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Abstract
In this paper, we introduce the Iq-derivative and Iq-integral for interval-valued
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1 Introduction
Quantum calculus is a type of calculus without limits, sometimes called q-calculus. At the
beginning of the twentieth century, Jackson first defined and studied q-calculus in a sys-
tematic manner, which can be tracked back to the time of Euler and Jacobi. Based on the
works of Jackson, q-calculus continued to play a critical role in other areas such as quan-
tum mechanics, fluid mechanics, and combinatorics, which attracted a sea of scholars to
devote themselves to the research of this kind of calculus. In 2002, Kac and Cheung [1]
introduced some knowledge about q-calculus in detail. Afterwards, some scholars have
continued to extend it. In 2013, Tariboon and Ntouyas [2] promoted the concepts of q-
calculus over finite intervals, discussed their properties, and gave applications in impulsive
difference equations. Shortly after, Alp [3] obtained some q-Hermite–Hadamard-type in-
equalities. Regarding the development and promotion of q-calculus, we recommend [4–
17] and the references cited therein to interested readers. In addition, the development of
the q-fractional calculus can be found in [18–22].

On the other hand, the book written by Moore [23] described a method where an uncer-
tain variable is replaced by an interval of real numbers and used interval arithmetic, which
plays a great role in improving the reliability of the calculation results and making error
analysis automatically. In recent years, it has been widely used in solving some uncertain
problems in many fields. Bede and Stefanini [24]proposed the concepts of gH-difference
and gH-derivative, which overcome the major shortcomings of H-derivative. Since then,
the theory of interval analysis has gradually developed in the past ten years. For example,
Lupulescu [25] developed a theory of fractional calculus for interval-valued functions.
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Chalco-Cano et al. [26] dealt with the algebra of gH-differentiable interval-valued func-
tions. More details can be founded in [27–29]. Particularly, in the field of inequalities, in
2017, Costa [30] presented the notions of convexity and gave the Jensen inequality for
interval-valued functions. Based on this, some scholars combined classical inequalities
with interval-valued functions to obtain some integral inequalities; see [31–33].

Motivated by the works mentioned, in this paper, we discuss the quantum calculus for
interval-valued functions (shortly, Iq-calculus). Firstly, we give the concepts of Iq-calculus
and define the Iq-derivative and Iq-integral. We also give some basic properties. Moreover,
we generalize some q-Hermite–Hadamard-type inequalities. Since quantum calculus is a
particular case of time-scale calculus (Bohner and Peterson [34, 35]), the results of this
paper are helpful for future research on integral inequalities for interval-valued functions
on time-scales. At the same time, the results of this paper can be used as a powerful tool
in fuzzy analysis, interval optimization, and interval-valued differential equations.

The paper is organized as follows. We review some basic properties of interval analysis in
Sect. 2. In Sect. 3, we put forward the concepts of Iq-derivative and give some properties.
Similarly, we present the concepts of Iq-integral and some properties in Sect. 4. In Sect. 5,
we give some new Iq-Hermite–Hadamard-type inequalities. Finally, Sect. 6 contains some
conclusions. We give several examples to illustrate the statements.

2 Preliminaries
First, let Kc = {U = [u–, u+]|u–, u+ ∈ R, u– ≤ u+} be the set of all closed intervals. The
length of an interval [u–, u+] ∈ Kc is denoted by �(U) := u+ – u–. Moreover, we say that
U is positive if u– > 0, and we denote by K+

c all positive intervals belonging to Kc.
For any U = [u–, u+], V = [v–, v+] ∈Kc, and α ∈R, the addition and scalar multiplication

are defined by

U + V =
[
u–, u+]

+
[
v–, v+]

=
[
u– + v–, u+ + v+]

and

αU = α
[
u–, u+]

=

⎧
⎪⎨

⎪⎩

[αu–,αu+] if α > 0,
{0} if α = 0,
[αu+,αu–] if α < 0.

Definition 2.1 ([36]) For any U , V ∈ Kc, we define the gH-difference of U and V as the
set W ∈Kc such that

U �g V = W ⇐⇒
{

(a) U = V + W ,
or (b) V = U + (–W ).

(2.1)

Clearly,

U �g V =

{
[u– – v–, u+ – v+] if �(U) ≥ �(V ),
[u+ – v+, u– – v–] if �(U) < �(V ).

(2.2)

In particular, if V = v ∈R is a constant, then

U �g V =
[
u– – v, u+ – v

]
.
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The relationship “⊆” between U and V can be defined as

U ⊆ V if v– ≤ u– and u+ ≤ v+. (2.3)

The Hausdorff–Pompeiu distance H : Kc × Kc → [0,∞) between U and V is defined
by H(U , V ) = max{|u– – v–|, |u+ – v+|}. Subsequently, (Kc,H) is a complete metric space
(see [37]).

Definition 2.2 F : [s, t] →Kc is said to be continuous at x0 ∈ [s, t] if

H
(
F(x), F(x0)

) → 0 as x → x0.

We denote by C([s, t],Kc) and C([s, t],R) the sets of all continuous interval-valued func-
tions and real-valued functions on [s, t], respectively.

For more basic notations from interval analysis, see [24, 36, 38].
In this paper, we use the symbols F and G for interval-valued functions. For any F :

[s, t] → Kc such that F = [f –, f +], we say that F is �-increasing (or �-decreasing) on [s, t]
if �(F) : [s, t] → [0,∞) is increasing (or decreasing) on [s, t]. If �(F) is monotone on [s, t],
then we say that F is �-monotone on [s, t].

3 Iq-Derivative for interval-valued functions
In this section, we present the concepts of Iq-derivative and give some properties. Firstly,
let us recall the definition of q-derivative. Let 0 < q < 1 be any constant.

Definition 3.1 ([2]) Let f ∈ C([s, t],R). The q-derivative of f at x ∈ [s, t] is defined by

sDqf (x) =
f (x) – f (qx + (1 – q)s)

(1 – q)(x – s)
, x �= s, sDqf (s) = lim

x→s+
Dqf (x). (3.1)

If sDqf (x) exists for all x ∈ [s, t], then f is called q-differentiable on [s, t]. Note that if s = 0
in (3.1), then 0Dqf = Dqf , where Dq is the well-known q-Jackson derivative of the function
f defined by

Dqf (x) =
f (x) – f (qx)

(1 – q)x
.

For more details, see [2].
Now we introduce the Iq-derivative and some corresponding properties.

Definition 3.2 Let F ∈ C([s, t],Kc). The Iq-derivative of F at x ∈ [s, t] is defined by

sDqF(x) =
F(x) �g F(qx + (1 – q)s)

(1 – q)(x – s)
, x �= s, sDqF(s) = lim

x→s+
DqF(x), (3.2)

where DqF is called the Iq-Jackson derivative of F defined by

DqF(x) =
F(x) �g F(qx)

(1 – q)x
.
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If sDqF(x) exists for all x ∈ [s, t], then F is called Iq-differentiable on [s, t].

Theorem 3.3 A function F : [s, t] →Kc is Iq-differentiable at x ∈ [s, t] if and only if f – and
f + are q-differentiable at x ∈ [s, t], and

sDqF(x) =
[
min

{
sDqf –(x),s Dqf +(x)

}
, max

{
sDqf –(x), sDqf +(x)

}]
. (3.3)

Proof Suppose F is Iq-differentiable at x. Then there exist g–(x), g+(x) such that sDqF(x) =
[g–(x), g+(x)]. According to Definition 3.2,

g–(x) = min

{
f –(x) – f –(qx + (1 – q)s)

(1 – q)(x – s)
,

f +(x) – f +(qx + (1 – q)s)
(1 – q)(x – s)

}

and

g+(x) = max

{
f –(x) – f –(qx + (1 – q)s)

(1 – q)(x – s)
,

f +(x) – f +(qx + (1 – q)s)
(1 – q)(x – s)

}

exist. Then sDqf –(x) and sDqf +(x) exist, and (3.3) is feasible.
Conversely, suppose f – and f + are q-differentiable at x.
If sDqf –(x) ≤ sDqf +(x), then

[
sDqf –(x), sDqf +(x)

]

=
[

f –(x) – f –(qx + (1 – q)s)
(1 – q)(x – s)

,
f +(x) – f +(qx + (1 – q)s)

(1 – q)(x – s)

]

=
f (x) �g f (qx + (1 – q)s)

(1 – q)(x – s)

= sDqF(x).

So F is Iq-differentiable at x. Similarly, if sDqf –(x) ≥ sDqf +(x), then sDqF(x) = [sDqf +(x),

sDqf –(x)]. �

We illustrate this result by the following example.

Example 3.4 Consider F : [s, t] → Kc given by F(x) = [–|x|, |x|]. It follows that F(x) is Iq-
differentiable. By Definition 3.2, for s < 0, we have

sDqF(0) =
[0, 0] �g [(1 – q)s, –(1 – q)s]

(1 – q)(–s)

=
[

min

{
0 – (1 – q)s
(1 – q)(–s)

,
0 + (1 – q)s
(1 – q)(–s)

}
, max

{
0 – (1 – q)s
(1 – q)(–s)

,
0 + (1 – q)s
(1 – q)(–s)

}]
,

= [–1, 1],
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and if s = 0, then

0DqF(0) = lim
x→0+

[–|x|, |x|] �g [–q|x|, q|x|]
(1 – q)x

=
[

min

{
lim

x→0+

–|x| + q|x|
(1 – q)x

, lim
x→0+

|x| – q|x|
(1 – q)x

}
,

max

{
lim

x→0+

–|x| + q|x|
(1 – q)x

, lim
x→0+

|x| – q|x|
(1 – q)x

}]

= [–1, 1].

Meanwhile, we know that f –(x) = –|x| and f +(x) = |x| are q-differentiable at 0. Similarly, if
s < 0, then we have

sDqf –(0) =
0 – (1 – q)s
(1 – q)(–s)

= 1,

sDqf +(0) =
0 + (1 – q)s
(1 – q)(–s)

= –1;

and if s = 0, then

0Dqf –(0) = lim
x→0+

–|x| + q|x|
(1 – q)x

= –1,

0Dqf +(0) = lim
x→0+

|x| – q|x|
(1 – q)x

= 1.

This shows that sDqF(0) = [sDqf +(0), sDqf –(0)] if s < 0 and 0DqF(0) = [0Dqf –(0), 0Dqf +(0)]
if s = 0.

To illustrate the nature of the derivatives more clearly, we give the following results.

Theorem 3.5 Let F : [s, t] →Kc. If F is Iq-differentiable on [s, t], then we have:
(i) sDqF(x) = [sDqf –(x), sDqf +(x)] for all x ∈ [s, t] if F is �-increasing;

(ii) sDqF(x) = [sDqf +(x), sDqf –(x)] for all x ∈ [s, t] if F is �-decreasing.

Proof First, suppose F is �-increasing and Iq-differentiable on [s, t]. For any x ∈ [s, t], we
have x > qx + (1 – q)s. Since �(F) = f + – f – is increasing, we have

[
f +(x) – f –(x)

]
–

[
f +(

qx + (1 – q)s
)

– f –(
qx + (1 – q)s

)]
> 0,

f +(x) – f +(
qx + (1 – q)s

)
> f –(x) – f –(

qx + (1 – q)s
)
.

Therefore

sDqF(x) =
[f –(x), f +(x)] �g [f –(qx + (1 – q)s), f +(qx + (1 – q)s)]

(1 – q)(x – s)

=
[

f –(x) – f –(qx + (1 – q)s)
(1 – q)(x – s)

,
f +(x) – f +(qx + (1 – q)s)

(1 – q)(x – s)

]

=
[

sDqf –(x), sDqf +(x)
]
.

The other condition can be similarly proved. �
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Remark 3.6 Let c ∈ (s, t) be a given point. If F is �-increasing on [s, c) and �-decreasing on
(c, t], then sDqF = [sDqf –, sDqf +] on [s, c) and sDqF = [sDqf +, sDqf –] on (c, t].

Example 3.7 Let F : [0, 1] →Kc be given by F(x) = [–x2 – 1, x2 – 2x]. Since �(F) = 2x2 – 2x +
1, it follows that F is �-decreasing on [0, 1

2 ) and �-increasing on ( 1
2 , 1]. Since f –(x) = –x2 – 1

and f +(x) = x2 – 2x are q-differentiable on [0, 1], we have

0Dqf –(x) =
–x2 – 1 + (qx)2 + 1

(1 – q)x
= –(1 + q)x,

0Dqf +(x) =
x2 – 2x – (qx)2 + 2(qx)

(1 – q)x
= (1 + q)x – 2,

1
2

Dqf –(x) =
–x2 – 1 – [–(qx + 1

2 (1 – q)2) – 1]
(1 – q)(x – 1

2 )

= –(1 + q)x –
1
2

(1 – q),

1
2

Dqf +(x) =
x2 – 2x – (qx + 1

2 (1 – q))2 + 2(qx + 1
2 (1 – q))

(1 – q)(x – 1
2 )

= (1 + q)x – 2 +
1
2

(1 – q),

and

lim
x→ 1

2

Dqf –(x) = –1; lim
x→ 1

2

Dqf +(x) = –1.

Therefore

sDqF(x) =

⎧
⎪⎨

⎪⎩

[–(1 + q)x, (1 + q)x – 2] if x ∈ [0, 1
2 ),

{–1} if x = 1
2 ,

[(1 + q)x – 2 + 1
2 (1 – q), –(1 + q)x – 1

2 (1 – q)] if x ∈ ( 1
2 , 1].

Theorem 3.8 Let F : [s, t] →Kc be Iq-differentiable on [s, t]. Then for all C = [c–, c+] ∈Kc

and α ∈R, the functions F + C and αF are Iq-differentiable on [s, t], and sDq(F + C) = sDqF
and sDq(αF) = αsDqF .

Proof For any x ∈ [s, t],

(i) sDq
(
F(x) + C

)
=

(F(x) + C) �g (F(qx + (1 – q)s) + C)
(1 – q)(x – s)

=
F(x) �g F(qx + (1 – q)s)

(1 – q)(x – s)

= sDqF(x),

(ii) sDq
(
αF(x)

)
=

αF(x) �g αF(qx + (1 – q)s)
(1 – q)(x – s)

= α
F(x) �g F(qx + (1 – q)s)

(1 – q)(x – s)

= αsDqF(x). �
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Theorem 3.9 Let F : [s, t] →Kc be Iq-differentiable on [s, t]. For C = [c–, c+] ∈Kc, if �(F) –
�(C) has a constant sign on [s, t], then the function F �g C is Iq-differentiable on [s, t], and
sDq(F �g C) = sDqF .

Proof For any x ∈ [s, t],

sDq
(
F(x) �g C

)
=

(F(x) �g C) �g (F(qx + (1 – q)s) �g C)
(1 – q)(x – s)

=
F(x) �g F(qx + (1 – q)s)

(1 – q)(x – s)

= sDqF(x). �

Theorem 3.10 Let F , G : [s, t] → Kc. If F , G are Iq-differentiable on [s, t], then the sum
F + G : [s, t] →Kc is Iq-differentiable on [s, t], and one of the following cases holds:

(a) If F , G are equally �-monotonic on [s, t], then for all x ∈ [s, t],

sDq
(
F(x) + G(x)

)
= sDqF(x) + sDqG(x). (3.4)

(b) If F and G are differently �-monotonic on [s, t], then for all x ∈ [s, t],

sDq(F + G)(x) = sDqF(x) �g (–1)sDqG(x). (3.5)

Moreover, in all cases, we have

sDq
(
F(x) + G(x)

) ⊆ sDqF(x) + sDqG(x). (3.6)

Proof (a) Suppose F , G are Iq-differentiable and �-increasing on [s, t]. Then f –, f +, g–, and
g+ are q-differentiable, and

sDqf – ≤ sDqf +, sDqg– ≤ sDqg+.

Then f – + g– and f + + g+ are q-differentiable functions on [s, t], and thus F + G is Iq-
differentiable on [s, t], and

sDq(F + G) =
[
min

{
sDqf – + sDqg–, sDqf + + sDqg+}

,

max
{

sDqf – + sDqg–, sDqf + + sDqg+}]

=
[

sDqf – + sDqg–, sDqf + + sDqg+]

= sDqF +s DqG. (3.7)

Similarly, we can prove that both F and G are �-decreasing.
(b) Suppose F is �-increasing and G is �-decreasing. Then

sDqf – ≤ sDqf +, sDqg– ≥ sDqg+.
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On the one hand,

sDq(F + G) =
[
min

{
sDqf – + sDqg–, sDqf + + sDqg+}

,

max
{

sDqf – + sDqg–, sDqf + + sDqg+}]
.

(3.8)

On the other hand,

sDqF �g (–1)sDqG =
[

sDqf –, sDqf +] �g (–1)
[

sDqg+, sDqg–]

=
[

sDqf –, sDqf +] �g
[
–sDqg–, –sDqg+]

=
[
min

{
sDqf – + sDqg–, sDqf + + sDqg+}

,

max
{

sDqf – + sDqg–, sDqf + + sDqg+}]
. (3.9)

Comparing (3.8) with (3.9), we get (3.5). Further,

sDqF + sDqG =
[

sDqf – + sDqg+, sDqf + + sDqg–]
.

So if F + G is �-increasing or �-decreasing, we get

sDq
(
F(x) + G(x)

) ⊆ sDqF(x) + sDqG(x). (3.10)

The opposite case can be similarly proved. �

Theorem 3.11 Let F , G : [s, t] → Kc. If F , G are Iq-differentiable and �(F) – �(G) has a
constant sign on [s, t], then the function F �g G : [s, t] → Kc is Iq-differentiable on [s, t],
and one of the following cases holds:

(a) If F , G are equally �-monotonic on [s, t], then for all x ∈ [s, t],

sDq
(
F(x) �g G(x)

)
= sDqF(x) �g sDqG(x). (3.11)

(b) If F and G are differently �-monotonic on [s, t], then for all x ∈ [s, t],

sDq(F �g G)(x) = sDqF(x) + (–1)sDqG(x). (3.12)

Proof We now assume that �(F) ≥ �(G) on [s, t] and F �g G = [f – – g–, f + – g+].
(a) Suppose F , G are �-increasing on [s, t]. Since F , G are Iq-differentiable, we have that

f –, f +, g–, and g+ are q-differentiable and

sDqf – ≤ sDqf +, sDqg– ≤ sDqg+.

Then f – –g– and f + –g+ are q-differentiable functions on [s, t]. So F �g G is Iq-differentiable
on [s, t], and

sDq(F �g G) =
[
min

{
sDqf – – sDqg–, sDqf + – sDqg+}

,

max
{

sDqf – – sDqg–, sDqf + – sDqg+}]

=
[

sDqf –, sDqf +] �g
[

sDqg–, sDqg+]

= sDqF �g sDqG. (3.13)
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The case where F and G are both �-decreasing can be similarly proved.
(b) Suppose F is �-increasing and G is �-decreasing. From (a) we have that

sDqf – ≤ sDqf +, sDqg– ≥ sDqg+.

Since �(F) ≥ �(G), on one hand,

sDq(F �g G) =
[
min

{
sDqf – – sDqg–, sDqf + – sDqg+}

,

max
{

sDqf – – sDqg–, sDqf + – sDqg+}]

=
[

sDqf – – sDqg–, sDqf + – sDqg+]
. (3.14)

On the other hand,

sDqF + (–1)sDqG =
[

sDqf –, sDqf +]
+ (–1)

[
sDqg+, sDqg–]

=
[

sDqf –, sDqf +]
+

[
–sDqg–, –sDqg+]

=
[

sDqf – – sDqg–, sDqf + – sDqg+]
. (3.15)

Comparing (3.14) with (3.15), we get (3.12). The opposite case can be similarly proved. �

Example 3.12 Let F , G : [0, 2] → Kc be given by F(x) = [0, –x2 + 2x] and G(x) = [0, 2x2 –
4x+3]. Since �(F(x)) = –x2 +2x and �(G(x)) = 2x2 –4x+3, �(F(x)) ≤ �(G(x)) for all x ∈ [0, 2].
We have that F(x) is �-increasing on [0, 1] and �-decreasing on [1, 2]; G(x) is �-decreasing
on [0, 1] and �-increasing on [1, 2].

Further, we have that F(x) + G(x) = [0, x2 – 2x + 3] and F(x) �g G(x) = [–3x2 + 6x – 3, 0].
Since �(F(x) + G(x)) = x2 – 2x + 3 and �(F(x)�g G(x)) = 3x2 – 6x + 3, F(x) + G(x) and F(x)�g

G(x) are �-decreasing on [0, 1] and �-increasing on [1, 2]. For all x ∈ [0, 1], we get

0DqF(x) =
[

0Dqf –(x), 0Dqf +(x)
]

=
[
0, –(1 + q)x + 2

]
,

0DqG(x) =
[

0Dqg+(x), 0Dqg–(x)
]

=
[
2(1 + q)x – 4, 0

]
,

0Dq
(
F(x) + G(x)

)
=

[
0Dq

(
f +(x) + g+(x)

)
, 0Dq

(
f –(x) + g–(x)

)]

=
[
(1 + q)x – 2, 0

]
,

0Dq
(
F(x) �g G(x)

)
=

[
0Dq

(
f –(x) – g–(x)

)
, 0Dq

(
f +(x) – g+(x)

)]

=
[
0, –3(1 + q)x + 6

]
.

Then from (3.9) and (3.15) we have

0DqF(x) �g (–1)0DqG(x) =
[
0, –(1 + q)x + 2

] �g (–1)
[
2(1 + q)x – 4, 0

]

=
[
0, –(1 + q)x + 2

] �g
[
0, –2(1 + q)x + 4

]

=
[
min

{
0, (1 + q)x – 2

}
, max

{
0, (1 + q)x – 2

}]

=
[
(1 + q)x – 2, 0

]
,
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0DqF(x) + (–1)0DqG(x) =
[
0, –(1 + q)x + 2

]
+ (–1)

[
2(1 + q)x – 4, 0

]

=
[
0, –(1 + q)x + 2

]
+

[
0, –2(1 + q)x + 4

]

=
[
0, –3(1 + q)x + 6

]
.

Further, for all x ∈ [1, 2], we similarly obtain

1DqF(x) =
[

1Dqf +(x), 1Dqf –(x)
]

=
[
–(1 + q)x – (1 – q) + 2, 0

]
,

1DqG(x) =
[

1Dqg–(x), 1Dqg+(x)
]

=
[
0, 2(1 + q)x + 2(1 – q) – 4

]
,

1Dq
(
F(x) + G(x)

)
=

[
1Dq

(
f –(x) + g–(x)

)
, 1Dq

(
f +(x) + g+(x)

)]

=
[
0, (1 + q)x + (1 – q) – 2

]
,

1Dq
(
F(x) �g G(x)

)
=

[
1Dq

(
f +(x) – g+(x)

)
, 1Dq

(
f –(x) – g–(x)

)]

=
[
–3(1 + q)x – 3(1 – q) + 6, 0

]
,

and

0DqF(x) �g (–1)0DqG(x)

=
[
–(1 + q)x – (1 – q) + 2, 0

] �g (–1)
[
0, 2(1 + q)x + 2(1 – q) – 4

]

=
[
–(1 + q)x – (1 – q) + 2, 0

] �g
[
–2(1 + q)x – 2(1 – q) + 4, 0

]

=
[
min

{
(1 + q)x + (1 – q) – 2, 0

}
, max

{
(1 + q)x + (1 – q) – 2, 0

}]

=
[
0, (1 + q)x + (1 – q) – 2

]
,

0DqF(x) + (–1)0DqG(x)

=
[
–(1 + q)x – (1 – q) + 2, 0

]
+ (–1)

[
0, 2(1 + q)x + 2(1 – q) – 4

]

=
[
–(1 + q)x – (1 – q) + 2, 0

]
+

[
–2(1 + q)x – 2(1 – q) + 4, 0

]

=
[
–3(1 + q)x – 3(1 – q) + 6, 0

]
.

Obviously, we see that sDq(F + G)(x) = sDqF(x) �g (–1)sDqG(x) and sDq(F �g G)(x) =

sDqF(x) + (–1)sDqG(x).

4 Iq-Integral for interval-valued functions
In this section, we present the concepts of Iq-integral and give some properties. Firstly, let
us recall the definition of q-integral.

Definition 4.1 ([2]) Let f ∈ C([s, t],R). Then the q-integral is defined by

∫ ξ

s
f (x) sdqx = (1 – q)(ξ – s)

∞∑

n=0

qnf
(
qnξ +

(
1 – qn)s

)
(4.1)
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for all ξ ∈ [s, t]. Additionally, if c ∈ (s, ξ ), then the definite q-integral on [s, t] is defined by

∫ ξ

c
f (x) sdqx =

∫ ξ

s
f (x) sdqx –

∫ c

s
f (x) sdqx

= (1 – q)(ξ – s)
∞∑

n=0

qnf
(
qnξ +

(
1 – qn)s

)

– (1 – q)(c – s)
∞∑

n=0

qnf
(
qnc +

(
1 – qn)s

)
. (4.2)

Note that if s = 0, then (4.1) reduces to the classical q-Jackson integral of a function f
defined by

∫ ξ

0 f (x) 0dqx = (1 – q)ξ
∑∞

n=0 qnf (qnξ ) for x ∈ [0,∞). For more details, see [2].
Next, we give the concept of the Iq-integral and discuss some basic properties.

Definition 4.2 Let F ∈ C([s, t],Kc). Then the Iq-integral is defined by

∫ ξ

s
F(x) sdI

qx = (1 – q)(ξ – s)
∞∑

n=0

qnF
(
qnξ +

(
1 – qn)s

)
(4.3)

for all ξ ∈ [s, t].

Theorem 4.3 Let F ∈ C([s, t],Kc). If c ∈ (s, ξ ), then we have that

∫ c

s
F(x) sdI

qx +
∫ ξ

c
F(x) sdI

qx =
∫ ξ

s
F(x) sdI

qx. (4.4)

Proof

∫ c

s
F(x) sdI

qx +
∫ ξ

c
F(x) sdI

qx

= (1 – q)(c – s)
∞∑

n=0

qnF
(
qnc +

(
1 – qn)s

)

+ (1 – q)(ξ – c)
∞∑

n=0

qnF
(
qnξ +

(
1 – qn)c

)

=

[

(1 – q)(c – s)
∞∑

n=0

qnf –(
qnc +

(
1 – qn)s

)
,

(1 – q)(c – s)
∞∑

n=0

qnf +(
qnc +

(
1 – qn)s

)
]

+

[

(1 – q)(ξ – c)
∞∑

n=0

qnf –(
qnξ +

(
1 – qn)c

)
,

(1 – q)(ξ – c)
∞∑

n=0

qnf +(
qnξ +

(
1 – qn)c

)
]

=

[

(1 – q)(ξ – s)
∞∑

n=0

qnf –(
qnξ +

(
1 – qn)s

)
,
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(1 – q)(ξ – s)
∞∑

n=0

qnf +(
qnξ +

(
1 – qn)s

)
]

= (1 – q)(ξ – s)
∞∑

n=0

qnF
(
qnξ +

(
1 – qn)s

)
=

∫ ξ

s
F(x) sdI

qx. �

Theorem 4.4 Let F : [s, t] →Kc. If F ∈ C([s, t],Kc), then F is Iq-integrable if and only if f –

and f + are q-integrable over [s, t]. Moreover,

∫ ξ

s
F(x) sdI

qx =
[∫ ξ

s
f –(x) sdqx,

∫ ξ

s
f +(x) sdqx

]
. (4.5)

Proof The proof can be obtained by combining Definitions 4.1 and 4.2 and hence is omit-
ted. �

Example 4.5 Let F : [0, 1] →Kc be given by F(x) = [x2, x]. For 0 < q < 1, we have

∫ 1

0
F(x) 0dI

qx =
[∫ 1

0
x2

0dqx,
∫ 1

0
x 0dqx

]

=

[

(1 – q)
∞∑

n=0

q3n, (1 – q)
∞∑

n=0

q2n

]

=
[

1
1 + q + q2 ,

1
1 + q

]
.

Theorem 4.6 Let F , G : [s, t] → Kc, and let α ∈ R. If F , G ∈ C([s, t],Kc), then for x ∈ [s, t],
we have:

(i)
∫ ξ

s [F(x) + G(x)] sdqx =
∫ ξ

s F(x) sdqx +
∫ ξ

s G(x) sdqx;
(ii)

∫ ξ

s αF(x) sdqx = α
∫ ξ

s F(x) sdqx.

Proof From Definition 4.2 we have:

(i)
∫ ξ

s

[
F(x) + G(x)

]
sdI

qx

= (1 – q)(ξ – s)
∞∑

n=0

qn[F
(
qnξ +

(
1 – qn)s

)
+ G

(
qnξ +

(
1 – qn)s

)]

= (1 – q)(ξ – s)
∞∑

n=0

qnF
(
qnξ +

(
1 – qn)s

)

+ (1 – q)(ξ – s)
∞∑

n=0

qnG
(
qnξ +

(
1 – qn)s

)

=
∫ ξ

s
F(x) sdqx +

∫ ξ

s
G(x) sdqx;

(ii)
∫ ξ

s
αF(x) sdI

qx = (1 – q)(ξ – s)
∞∑

n=0

qnαF
(
qnξ +

(
1 – qn)s

)

= α

∫ ξ

s
F(x) sdqx. �
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Theorem 4.7 If F , G ∈ C([s, t],Kc), then

∫ ξ

s
F(x) sdI

qx �g

∫ ξ

s
G(x) sdI

qx ⊆
∫ ξ

s
F(x) �g G(x) sdI

qx.

Moreover, if �(F) – �(G) has a constant sign on [s, t], then

∫ ξ

s
F(x) sdI

qx �g

∫ ξ

s
G(x) sdI

qx =
∫ ξ

s
F(x) �g G(x) sdI

qx.

Proof First, we have

∫ ξ

s
min

{
f – – g–, f + – g+}

sdqx

≤ min

{∫ ξ

s

(
f – – g–)

sdqx,
∫ ξ

s

(
f + – g+)

sdqx
}

≤ max

{∫ ξ

s

(
f – – g–)

sdqx,
∫ ξ

s

(
f + – g+)

sdqx
}

≤
∫ ξ

s
max

{
f – – g–, f + – g+}

sdqx.

This implies that

∫ ξ

s
F sdI

qx �g

∫ ξ

s
G sdI

qx

=
[

min

{∫ ξ

s

(
f – – g–)

sdqx,
∫ ξ

s

(
f + – g+)

sdqx
}

,

max

{∫ ξ

s

(
f – – g–)

sdqx,
∫ ξ

s

(
f + – g+)

sdqx
}]

⊆
[∫ ξ

s
min

{
f – – g–, f + – g+}

sdqx,
∫ ξ

s
max

{
f – – g–, f + – g+}

sdqx
]

=
∫ ξ

s
F �g G sdI

qx.

Moreover, F �g G = [f – – g–, f + – g+] if �(F) ≥ �(G), or F �g G = [f + – g+, f – – g–] if �(F) ≤
�(G). We now assume that �(F) ≥ �(G) on [s, t] and F �g G = [f – – g–, f + – g+]. So we have
∫ ξ

s (f – – g–) sdqx ≤ ∫ ξ

s (f + – g+) sdqx. This implies that

∫ ξ

s
F �g G sdI

qx =
[∫ ξ

s
min

{
f – – g–, f + – g+}

sdqx,

∫ ξ

s
max

{
f – – g–, f + – g+}

sdqx
]

=
[∫ ξ

s
f –

sdqx,
∫ ξ

s
f +

sdqx
]

�g

[∫ ξ

s
g–

sdqx,
∫ ξ

s
g+

sdqx
]

=
∫ ξ

s
F sdI

qx �g

∫ ξ

s
G sdI

qx. �
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Theorem 4.8 Let F : [s, t] →Kc. If F is Iq-differentiable on [s, t], then sDqF is Iq-integrable.
Moreover, if F is �-monotone on [s, t], then

F(x) �g F(c) =
∫ x

c
sDqF(ξ ) sdI

qξ for all c ∈ [s, x]. (4.6)

Proof If F is Iq-differentiable on [s, t], then from Theorem 3.3 it follows that f – and f + are
q-differentiable. Hence sDqf – and sDqf + exist on [s, t]. Meanwhile, sDqf – and sDqf + are
q-integrable. Therefore Theorem 4.4 imply that sDqF is Iq-integrable. If F is �-increasing
on [s, t], then sDqF(x) = [sDqf –(x), sDqf +(x)] for all x ∈ [s, t]. Then we have that

f –(x) – f –(c) =
∫ x

c
sDqf –(ξ ) sdqξ ,

f +(x) – f +(c) =
∫ x

c
sDqf +(ξ ) sdqξ .

It follows that

F(x) = F(c) +
∫ x

c
sDqF(ξ ) sdI

qξ .

Since F is �-increasing on [s, t], by (2.1) we have

F(x) �g F(c) =
∫ x

c
sDqF(ξ ) sdI

qξ .

If F is �-decreasing on [s, t], then sDqF(x) = [sDqf +(x), sDqf –(x)] for all c ∈ [s, x]. Then we
get that

∫ x

c
sDqF(ξ ) sdI

qξ =
[∫ x

c
sDqf +(ξ ) sdqξ ,

∫ x

c
sDqf –(ξ ) sdqξ

]

=
[
f +(x) – f +(c), f –(x) – f –(c)

]

=
[
f –(x), f +(x)

] �g
[
f –(c), f +(c)

]

= F(x) �g F(c). �

Remark 4.9 We remark that if F is �-increasing on [s, t], then (4.6) is equivalent with

F(x) = F(c) +
∫ x

c
sDqF(ξ ) sdI

qξ ,

and if F is �-decreasing on [s, t], then (4.6) is equivalent with

F(x) = F(c) �g (–1)
∫ x

c
sDqF(ξ ) sdI

qξ

for all x ∈ [s, t]. Also, we remark that relation (4.6) can be false if F is not �-monotone on
[s, t]. Indeed, let F : [0, 2] →Kc be given by F(x) = [0, –x2 + 2x]. For c ∈ (0, 1) and x ∈ (1, 2),
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we have that (see Example 3.12)

∫ x

c
0DqF(ξ ) sdI

qξ =
∫ 1

c
0DqF(ξ ) sdI

qξ +
∫ x

1
1DqF(ξ ) sdI

qξ

=
[
0, c2 – 2c + 1

]
+

[
–x2 + 2x – 1, 0

]

=
[
–x2 + 2x – 1, c2 – 2c + 1

]
.

Then we get that

F(x) �g F(c) =
[
min

{
0, (c – x)(c + x – 2)

}
, max

{
0, (c – x)(c + x – 2)

}]

�=
∫ x

c
0DqF(ξ ) sdI

qξ .

Therefore (4.6) is not true for all x ∈ [0, 2].

Example 4.10 Let F : [0, 2] → Kc be given by F(x) = [0, x2]. Since F(x) is Iq-differentiable
and �-increasing on [0, 2], sDqF(x) is Iq-integrable, and sDqF(x) = [0, (1 + q)x]. Let c = 1 ∈
[0, x]. Then

F(x) �g F(1) =
[
0, x2 – 1

]
,

and
∫ x

1
0DqF(ξ ) 0dI

qξ =
[

0,
∫ x

1
(1 + q)ξ 0dqξ

]

=
[

0,
∫ x

0
(1 + q)ξ 0dqξ –

∫ 1

0
(1 + q)ξ 0dqξ

]

=
[
0, x2 – 1

]
.

5 Iq-Hermite–Hadamard inequalities for interval-valued functions
Now we review the definition and properties of convex interval-valued functions.

Definition 5.1 ([31]) Let F : [s, t] → Kc. We say that F is convex if for all x, y ∈ [s, t] and
ξ ∈ [0, 1], we have

F
(
ξx + (1 – ξ )y

) ⊇ ξF(x) + (1 – ξ )F(y). (5.1)

We denote by SX([s, t],Kc) the set of all convex interval-valued functions.

Theorem 5.2 ([31]) Let F : [s, t] →K+
c . Then F is convex if and only if f – is convex and f +

is concave on [s, t].

Theorem 5.3 Let F : [s, t] → K+
c . If F ∈ SX([s, t],Kc) and F is Iq-differentiable on [s, t],

then

F
(

qs + t
1 + q

)
⊇ 1

t – s

∫ t

s
F(x) sdI

qx ⊇ qF(s) + F(t)
1 + q

. (5.2)
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Proof According to the Iq-differentiability of F on [s, t], there are two tangents at the point
qs+t
1+q ∈ (s, t), and their equations are

h–
1 (x) = f –

(
qs + t
1 + q

)
+ sDqf –

(
qs + t
1 + q

)(
x –

qs + t
1 + q

)

and

h+
1 (x) = f +

(
qs + t
1 + q

)
+ sDqf +

(
qs + t
1 + q

)(
x –

qs + t
1 + q

)
.

Since F ∈ SX([s, t],Kc), we have

H1(x) ⊇ F(x)

for all x ∈ [s, t]. By Iq-integrating this inequality with respect to x on [s, t] we obtain

∫ t

s
H1(x) sdI

qx

=
∫ t

s

[
F
(

qs + t
1 + q

)
+ sDqF

(
qs + t
1 + q

)(
x –

qs + t
1 + q

)]

sdI
qx

= (t – s)F
(

qs + t
1 + q

)
+ sDqF

(
qs + t
1 + q

)(∫ t

s
x sdqx – (t – s)

qs + t
1 + q

)

= (t – s)F
(

qs + t
1 + q

)
+ sDqF

(
qs + t
1 + q

)

×
(

(1 – q)(t – s)
∞∑

n=0

qn((1 – qn)s + qnt
)

– (t – s)
qs + t
1 + q

)

= (t – s)F
(

qs + t
1 + q

)
+ sDqF

(
qs + t
1 + q

)

×
(

(1 – q)(t – s)
[(

1
1 – q

–
1

1 – q2

)
s +

1
1 – q2 t

]
– (t – s)

qs + t
1 + q

)

= (t – s)F
(

qs + t
1 + q

)
+ sDqF

(
qs + t
1 + q

)(
(t – s)

qs + t
1 + q

– (t – s)
qs + t
1 + q

)

= (t – s)F
(

qs + t
1 + q

)
⊇

∫ t

s
F(x) sdI

qx. (5.3)

Further, the straight line through the points (s, f –(s)) and (t, f –(t)) can be expressed by
the linear equation

y–(x) = f –(s) +
f –(t) – f –(s)

t – s
(x – s),

and through the points (s, f +(s)) and (t, f +(t)) by the linear equation

y+(x) = f +(s) +
f +(t) – f +(s)

t – s
(x – s).
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Since F ∈ SX([s, t],Kc), we have

Y (x) ⊆ F(x)

for all x ∈ [s, t]. By Iq-integrating this inequality with respect to x on [s, t] we get

∫ t

s
Y (x) sdI

qx

=
∫ t

s

(
F(s) +

F(t) – F(s)
t – s

(x – s)
)

sdI
qx

= (t – s)F(s) +
F(t) – F(s)

t – s

∫ t

s
(x – s) sdqx

= (t – s)F(s) +
F(t) – F(s)

t – s

(∫ t

s
x sdqx – s(t – s)

)

= (t – s)F(s) +
F(t) – F(s)

t – s

(

(1 – q)(t – s)
∞∑

n=0

qn((1 – qn)s + qnt
)

– s(t – s)

)

= (t – s)F(s) +
F(t) – F(s)

t – s

(
(1 – q)(t – s)

×
[(

1
1 – q

–
1

1 – q2

)
s +

1
1 – q2 t

]
– s(t – s)

)

= (t – s)F(s) +
(
F(t) – F(s)

)(qs + t
1 + q

– s
)

= (t – s)F(s) + (t – s)
F(t) – F(s)

1 + q

= (t – s)
qF(s) + F(t)

1 + q
⊆

∫ t

s
F(x) sdI

qx. (5.4)

Combining (5.3) and (5.4), we come to the following conclusion. �

Theorem 5.4 Let F : [s, t] → K+
c . If F ∈ SX([s, t],Kc) and F is Iq-differentiable on [s, t],

then

F
(

s + qt
1 + q

)
+

(1 – q)(t – s)
1 + q sDqF

(
s + qt
1 + q

)
⊇ 1

t – s

∫ t

s
F(x) sdqx

⊇ qF(s) + F(t)
1 + q

. (5.5)

Proof According to the Iq-differentiability of F on [s, t], there are two tangents at the point
s+qt
1+q ∈ (s, t), and their equations are

h–
2 (x) = f –

(
s + qt
1 + q

)
+ sDqf –

(
s + qt
1 + q

)(
x –

s + qt
1 + q

)

and

h+
2 (x) = f +

(
s + qt
1 + q

)
+ sDqf +

(
s + qt
1 + q

)(
x –

s + qt
1 + q

)
.
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Since F ∈ SX([s, t],Kc), we have

H2(x) ⊇ F(x)

for all x ∈ [s, t]. By Iq-integrating this inequality with respect to x on [s, t] we have

∫ t

s
H2(x) sdI

qx

=
∫ t

s

[
F
(

s + qt
1 + q

)
+ sDqF

(
s + qt
1 + q

)(
x –

s + qt
1 + q

)]

sdI
qx

= (t – s)F
(

s + qt
1 + q

)
+ sDqF

(
s + qt
1 + q

)(∫ t

s
x sdqx – (t – s)

s + qt
1 + q

)

= (t – s)F
(

s + qt
1 + q

)
+ sDqF

(
s + qt
1 + q

)

×
(

(1 – q)(t – s)
∞∑

n=0

qn((1 – qn)s + qnt
)

– (t – s)
s + qt
1 + q

)

= (t – s)F
(

s + qt
1 + q

)
+ sDqF

(
s + qt
1 + q

)

×
(

(1 – q)(t – s)
[(

1
1 – q

–
1

1 – q2

)
s +

1
1 – q2 t

]
– (t – s)

qs + t
1 + q

)

= (t – s)F
(

s + qt
1 + q

)
+ sDqF

(
s + qt
1 + q

)(
(t – s)

qs + t
1 + q

– (t – s)
s + qt
1 + q

)

= (t – s)F
(

qs + t
1 + q

)
+ sDqF

(
s + qt
1 + q

)
(t – s)2(1 – q)

1 + q
⊇

∫ t

s
F(x) sdI

qx. (5.6)

Combining (5.6) and (5.4), we come to the following conclusion. �

Theorem 5.5 Let F : [s, t] → K+
c . If F ∈ SX([s, t],Kc) and F is Iq-differentiable on [s, t],

then

F
(

s + t
2

)
+

(1 – q)(t – s)
2(1 + q) sDqF

(
s + t

2

)
⊇ 1

t – s

∫ t

s
F(x) sdqx

⊇ qF(s) + F(t)
1 + q

. (5.7)

Proof According to the Iq-differentiability of F on [s, t], there are two tangents at the point
s+t
2 ∈ (s, t), and their equations

h–
3 (x) = f –

(
s + t

2

)
+ sDqf –

(
s + t

2

)(
x –

s + t
2

)

and

h+
3 (x) = f +

(
s + t

2

)
+ sDqf +

(
s + t

2

)(
x –

s + t
2

)
.
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Since F ∈ SX([s, t],Kc), we have

H3(x) ⊇ F(x)

for all x ∈ [s, t]. By Iq-integrating this inequality with respect to x on [s, t] we have

∫ t

s
H3(x) sdI

qx

=
∫ t

s

[
F
(

s + t
2

)
+ sDqF

(
s + t

2

)(
x –

s + t
2

)]

sdI
qx

= (t – s)F
(

s + t
2

)
+ sDqF

(
s + t

2

)(∫ t

s
x sdqx – (t – s)

s + t
2

)

= (t – s)F
(

s + t
2

)
+ sDqF

(
s + t

2

)

×
(

(1 – q)(t – s)
∞∑

n=0

qn((1 – qn)s + qnt
)

– (t – s)
s + t

2

)

= (t – s)F
(

s + t
2

)
+ sDqF

(
s + t

2

)

×
(

(1 – q)(t – s)
[(

1
1 – q

–
1

1 – q2

)
s +

1
1 – q2 t

]
– (t – s)

s + t
2

)

= (t – s)F
(

s + t
2

)
+ sDqF

(
s + t

2

)(
(t – s)

qs + t
1 + q

– (t – s)
s + t

2

)

= (t – s)F
(

s + t
2

)
+ sDqF

(
s + t

2

)
(t – s)2(1 – q)

2(1 + q)
⊇

∫ t

s
F(x) sdI

qx. (5.8)

Combining (5.8) and (5.4), we come to the following conclusion. �

Theorem 5.6 Let F : [s, t] → K+
c . If F ∈ SX([s, t],Kc) and F is Iq-differentiable on [s, t],

then

max{1,2,3} ⊇ 1
t – s

∫ t

s
F(x) sdqx ⊇ qF(s) + F(t)

1 + q
, (5.9)

where

1 = F
(

qs + t
1 + q

)
,

2 = F
(

s + qt
1 + q

)
+

(1 – q)(t – s)
1 + q sDqF

(
s + qt
1 + q

)
,

3 = F
(

s + t
2

)
+

(1 – q)(t – s)
2(1 + q) sDqF

(
a + b

2

)
.

Proof Combining (5.3), (5.6), (5.8), and (5.4) proves the conclusion. �
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Example 5.7 Let F : [0, 1] → Kc be given by F(x) = [x2, –x2 + 4]. It is obvious that F(x) is
Iq-differentiable on [0, 1]. For q = 1

2 , we have

F
(

qs + t
1 + q

)
= F

(
2
3

)
=

[
4
9

,
32
9

]
,

1
t – s

∫ t

s
F(x) sdI

qx =
[∫ 1

0
x2

0dqx,
∫ 1

0

(
–x2 + 4

)
0dqx

]
=

[
4
7

,
24
7

]
,

and

qF(s) + F(t)
1 + q

=
[

2
3

,
10
3

]
.

Since
[

4
9

,
32
9

]
⊇

[
4
7

,
24
7

]
⊇

[
2
3

,
10
3

]
,

Theorem 5.3 is verified.
Since �(F(x)) = –2x2 + 4, it follows that F is �-decreasing on [0, 1]. Then by Theorem 3.5

we obtain that sDqF = [–(1 + q)x, (1 + q)x] and

F
(

s + qt
1 + q

)
+

(1 – q)(t – s)
1 + q sDqF

(
s + qt
1 + q

)
= F

(
1
3

)
+

1
3 0DqF

(
1
3

)
=

[
–

1
18

,
73
18

]
,

F
(

s + t
2

)
+

(1 – q)(t – s)
2(1 + q) sDqF

(
s + t

2

)
= F

(
1
2

)
+

1
6 0DqF

(
1
2

)
=

[
1
8

,
31
8

]
.

Since
[

–
1

18
,

73
18

]
⊇

[
4
7

,
24
7

]
⊇

[
2
3

,
10
3

]

and
[

1
8

,
31
8

]
⊇

[
4
7

,
24
7

]
⊇

[
2
3

,
10
3

]
,

Theorems 5.4 and 5.5 are verified.

6 Conclusions
In this work, we introduced the concepts of Iq-derivative and Iq-integral and dis-
cussed some basic their properties. Furthermore, we established some new Iq-Hermite–
Hadamard-type inequalities. In the field of quantum calculus and time-scale calculus, our
results are more applicable than ever. In the future, we intend to study some applications
in interval optimizations by using Iq-calculus. Meanwhile, we may apply Iq-calculus to
other fields, such as the integral inequalities and fractional calculus.
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