interest to the authors, in particular, the case of p2 > p1.
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