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Abstract
Recently, degenerate polylogarithm functions were introduced by Kim and Kim. In
this paper, we introduce degenerate poly-Bernoulli polynomials by means of the
degenerate polylogarithm functions and investigate some their properties. In more
detail, we find certain explicit expressions for those polynomials in terms of the Carlitz
degenerate Bernoulli polynomials and the degenerate Stirling numbers of the second
kind. Furthermore, we obtain some expressions for differences of the degenerate
poly-Bernoulli polynomials.
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1 Introduction
Carlitz [5, 6] initiated a study of degenerate versions of some special numbers and polyno-
mials, the degenerate Bernoulli and Euler polynomials. In recent years, the idea of studying
degenerate versions of many special polynomials and numbers regained interests of some
mathematicians, and many interesting results were found (see [10–13, 16, 18, 19]). They
have been explored by employing several different tools such as combinatorial methods,
generating functions, p-adic analysis, umbral calculus techniques, differential equations,
and probability theory.

The aim of this paper is to introduce the degenerate poly-Bernoulli polynomials by
means of the degenerate polylogarithm functions and to study their properties including
their explicit expressions and differences. Here we note that those polynomials are slight
modifications of the previously studied ones under the same name.

The outline of this paper is as follows. In Sect. 1, as a preparation to the next section,
we recall the Carlitz degenerate Bernoulli polynomials, the degenerate exponential func-
tions, the degenerate polylogarithms, and the degenerate Stirling numbers of the second
kind. In Sect. 2, we introduce the degenerate poly-Bernoulli polynomials by means of
the degenerate polylogarithm functions; note that they reduce to the Carlitz degenerate
Bernoulli polynomials when k = 1. We express the generating function of the degenerate
poly-Bernoulli polynomials as an iterated integral, from which we find an explicit expres-
sion for these polynomials when k = 2. Also, we find explicit expressions for the degenerate
poly-Bernoulli polynomials in terms of the Carlitz degenerate Bernoulli polynomials and
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the degenerate Stirling numbers of the second kind. Finally, we find certain expressions
for certain differences of the degenerate poly-Bernoulli polynomials.

For 0 �= λ ∈R, Carlitz introduced the degenerate Bernoulli polynomials given by

t

(1 + λt)
1
λ – 1

(1 + λt)
x
λ =

∞∑

n=0

βn,λ(x)
tn

n!
(see [5, 6]). (1)

In the case x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers.
Note that limλ→0 βn,λ(x) = Bn(x) (n ≥ 0), where Bn(x) are the ordinary Bernoulli polyno-

mials given by

t
et – 1

ext =
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n=0

Bn(x)
tn

n!
(see [14, 15, 20, 23, 24]). (2)

For λ ∈R, the degenerate exponential functions are defined by

ex
λ(t) =
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n=0

(x)n,λ
tn

n!
, eλ(t) = e1

λ(t) (see [10–13, 16, 18, 19]), (3)

where (x)0,λ = 1, (x)n,λ = x(x – λ) · · · (x – (n – 1)λ) (n ≥ 1). Note that limλ→0 ex
λ(t) =∑∞

n=0 xn tn

n! = ext .
For k ∈ Z, the polylogarithm is defined by

Lik(x) =
∞∑

n=1

xn

nk (see [1–4, 9, 10, 12, 21]). (4)

Note that Li1(x) =
∑∞

n=1
xn

n = – log(1 – x).
Kaneko [7] considered the poly-Bernoulli numbers arising from the polylogarithm and

defined by

1
1 – e–t Lik

(
1 – e–t) =
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n=0

B(k)
n

tn

n!
(see [1–4, 8, 17, 22]). (5)

Note that B(1)
n = Bn(1) (n ≥ 0).

Recently, Kim and Kim introduced the degenerate polylogarithm functions defined by

Lik,λ(x) =
∞∑

n=1

(–λ)n–1(1)n,1/λ

(n – 1)!nk xn (k ∈ Z) (see [10, 19]). (6)

Note that limλ→0 Lik,λ(x) = Lik(x).
Let logλ(t) be the inverse function of eλ(t) such that logλ(eλ(t)) = eλ(logλ(t)) = t. Then

we have

logλ(1 + t) =
∞∑

n=1

λn–1(1)n,1/λ

n!
tn =

1
λ

(
(1 + t)λ – 1

)
(see [10, 13, 16, 18]). (7)

Note that from (6) we have Li1,λ(x) = – logλ(1 – x).
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In [10] the degenerate poly-Bernoulli polynomials are defined by means of the degener-
ate polylogarithm function as

Lik,λ(1 – eλ(–t))
1 – eλ(–t)

ex
λ(–t) =
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n=0

β
(k)
n,λ(x)

tn

n!
. (8)

Note that β
(1)
n,λ(x) = (–1)nβn,λ(x), where βn,λ(x) are the Carlitz degenerate Bernoulli poly-

nomials defined by (1).
In [10, 11, 16] the degenerate Stirling numbers of the second kind are defined by

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0). (9)

From (9) we can easily show that the generating function of the degenerate Stirling num-
bers of the second kind is given by

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(see [13, 16, 18]). (10)

2 Degenerate poly-Bernoulli polynomials
We slightly modify the definition of degenerate poly-Bernoulli polynomials in (8) by

Lik,λ(1 – eλ(–t))
eλ(t) – 1

ex
λ(t) =

∞∑

n=0

B(k)
n,λ(x)

tn

n!
, (11)

which are again called the degenerate poly-Bernoulli polynomials. Note different defini-
tions in (8) and (11). In the case x = 0, B(k)

n,λ = B(k)
n,λ(0) (n ≥ 0) are called the degenerate

poly-Bernoulli numbers.
Note that by (11)
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Thus by (12) we get B(1)
n,λ(x) = βn,λ(x) (n ≥ 0).

By (11) we get
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. (13)
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Thus we have

B(k)
n,λ(x) =
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l

)
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It is not difficult to show that

Lik,λ(1 – eλ(–t))
eλ(t) – 1

ex
λ(t)

=
∞∑

n=0

B(k)
n,λ(x)

tn

n!

=
ex
λ(t)

eλ(t) – 1

∫ t

0

e1–λ
λ (–t)

1 – eλ(–t)

∫ t

0

e1–λ
λ (–t)

1 – eλ(–t)
· · ·

∫ t

0

e1–λ
λ (–t)

1 – eλ(–t)︸ ︷︷ ︸
(k–1)-times

t dt · · · dt. (14)

By (14) we get

∞∑

n=0

B(2)
n,λ(x)

tn

n!
=

ex
λ(t)

eλ(t) – 1

∫ t

0

e1–λ
λ (–t)

1 – eλ(–t)
t dt

=
tex

λ(t)
eλ(t) – 1

∞∑

l=0

βl,λ(1 – λ)
l + 1

(–1)l tl

l!

=
∞∑

m=0

βm,λ(x)
tm

m!

∞∑

l=0

(–1)l βl,λ(1 – λ)
l + 1

tl

l!

=
∞∑

n=0

( n∑

l=0

(
n
l

)
βl,λ(1 – λ)

l + 1
(–1)lβn–l,λ(x)

)
tn

n!
. (15)

Comparing the coefficients on both sides of (15), we obtain the following theorem.

Theorem 1 For n ≥ 0, we have
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In general,

B(k)
n,λ(x) =

n∑

l=0

(
n
l

)
B(k)

l,λ (x)n–l,λ.

Note that by (11)

∞∑

n=0

B(k)
n,λ(x)

tn

n!
=

Lik,λ(1 – eλ(–t))
eλ(t) – 1

ex
λ(t)

=
t

eλ(t) – 1
ex
λ(t) · 1

t
Lik,λ

(
1 – eλ(–t)

)
. (16)



Kim et al. Advances in Difference Equations        (2020) 2020:444 Page 5 of 9

On the other hand,

1
t

Lik,λ
(
1 – eλ(–t)

)
=

1
t

∞∑

n=1

(–λ)n–1(1)n,1/λ

(n – 1)!nk

(
1 – eλ(–t)

)n

=
1
t

∞∑

n=1

λn–1(1)n,1/λ

nk–1

∞∑

l=n

S2,λ(l, n)(–1)l–1 tl

l!

=
1
t

∞∑

l=1

l∑

n=1

λn–1(1)n,1/λ

nk–1 (–1)l–1S2,λ(l, n)
tl

l!

=
∞∑

l=0

( l+1∑

n=1

λn–1(1)n,1/λ

nk–1 · S2,λ(l + 1, n)
l + 1

(–1)l

)
tl

l!
. (17)

By (16) and (17) we get

∞∑

n=0

B(k)
n,λ(x)

tn

n!
=

∞∑

m=0

βm,λ(x)
tm

m!

∞∑

l=0

l+1∑

p=1

λp–1(1)p,1/λ

pk–1 (–1)l S2,λ(l + 1, p)
l + 1

tl

l!

=
∞∑

n=0

( n∑

l=0

(–1)l
(

n
l

) l+1∑

p=1

λp–1

pk–1 (1)p,1/λ
S2,λ(l + 1, p)

l + 1
βn–l,λ(x)

)
tn

n!
. (18)

Therefore by (18) we obtain the following theorem.

Theorem 2 For n ≥ 0, we have
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On the other hand,
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Therefore by (19) and (20) we obtain the following theorem.

Theorem 3 For n ∈N, we have
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On the other hand,
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Therefore by (21) and (22) we obtain the following theorem.

Theorem 4 For n, k ∈ Z with n ≥ 0 and d ∈N, we have
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From the definition of the degenerate poly-Bernoulli polynomials we have
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Comparing the coefficients on both sides of (23), we have
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Consider the following expression:
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From (13) we see that (25) is equal to

1
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Thus from (24), combining (26) with (27), we obtain the following result.

Theorem 5 For n ≥ 1, we have
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and

B(k)
n,λ(x + y) =

n∑

l=0

(
n
l

)
B(k)

l,λ (x)(y)n–l,λ (n ≥ 0).

3 Conclusion
In this paper, we defined the degenerate poly-Bernoulli polynomials, which are slight mod-
ifications of the previous ones. We represented the generating function of those polyno-
mials as an iterated integral, from which we obtained an explicit expression of those poly-
nomials for k = 2 in terms of the Carlitz degenerate Bernoulli polynomials. We also found
two explicit expressions of the degenerate poly-Bernoulli polynomials involving the Car-
litz degenerate Bernoulli polynomials and the degenerate Stirling numbers of the second
kind in Theorems 2 and 4. In addition, we were able to find certain expressions for differ-
ences of the degenerate poly-Bernoulli polynomials in Theorems 3 and 5.

We refer the reader to [18] and the references therein for three possible immediate ap-
plications of our results to probability, differential equations, and symmetry.

As one of our future projects, we would like to continue studying degenerate versions
of many special polynomials and numbers and their applications to physics, science, and
engineering, and mathematics.
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