
Zhao et al. Advances in Difference Equations        (2020) 2020:474 
https://doi.org/10.1186/s13662-020-02903-7

R E S E A R C H Open Access

A study on input noise second-order filtering
and smoothing of linear stochastic discrete
systems with packet dropouts
Huihong Zhao1, Zhifang Li1, Bin Li1 and Tongxing Li2*

*Correspondence:
litongx2007@163.com
2School of Control Science and
Engineering, Shandong University,
Jinan, Shandong 250061, P.R. China
Full list of author information is
available at the end of the article

Abstract
We investigate non-Gaussian noise second-order filtering and fixed-order smoothing
problems for non-Gaussian stochastic discrete systems with packet dropouts. We
present a novel Kalman-like nonlinear non-Gaussian noise estimation approach
based on the packet dropout probability distribution and polynomial filtering
technique. By means of properties of Kronecker product we first introduce a
second-order polynomial extended system and then analyze the means and
variances of the Kronecker powers of the extended system noises. To generate noise
estimators in forms of filtering and smoothing, we use the innovation approach. We
give an example to illustrate that the presented algorithm has better robustness
against packet dropouts than conventional linear minimum variance estimation.

Keywords: Non-Gaussian stochastic discrete systems; Packet dropouts; Polynomial
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1 Introduction
During the last three decades, the estimation problem of input noise has become an ac-
tive field in industry and has a wide range of applications in fault detection, petroleum
prospecting, image restoration, speech processing, and so forth [1–6]. The Kalman de-
convolution filter approach applied to the reflection coefficient sequence estimate in oil
exploration was first proposed in [3]. Later on, the optimal frequency domain deconvolu-
tion estimator was derived by employing the polynomial method [7]. Based on the innova-
tion analysis approach, a unified white noise estimator design approach for the autoregres-
sive moving average innovation model was given in [8]. Recently, deconvolution studies
have mainly focused on multisensor systems [9, 10] and packet dropout systems [11–13].
Because of the limitation of the communication bandwidth, service capacity, and carry-
ing capacity of the network control systems, packet dropouts inevitably exist in the data
transmission, which lead to the performance degradation or even instability of the control
systems [14]. If it cannot be detected and processed in a timely manner, then it inevitably
results in huge losses of personnel and property. Besides, it is worth noting that the in-
put Gaussian noise hypothesis is the basis of the results mentioned, but the non-Gaussian
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input noise is widespread in numerous important applications [15–19]. Inspired by this
discussion, we design a novel nonlinear input noise observer for linear stochastic discrete
systems with packet dropouts.

The estimation theory of non-Gaussian systems has become more and more influen-
tial in many technical fields, and therefore numerous meaningful attempts have been de-
voted to it [15, 20–23]. The non-Gaussian input noise and system state joint estimator
was presented for discrete-time nonlinear non-Gaussian systems in [20], where the state
posterior distribution was iteratively computed by utilizing the Gaussian sum filtering,
and the noise parameter posterior distribution was calculated by applying the variational
Bayesian method, respectively. By selecting a suitable system noise a particle estimator
with higher efficiency was constructed for nonlinear non-Gaussian systems in [21]. Based
on the mixed l1 and l2 norm minimum performance index, an adaptive filter was presented
for a class of systems in non-Gaussian and nonlinear manner in [22], where the tuning
factor γ was determined by using the projection statistics algorithm. A Tobit Kalman-like
estimator was proposed by converting the system with time-correlated and non-Gaussian
noises into a Gaussian system with unknown noises covariances in [23]. In [24], by exploit-
ing the Kronecker power of the system states and measurements a nonlinear estimator
(called polynomial filtering) was first given for linear non-Gaussian systems, and it was
proved that the accuracy of the nonlinear algorithm was higher than that of the classical
Kalman filter. Later on, the result in [24] was successfully applied to time-varying systems
[25], stochastic bilinear systems [26], general nonlinear stochastic systems [27], and mul-
tisensor systems with uncertain observations [28]. In this paper, we use the polynomial
filtering theory to investigate the second-order polynomial estimator design problem for
a class of packet dropout systems in non-Gaussian manner.

Until now, the research of estimator design of systems in packet dropouts and non-
Gaussian manner mainly focuses on state estimate case, but the input noise estimate case
is rarely reported. In this study, we propose a design method of input noise nonlinear
estimator for this kind of systems. We formulate a new augmented system based on the
given system with stochastic packet dropouts by utilizing the original and second-order
Kronecker products of the states and observations in the original system. Moreover, we
derive the stochastic characteristics of the augmented system by employing some Kro-
necker algebra rules. Then we adopt the classical Kalman projection theory to produce
the recursive second-order polynomial non-Gaussian noise estimator. The main innova-
tions and characteristics of this paper are as follows: (i) to the best of our knowledge,
the nonlinear (second-order) estimation of input noise for linear stochastic systems with
packet dropouts is investigated for the first time; (ii) a recursive analytical solution of the
nonlinear (second-order) estimation of input noise is presented, which can not only real-
ize real-time noise signal estimation, but also has more theoretical significance than the
numerical solution.

The rest of our work is arranged as follows. In Sect. 2, we introduce the linear, non-
Gaussian, discrete-time, and packet dropout state-space model and define the input noise
second-order minimum variance estimation issue. In Sect. 3, we obtain the second-order
least-squares filter and fixed-lag smoother of the input noise based on the parameters
and stochastic characteristics of a fictitious second-order state-space model. In Sect. 4,
we propose a linear input noise recursive estimator by utilizing the classical innovation
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orthogonal projection theory and compare the performances of linear and second-order
noise estimators using an example. Finally, we summarize the research results.

2 Problem statement and preliminaries
Let us introduce the packet dropout state-space model to be discussed:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(i + 1) = A(i)x(i) + B(i)w(i),

y(i) = λ(i)H(i)x(i) + D(i)w(i),

z(i) = L(i)w(i),

x(0) = x0,

(1)

where i ∈ N is the discrete-time index, x(i) ∈ R
n is the unknown system state, y(i) ∈ R

m

is the system measurement, z(i) ∈ R
q is the noise combination to be used for estimation,

and A(i) ∈ R
n×n, H(i) ∈ R

m×n, B(i) ∈ R
n×r , D(i) ∈ R

m×r , and L(i) ∈ R
q×r are real known

time-varying matrices.

Assumption 1 The initial condition x0 ∈ R
n is a non-Gaussian process independent of

{w(i)} that satisfies
⎧
⎨

⎩

E{x0} = 0,

E{x[k]
0 } = Ψ0,k , k = 2, 3, 4.

(2)

Assumption 2 The variable w(i) ∈ R
r is a zero-mean real vector-valued finite known

fourth-order non-Gaussian process satisfying
⎧
⎨

⎩

E{w(i)} = 0,

E{w[k](i)} = Ψw,k , k = 2, 3, 4.
(3)

According to Assumption 2 and the stack operation, we have

st–1Ψw,2 = E
{

w(i) · wT (i)
}

. (4)

Assumption 3 The binary (0 or 1) stochastic sequence {λ(i)} ∈ R obeys the following
probability distribution:

⎧
⎨

⎩

Pr{λ(i) = 1} = p(i),

Pr{λ(i) = 0} = 1 – p(i),

where p(i) ∈R is greater than or equal to zero.

The second-order non-Gaussian noise estimation under investigation is as follows: given
s ∈ N and based on a measurement sequence {{y(j)}i+s

j=0}, find a second-order polynomial
estimator ẑ(i|i + s) of z(i) that minimizes the mean-squared estimation error.

Remark 1 Similarly to the Kalman filter case, the second-order polynomial estimator
ẑ(i|i + s) is a second-order filter when s = 0 and a second-order fixed-order smoother when
s > 0.
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3 Main results
In this section, we first construct a second-order extended stochastic system based on
Kronecker algebra and non-Gaussian noise hypothesis. Then we design the second-order
non-Gaussian noise filter and smoother by utilizing the stochastic properties of the ex-
tended system and projection formula.

3.1 The second-order extended system
First, the second-order state vector and measurement vector are defined as follows:

xe(i) �
[

x(i)
x[2](i)

]

– E

[
x(i)

x[2](i)

]

, (5)

ye(i) �
[

y(i)
y[2](i)

]

– E

[
y(i)

y[2](i)

]

. (6)

By (1), (3), and (4) we arrive at

x[2](i + 1) =
[
A(i)x(i) + B(i)w(i)

] ⊗ [
A(i)x(i) + B(i)w(i)

]

= A[2](i)x[2](i) +
(
A(i)x(i)

) ⊗ (
B(i)w(i)

)

+
(
B(i)w(i)

) ⊗ (
A(i)x(i)

)
+ B[2](i)w[2](i)

= A[2](i)x[2](i) + l(i), (7)

where

l(i) =
(
A(i)x(i)

) ⊗ (
B(i)w(i)

)
+ B[2](i)w[2](i) +

(
B(i)w(i)

) ⊗ (
A(i)x(i)

)

=
(
I + OT

n,n
)[(

A(i)x(i)
) ⊗ (

B(i)w(i)
)]

+ B[2](i)w[2](i)

=
(
I + OT

n,n
)((

A(i)x(i)
) ⊗ I

)(
B(i)w(i)

)
+ B[2](i)w[2](i).

To construct a fictitious second-order state-space model, we further calculate the fol-
lowing quadratic measurement output:

y[2](i) = λ[2](i)H[2](i)x[2](i) +
(
λ(i)H(i)x(i)

) ⊗ (
D(i)w(i)

)

+
(
D(i)w(i)

) ⊗ (
λ(i)H(i)x(i)

)
+ D[2](i)w[2](i)

= λ[2](i)H[2](i)x[2](i) +
(
I + OT

m,m
)[(

λ(i)H(i)x(i)
) ⊗ (

D(i)w(i)
)]

+ D[2](i)w[2](i). (8)

The second-order extended system according to the following equations is yielded by
substituting (1) and (7) into (5) and substituting (1) and (8) into (6):

⎧
⎨

⎩

xe(i + 1) = Ae(i)xe(i) + ue(i),

ye(i) = De(i)He(i)xe(i) + we(i),
(9)
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where the system matrix parameters are

⎧
⎪⎪⎨

⎪⎪⎩

Ae(i) = diag{A(i),A[2](i)},
De(i) = diag{λ(i)I ,λ[2](i)I},
He(i) = diag{H(i),H[2](i)},

and

⎧
⎪⎪⎨

⎪⎪⎩

ue(i) =
[ ue,11(i)

ue,21(i)
]
,

ue,11(i) = B(i)w(i),

ue,21(i) = (I + OT
n,n)[(A(i)x(i)) ⊗ (B(i)w(i))] + B[2](i)(w[2](i) – ΨN ,2),

(10)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

we(i) =
[ we,11(i)

we,21(i)
]
,

we,11(i) = D(i)w(i) + [λ(i) – p(i)]H(i)E[x(i)],

we,21(i) = (I + OT
m,m)[(λ(i)H(i)x(i)) ⊗ (D(i)w(i))]

+ [λ[2](i) – p(i)]H[2](i)E[x[2](i)]

+ D[2](i)(w[2](i) – Ψw,2).

(11)

Then, from the preceding results and Kronecker algebra we come to the following con-
clusion.

Lemma 1 The driving noises {ue(i)} and measurement noises {we(i)} in (9), i ∈N, satisfy
the following conditions:

E
{

ue(i)
}

= E
{

we(i)
}

= 0,

E
{

ue(i) · uT
e (j)

}
= Q(i)δij =

[
Q11(i) Q12(i)
QT

12(i) Q22(i)

]

δij, (12)

E
{

we(i) · wT
e (j)

}
= R(i)δij =

[
R11(i) R12(i)
RT

12(i) R22(i)

]

δij, (13)

E
{

ue(i) · wT
e (j)

}
= S(i)δij =

[
S11(i) S12(i)
S21(i) S22(i)

]

δij, (14)

where the block matrices in (12)–(14) are

Q11(i) = B(i)
(
st–1Ψw,2

)
BT (i),

Q12(i) = st–1[B[3](i)Ψw,3
]
,

Q22(i) =
(
I + OT

n,n
)[(

A(i)Π0(i)AT (i)
) ⊗ (

B(i)
(
st–1Ψw,2

)
BT (i)

)]

× (
I + OT

n,n
)

+ B[2](i)
{

st–1(Ψw,4 – Ψ
[2]

w,2
)}
B[2]T (i),

R11(i) = D(i)
(
st–1Ψw,2

)
DT (i), (15)

R12(i) = st–1[D[3](i)Ψw,3
]
, (16)
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R22(i) =
(
I + OT

m,m
)[(

p(i)H(i)Π0(i)HT (i)
)

⊗ (
D(i)

(
st–1Ψw,2

)
DT (i)

)](
I + OT

m,m
)

+ D[2](i)
{

st–1(Ψw,4 – Ψ
[2]

w,2
)}
D[2]T (i)

+
(
p(i) – p2(i)

)
H[2](i)E

[
x[2](i)

]
ET[

x[2](i)
]
H[2]T (i), (17)

S11(i) = B(i)
(
st–1Ψw,2

)
DT (i), (18)

S12(i) = st–1{[D[2](i) ⊗B(i)
]
Ψw,3

}
, (19)

S21(i) = st–1{[D(i) ⊗B[2](i)
]
Ψw,3

}
, (20)

S22(i) =
(
I + OT

n,n
)[(

p(i)A(i)Π0(i)HT (i)
)

⊗ (
B(i)

(
st–1Ψw,2

)
DT (i)

)](
I + OT

m,m
)

+ B[2](i)
{

st–1(Ψw,4 – Ψ
[2]

w,2
)}
D[2]T (i), (21)

Π0(i + 1) = A(i)Π0(i)AT (i) + B(i)
(
st–1Ψw,2

)
BT (i),

E
[
x[2](i + 1)

]
= A[2](i)E

[
x[2](i)

]
+ B[2](i)Ψw,2,

E
[
x[2](0)

]
= Ψx,2.

Proof From the hypotheses of state-space model (1) it is known that the additive process
w(i) is independent of x0 and satisfies

E
{

w(i)
}

= 0, E
{

w[k](i)
}

= Ψw,k , k = 2, 3, 4.

From (10) and (11) we can derive the following formulas:

E
{

ue(i)
}

= E
{

we(i)
}

= 0, i ∈N,

E
{

ue(i) · uT
e (j)

}
= 0, i �= j,

E
{

we(i) · wT
e (j)

}
= 0, i �= j.

Combining (10) and (12), Q11(i) can be given by

Q11(i) = E
{
B(i)w(i)wT (i)BT (i)

}

= B(i)
(
st–1Ψw,2

)
BT (i).

Substituting (10) into Q(i) and utilizing E{w(i) · xT
0 } = 0, we obtain

Q12(i) = E
{
B(i)w(i)

[
B[2](i)

(
w[2](i) – Ψw,2

)]T}

= E
{

st–1{[B[2](i)
(
w[2](i) – Ψw,2

)] ⊗ (
B(i)w(i)

)}}

= E
{

st–1{[B[2](i) ⊗B(i)
][(

w[2](i) – Ψw,2
) ⊗ w(i)

]}}

= st–1[B[3](i)Ψw,3
]
. (22)
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Moreover, we have

Q22(i) = E
{[(

I + OT
n,n

)[(
A(i)x(i)

) ⊗ (
B(i)w(i)

)]

+ B[2](i)
(
w[2](i) – Ψw,2

)][(
I + OT

n,n
)[(

A(i)x(i)
) ⊗ (

B(i)w(i)
)]

+ B[2](i)
(
w[2](i) – Ψw,2

)]T}

= E
{(
I + OT

n,n
)[(

A(i)x(i)
) ⊗ (

B(i)w(i)
)]

× [(
A(i)x(i)

) ⊗ (
B(i)w(i)

)]T(
I + OT

n,n
)T}

+ E
{
B[2](i)

(
w[2](i) – Ψw,2

)(
w[2](i) – Ψw,2

)TB[2]T (i)
}

= E
{(
I + OT

n,n
)[(

A(i)x(i)xT (i)AT (i)
) ⊗ (

B(i)w(i)wT (i)BT (i)
)](

I + OT
n,n

)T}

+ E
{
B[2](i)st–1[(w[2](i) – Ψw,2

) ⊗ (
w[2](i) – Ψw,2

)]
B[2]T (i)

}

=
(
I + OT

n,n
)[(

A(i)Π0(i)AT (i)
) ⊗ (

B(i)
(
st–1Ψw,2

)
BT (i)

)](
I + OT

n,n
)

+ E
{
B[2](i)st–1[w[4](i) – w[2](i) ⊗ Ψw,2 – Ψw,2 ⊗ w[2](i) + Ψ

[2]
w,2

]
B[2]T (i)

}

=
(
I + OT

n,n
)[(

A(i)Π0(i)AT (i)
) ⊗ (

B(i)
(
st–1Ψw,2

)
BT (i)

)](
I + OT

n,n
)

+ B[2](i)
{

st–1(Ψw,4 – Ψ
[2]

w,2
)}
B[2]T (i).

Employing the similar lines and properties of non-Gaussian noise w(i), x0, and λ(i), the
covariance matricesR11(i),R12(i), R22(i), S11(i),S12(i), S21(i), and S22(i) are directly given
by (15)–(21). This completes the proof. �

3.2 The input noise second-order least-squares estimator design
First, we define the innovation ve(i) and its variance matrix Rve (i) by

ve(i) � ye(i) – p(i)He(i)x̂e(i|i – 1),

Rve (i) � E
{

ve(i)vT
e (i)

}
.

(23)

Let x̂e(i|i – 1) denote the least mean-square filter of xe(i) based on the measurements up
to i – 1. Then time update is presented as follows:

x̂e(i + 1|i) =
i∑

j=0

E
{

xe(i + 1)vT
e (j)

}
R–1

ve (j)ve(j)

= Ae(i)x̂e(i|i – 1) + K(i)ve(i), (24)

where

K(i) =
[
p(i)Ae(i)P(i)HT

e (i) + S(i)
]
R–1

ve (i), (25)

Rve (i) = p(i)
(
1 – p(i)

)
He(i)Π (i)HT

e (i) + R(i) + p2(i)He(i)P(i)HT
e (i), (26)

and

Π (i + 1) = E
{

xe(i + 1)xT
e (i + 1)

}

= Ae(i)Π (i)AT
e (i) + Q(i),
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P(i + 1) = E
{(

xe(i + 1) – x̂e(i + 1|i))(xe(i + 1) – x̂e(i + 1|i))T}

= Ae(i)P(i)AT
e (i) + Q(i) – K(i)Rve (i)KT (i).

In addition, the initial conditions of x̂e(i|i – 1) and P(i) are given by

x̂e(0| – 1) = E
{

xe(0)
}

,

Π (0) = E
{(

xe(0) – E
(
xe(0)

))(
xe(0) – E

(
xe(0)

))T}
,

which can be easily computed by using (2) in Assumption 1.
Then we obtain a second-order non-Gaussian noise deconvolution filter.

Theorem 1 Under the stochastic packet dropout system (1) with Assumptions 1–3, we pro-
pose a filtering estimation of input noise by the following formula:

ẑ(i|i) = T (i)ve(i),

where ve(i) is defined by (23), and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T (i) =
[
T11(i) T12(i)

]
R–1

ve (i),

T11(i) = L(i)(st–1Ψw,2)GT (i),

T12(i) = st–1((G[2](i) ⊗L(i))Ψw,3,

(27)

and the innovation variance matrix Rve (i) is computed by (26).

Proof It follows from Kalman projection formula that the deconvolution filtering of z(i)
given measurements from time 0 to time i can be calculated by

ẑ(i|i) =
i∑

j=0

E
{

z(i)vT
e (j)

}
R–1

ve (j)ve(j)

= E
{

z(i)vT
e (i)

}
R–1

ve (i)ve(i)

= E
{(
L(i)w(i)

)(
we(i)

)T}
R–1

ve (i)ve(i)

=
[

L(i)(st–1Ψw,2)GT (i) E(L(i)w(i)wT
e,21(i))

]
R–1

ve (i)ve(i),

where the derivation of E(L(i)w(i)wT
e,21(i)) is similar to the calculation process of (22). The

proof is complete. �

Before presenting the input noise smoother, we need to define the covariance

Ri
i+j � E

{
w(i), ex(i + j)

}
, j = 1, 2, . . . , s, (28)

where ex(i + j) = xe(i + j) – x̂e(i + j|i + j – 1).



Zhao et al. Advances in Difference Equations        (2020) 2020:474 Page 9 of 14

Theorem 2 Under the stochastic packet dropout system (1) with Assumptions 1–3 and
given s ∈N

+, we propose a smoothing estimation of input noise by the following formula:

ẑ(i|i + s) = T (i)ve(i) + L(i)
s∑

j=1

(
p(i + j)Rk

i+jHT
e (i + j)R–1

ve (i + j)ve(i + j)
)
, (29)

where ve(i + j) (0 ≤ j ≤ s) is defined by (23), T (i) is calculated by (27), Rve (i + j) (1 ≤ j ≤ s) is
given in (26), and Ri

i+j (1 ≤ j ≤ s) is recursively calculated by the following matrix formula:

Ri
i+j+1 = Ri

i+j
[
Ae(i + j) – p(i + j)K(i + j)He(i + j)

]T , j = 1, 2, . . . , s – 1, (30)

with

Ri
i+1 =

[

(st–1Ψw,2)BT (i) st–1((B[2](i) ⊗ I)Ψw,3)
]

–
[

(st–1Ψw,2)DT (i) st–1((D[2](i) ⊗ I)Ψw,3)
]
KT (i),

and K(i + j) (0 ≤ j ≤ s – 1) is calculated by (25).

Proof Since z(i) is uncorrelated with L{ve(0), ve(1), . . . , ve(i – 1)}, the calculation of the
smoother ẑ(i|i + s) is reduced to

ẑ(i|i + s) =
i+s∑

j=0

E
{

z(i)vT
e (j)

}
R–1

ve (j)ve(j)

=
s∑

j=0

E
{

z(i)vT
e (i + j)

}
R–1

ve (i + j)ve(i + j)

= T (i)ve(i) +
s∑

j=1

E
{

z(i)vT
e (i + j)

}
R–1

ve (i + j)ve(i + j). (31)

Substituting (23) into E{z(i)vT
e (i+ j)} and using the definition in (28), we get the following

expression:

E
{

z(i)vT
e (i + j)

}
= p(i + j)L(i)Ri

i+jHT
e (i + j). (32)

Then we search for the expression of ex(i + j + 1). It follows from (9), (23), and (24) that

ex(i + j + 1) =
[
Ae(i + j) – p(i + j)K(i + j)He(i + j)

]
ex(i + j)

– K(i + j)
(
De(i + j) – p(i + j)I

)
He(i + j)

× xe(i + j) + ue(i + j) – K(i + j)we(i + j). (33)

Taking into account that w(i), ue(i + j), and we(i + j) are uncorrelated to each other, we can
obtain (30) by substituting (33) into (28).

Furthermore, fixed-lag smoother expression (29) follows directly by substituting (32)
into (31). This completes the proof. �
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Remark 2 With the development of information technology and internet of things, many
modern industrial systems are often based on network control, and random packet
dropouts are inevitable in network control. The existing estimator design theory of con-
ventional linear systems is not suitable for solving such complex problems. Although a
design method of second-order estimator for non-Gaussian noise is proposed in [25], it
is only suitable for conventional linear stochastic non-Gaussian systems, and it is only a
particular case of this paper (that is, when the probability of the random variable λ(i) in
system (1) is p(i) = 1, the system in this paper is equivalent to the system in [25]). Therefore
the conclusion of this paper is more general than that in [25].

4 Linear input noise estimator and numerical example
In this section, by a numerical simulation we show the validity of the presented algorithm.
Note that, in the mean-squared sense, the Kalman-based estimator is the best linear esti-
mator when the input noise is assumed to be non-Gaussian [24]. For comparing the linear
input noise estimator with the second-order input noise estimator, we first propose the
linear deconvolution filtering of z(i) by applying the Kalman filtering theory in the follow-
ing equations.

Define the innovation process

m(i) � y(i) – ŷ(i|i – 1),

and Rm(i) � E{m(i) · mT (i)}, which can be computed by

Rm(i) = p(i)
(
1 – p(i)

)
H(i)Π0(i)HT (i) + D(i)

(
st–1Ψw,2

)
DT (i) + p2(i)H(i)P0(i)HT (i),

where

Π0(i + 1) � E
{

x(i + 1)xT (i + 1)
}

= A(i)Π0(i)AT (i) + B(i)
(
st–1Ψw,2

)
BT (i)

and

P0(i) � E
{(

x(i) – x̂(i|i – 1)
)(

x(i) – x̂(i|i – 1)
)T}

. (34)

Moreover, by applying the projection formula and innovation process we have

x̂(i + 1|i) = A(i)x̂(i|i – 1) + K0(i)m(i), (35)

where

K0(i) =
(
p(i)A(i)P0(i)HT (i) + B(i)

(
st–1Ψw,2

)
DT (i)

)
R–1

m (i).

By (1), (34), and (35) we obtain

P0(i + 1) = A(i)P0(i)AT (i) + B(i)
(
st–1Ψw,2

)
BT (i) – K0(i)Rm(i)KT

0 (i).
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Thus the linear input noise filter ẑ(i|i) of z(i) is computed as follows:

ẑ(i|i) = L(i)
(
st–1Ψw,2

)
DT (i)R–1

m (t)m(i),

and the linear smoother ẑ(i|i + s) (s ∈N
+) of z(i) is calculated by

ẑ(i|i + s) = ẑ(i|i) + L(i)
s∑

j=1

p(i + j)Υ i
i+jHT (i + j)R–1

m (i + j)m(i + j),

where

Υ i
i+j+1 = Υ i

i+j
[
A(i + j) – p(i + j)K0(i + j)H(i + j)

]T , j = 1, 2, . . . , s – 1,

with

Υ i
i+1 =

(
st–1Ψw,2

)
BT (i) –

(
st–1Ψw,2

)
DT (i)KT

0 (i).

Furthermore, we assume that the system matrix parameters in (1) are as follows:

A(i) = 0.7 + 0.2e–0.3i, B(i) = 0.2 cos(0.1i), H(i) = 0.5 + 0.2 cos(5i),

D(i) = 0.4 + 0.1e–7i, L(i) = 0.5,

where the system noise vector w(i) and the initial condition vector x0 are uncorrelated
zero-mean non-Gaussian processes with distribution laws given in Table 1.

The Bernoulli stochastic variable λ(i) is assumed to have a nonzero probability p(i) = 0.9,
and its variation law is shown in Fig. 1. With the same assumptions, the linear and second-
order non-Gaussian noise estimates have been compared in this numerical simulation.
The performances of linear estimators and second-order estimators have been plotted in
Figs. 2–5. Obviously, the simulation of this example shows that the second-order estima-
tors are better than the linear estimators.

Table 1 Distribution laws of w(i) and x0

w(i) 1 –3 –11 2 x0 –8 8/7

Pr{w(i)} 13/18 1/9 1/18 1/9 Pr{x0} 1/8 7/8

Figure 1 Bernoulli stochastic variable λ(i) when
p(i) = 0.9
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Figure 2 Signal, linear filter, and second-order filter

Figure 3 Linear filter error and second-order filter
error

Figure 4 Signal, linear four-step lag smoother, and
second-order four-step lag smoother

Figure 5 Linear four-step lag smoother error and
second-order four-step lag smoother error
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5 Conclusions
A novel input noise nonlinear (second-order) estimate algorithm is put forward for non-
Gaussian stochastic systems with packet dropouts, where the packet dropout character-
istic is modeled as a multiplicative binary (0 or 1) distributed stochastic white sequence.
By defining the original and second-order Kronecker products of the states and measure-
ments in the original system we introduce a new augmented system. On this basis, we
adopt the Kronecker algebra rules to analyze the stochastic characteristics of the aug-
mented system. Then the input noise nonlinear (second-order) estimators are presented
in the form of filtering and smoothing. In addition, we emphasize the effectiveness of the
proposed algorithm by a numerical simulation.

As a matter of fact, only some basic results have been achieved in the study of complex
systems, such as the stability analysis of switched impulsive systems [29] and stochas-
tic stability analysis of nonlinear second-order stochastic differential delay systems [30].
Therefore, it would be of interest to extend the proposed method to investigate more com-
plex switched impulsive systems and nonlinear stochastic delay systems. Another inter-
esting open topic is the H∞ nonlinear (second-order or higher-order) estimator design
problem for systems with packet dropouts.
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