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Abstract
A stochastic SIR system with Lévy jumps and distributed delay is developed and
employed to study the combined effects of Markovian switching and media coverage
on stochastic epidemiological dynamics and outcomes. Stochastic Lyapunov
functions are used to prove the existence of a stationary distribution to the positive
solution. Sufficient conditions for persistence in mean and the extinction of an
infectious disease are also shown.
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1 Introduction
The dynamic effects of time delays and stochastic noise on disease outcomes in pop-
ulations are important research themes in mathematical epidemiology (see [1–17] and
the references therein). Models incorporating systems of delay differential equations have
been shown to exhibit more complex dynamics and capture more of the observed biol-
ogy underlying disease transmission and persistence (see [11, 15–17] and the references
therein). Studies of environmental noise in models have also been shown to capture a
broader range of disease outcomes, i.e. large fluctuations in environmental noise have been
shown to render a disease extinct in a model that otherwise would have shown disease
progression to a unique endemic equilibrium [5, 6, 17].

Recently, a stochastic SIR epidemic system with distributed delay has been proposed
[17]. Specifically, the model was used to study the effects of white noise (given by B(t), rep-
resenting standard Brownian motion) and a distributed delay in the infection term (incor-
porated using kernel H : [0,∞) → [0,∞), representing L1-weak generic kernel function
H(t) = ρe–ρt with ρ > 0 such that

∫ ∞
0 H(τ ) dτ = 1) on the extinction and persistence of a

disease, given the following model structure:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [Λ – d1S(t) – mS(t)
∫ t

–∞ H(t – τ )I(τ ) dτ ] dt + ωS(t) dB(t),

dI(t) = [mS(t)
∫ t

–∞ H(t – τ )I(τ ) dτ – (d2 + δ + c)I(t)] dt,

dR(t) = [δI(t) – d3R(t)] dt,

(1)
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where S(t), I(t) and R(t) represent the proportions of susceptible, infective and recovered
individuals in a population, Λ and δ denote birth and recovery rates, di (i = 1, 2, 3) and c
denote the natural and disease induced death rates, m measures the average contact rate
per day, and ω2 > 0 represents the intensity of white noise. Here, we propose an extension
of this model to include Markov switching and telephone noise, Lévy jumps and media
impact.

Telephone noise [18–22] (also known as telegraph noise or burst noise) can be regarded
as a switching state (that is memoryless, with exponentially distributed waiting times
[21, 22]) that allows for instantaneous transitions between two or more environmental
regimes. By analysing observation data from the real world and performing mathemati-
cal modelling analysis, it should be noted that the birth rate of a susceptible individual is
usually subject to various noises [18–20], i.e. telegraph noise. Hence, the telegraph noise
is only included in the birth rate in this paper. Here, we propose some hypothesis:

(H1) An irreducible and continuous Markov chain {β(t), t ≥ 0} with finite state space
N = {1, 2, . . . , k} (k ∈ Z+) is utilised to depict telephone noise. β(t) is assumed to be
generated by a transition rate matrix (μij)k×k , which is

P
{
β(τ + �τ ) = j|β(τ ) = i

}
=

⎧
⎨

⎩

μij�τ + o(�τ ), i �= j,

1 + μii�τ + o(�τ ), i = j,

where the transition rate from state i to state j is denoted by μij ≥ 0, and
μii = –

∑k
i�=j,i=1 μij holds for i �= j. It follows from the irreducibility property of β(t)

that there exists a unique stationary probability distribution
ξ = (ξ1, ξ2, . . . , ξk) ∈ R

1×k subject to
∑k

j=1 ξj = 1, ξj > 0 hold for any j ∈N.
Recent studies have shown that Lévy jumps can effectively portray an unexpected out-

break of infectious disease and other suddenly severe perturbations arising in the real
world [23–28] that cannot be accurately depicted by Brownian motion. Consequently, we
consider Lévy jumps using the following hypothesis:

(H2) S(t–) denotes the left limit of S(t). M is a measurable subset of R+, Y denotes an
independent Poisson counting measure with a Lévy measure ψ on M with
ψ(M) < +∞ satisfying Ũ(dt, du) = U(dt, du) – ψ(du) dt, by assuming that
λ(u) > –1 and υ > 0 satisfying

∫

M

[(
ln

(
1 + λ(u)

)) ∨ ln
(
1 + λ(u)

)2]
ψ du ≤ υ. (2)

Finally, it is well known that there is a profound relationship between public health is-
sues and mass media coverage. Media reports can affect individual behaviour during an
infectious disease outbreak, thus affecting the transmission of the infectious disease [29–
33] and the effects of intervention strategies that are also affected by individual behaviour
[34–36]. Therefore, it is necessary to consider crucial effects of media coverage on epi-
demiology dynamics. Based on the above analysis, some hypothesis is as follows:

(H3) A nonlinear function m1 – m2I(t)
q+I(t) is introduced to depict effective contact rate

between susceptible and infective individual [33], m1 represents maximal average
contact rate and m2I(t)

q+I(t) denotes maximal reduced average contact rate due to public
health risk warning disseminated by mass media, where m1 > m2 > 0 and q > 0.
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Based on hypotheses (H1)–(H3), a stochastic delayed SIR system with telephone noise
and media coverage is constructed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t) = [Λ(β(t)) – d1S(t) – (m1 – m2I(t)
q+I(t) )S(t)

∫ t
–∞ ρe–ρ(t–τ )I(τ ) dτ ] dt

+ ωS(t) dB(t) +
∫
M

λ(u)S(t–)Ũ(dt, du),

dI(t) = [(m1 – m2I(t)
q+I(t) )S(t)

∫ t
–∞ ρe–ρ(t–τ )I(τ ) dτ – (d2 + δ + c)I(t)] dt,

dR(t) = [δI(t) – d3R(t)] dt.

(3)

Recently, some delayed stochastic SIR systems have been used to investigate the com-
bined dynamic effects of stochastic fluctuation and time delay on epidemiological dy-
namics [37–42]. Additionally, complex dynamical behaviours caused by media coverage
have been investigated in stochastic epidemic systems in [29–35, 43]. To the authors’ best
knowledge, combined dynamics of Markovian switching and media coverage on stochas-
tic SIR epidemic system have not been investigated before. In the second section, stochas-
tically ultimate boundedness of the solution is studied. Existence and uniqueness of glob-
ally positive solution to the proposed system are investigated. Existence of a stationary
distribution to the positive solution is discussed. In the third section, sufficient condi-
tions for persistence in mean of each individual and extinction of infectious disease are
discussed. Numerical simulations are supported to illustrate the main theoretical results.
Finally, this paper ends with a conclusion.

2 Qualitative analysis of stationary distribution
Setting W (t) =

∫ t
–∞ ρe–ρ(t–τ )I(τ ) dτ , it follows from the linear chain technique [44] that

system (3) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = [Λ(β(t)) – d1S(t) – (m1 – m2I(t)
q+I(t) )S(t)W (t)] dt

+ ωS(t) dB(t) +
∫
M

λ(u)S(t–)Ũ(dt, du),

dI(t) = [(m1 – m2I(t)
q+I(t) )S(t)W (t) – (d2 + δ + c)I(t)] dt,

dR(t) = [δI(t) – d3R(t)] dt,

dW (t) = ρ[I(t) – W (t)] dt.

(4)

For every finite state space k ∈ N defined in (H1), it follows from the Markov chain
law that system (4) can be investigated as a hybrid system switching among the following
subsystems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = [Λ(k) – d1S(t) – (m1 – m2I(t)
q+I(t) )S(t)W (t)] dt

+ ωS(t) dB(t) +
∫
M

λ(u)S(t–)Ũ(dt, du),

dI(t) = [(m1 – m2I(t)
q+I(t) )S(t)W (t) – (d2 + δ + c)I(t)] dt,

dR(t) = [δI(t) – d3R(t)] dt,

dW (t) = ρ[I(t) – W (t)] dt.

(5)

First, we discuss stochastically ultimate boundedness of the solution. Existence and
uniqueness of globally positive solutions to the proposed system are also studied.
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Lemma 2.1 If hypotheses (H2), (H3) hold and (m1, m2) ∈D1,D1 is defined in (6) and Q1(γ )
is defined in (49), then system (5) with any initial value (S(0), I(0), R(0), W (0), k) ∈ R

4
+ ×N

is stochastically ultimately bounded.

D1 =
{

(m1, m2)
∣
∣
∣0 < m2 < m1 <

d2 + δ + c
Q1(γ )

}

. (6)

Proof The proof of Lemma 2.1 can be found in Appendix A. �

Lemma 2.2 If hypotheses (H2), (H3) hold and (m1, m2) ∈ D1, then for any initial value
(S(0), I(0), R(0), W (0), k) ∈ R

4
+ × N, system (5) has a unique global positive solution for all

t ≥ 0 almost surely.

Proof The proof of Lemma 2.2 can be found in Appendix B. �

In the following part, we will consider the existence of a stationary distribution to the
positive solution (which is a stationary Markov process) by constructing appropriately
Lyapunov functions.

Theorem 2.3 If hypotheses (H2) and (H3) hold, (m1, m2) ∈ D1 ∩ D2, where D1 and D2

are defined in (6) and (7), then (S(t), I(t), R(t), W (t)) of system (5) is a stationary Markov
process.

D2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(m1, m2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

m1q – m2Q(ε) > 0,

2m1Λ(k)
d2 + δ + c

+
(

2m2 +
m1

d1

)

Q(ε) +
qm2Λ(k)Q(ε)

A1

< 2d1 +
Λ(k)

d1A1Q(ε)

[

d1

(

d3 + δ +
ω2

2
– c – d2

)

+ A1

]

– 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (7)

where A1 =
√

(m1 – m2Q(ε)
q )(δ + ω2

2 ).

Proof If m1q – m2Q(ε) > 0, then we define

Z1(S, I, R, W ) =
ρA1Q(ε)

Λ(k)

(

2 ln S –
S

d1Q(ε)

)

– ρ(ln I + ln R)

–
(

δ +
ω2

2

)

ln W +
2A1Q(ε)[ρ(I + R) + W ]

δΛ(k)
.

According to the biological interpretations of the second equation and fourth equation
in system (5), it can be obtained that

⎧
⎨

⎩

2Λ(k)
S < 2Λ(k)W

d2+δ+c ( m1
I – m2

q+I ) < 2m1Λ(k)W
(d2+δ+c)I ,

2m1Λ(k)W
(d2+δ+c)I < 2m1Λ(k)

d2+δ+c .
(8)
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Using Itô’s formula [45] on Z1(S, I, R, W ), it follows from (8) and Lemma 2.1 that

LZ1 =
ρA1Q(ε)

Λ(k)

(
2
S

–
1

d1Q(ε)

)[

Λ(k) – d1S –
(

m1 –
m2I
q + I

)

SW
]

+
2ρA1Q(ε)

δΛ(k)

[(

m1 –
m2I
q + I

)

SW – (d2 + c – 1)I – d3R – W
]

– ρ

[(
m1

I
–

m2

q + I

)

SW – d2 + d3 + c + δ

]

– ρ

[
δI
R

+
(

δ +
ω2

2

)(
I

W
– 1

)]

≤ ρA1Q(ε)
Λ(k)

[
2m1Λ(k)
d2 + δ + c

+ 1 +
(

2m2 +
m1

d1

)

Q(ε) – 2d1 –
Λ(k)

d1Q(ε)

]

+ ρ

[
m2Q2(ε)

q
+ d2 + c – d3 – δ –

ω2

2

]

+
ρA1Q(ε)

Λ(k)
2m1IW

δ

:= –A2 +
ρA1Q(ε)

Λ(k)
2m1IW

δ
. (9)

Define Z2(S, I, R, W ) = 1
η+2 (S + I + R + W

ρ
)η+2, where η is sufficiently small and chosen

randomly from η ∈ (0, d2+δ+c– ω2
2 –

∫
M

[λ(u)–ln(1+λ(u))]ψ du

d2+δ+c+ ω2
2 +

∫
M

[λ(u)–ln(1+λ(u))]ψ du
).

By using Itô’s formula [45] on Z2(S, I, R, W ), it follows from simple computations and
Lemma 2.1 that

LZ2 =
(

S + I + R +
W
ρ

)η+1[
Λ(k) – d1S – (d2 + c – 1)I – d3R – W

]

+
η + 1

2

(

S + I + R +
W
ρ

)η[

ω2S2 +
∫

M

S(u)
[
λ(u) – ln

(
1 + λ(u)

)]
ψ du

]

≤ Λ(k)
(

S + I + R +
W
ρ

)η+1

– d1Sη+2 – (d2 + c – 1)Iη+2 – d3Rη+2 –
W η+2

ρη+1

+
η + 1

2

(

S + I + R +
W
ρ

)η[

ω2S2 +
∫

M

S(u)
[
λ(u) – ln

(
1 + λ(u)

)]
ψ du

]

≤ –
d1Sη+2

2
– (d2 + c – 1)ηIη+2 – d3ηRη+2 –

W η+2

2ρη+1 + A3

+
η + 1

2

(

S + I + R +
W
ρ

)η(
ω2S2 + υ

)
, (10)

where

A3 = sup
(S,I,R,W )∈R4

+

{

–
d1Sη+2

2
– (d2 + c – 1)(1 – η)Iη+2 – d3(1 – η)Rη+2 –

W η+2

2ρη+1

+ Λ(k)
(

S + I + R +
W
ρ

)η+1

+
η + 1

2

(

S + I + R +
W
ρ

)η(
ω2S2 + υ

)
}

.
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Following the above analysis, we define functions fj(S, I, R, W ) (j = 1, 2, 3) and Z31(S, I,
R, W ) as follows:

f1(S) = –
d1Sη+2

2
, f2(I, R) = –(d2 + c – 1)ηIη+2 – d3ηRη+2,

f3(S, I, R, W ) = –
W η+2

2ρη+1 + A3 + ρ,

Z31(S, I, R, W ) = –ϕZ1(S, I, R, W ) + Z2(S, I, R, W ) – ln W ,

where the constant ϕ > 0 satisfies –ϕA2 +
∑3

j=1 supt≥0 fj(S, I, R, W ) ≤ –2 and A2 has been
defined in (9).

Note that Z31(S, I, R, W ) is a continuous function and tends to the boundary of R4
+ infin-

ity when ‖(S, I, R, W )‖ → ∞. Consequently, it is easy to show that there exists an extreme
point (S̃, Ĩ, R̃, W̃ ) for Z31 in the interior of R4

+.
By defining a nonnegative function

Z3(S, I, R, W ) = ϕZ1(S, I, R, W ) + Z2(S, I, R, W ) – ln W – Z31(S̃, Ĩ, R̃, W̃ ).

Based on (9) and (10), it can be obtained that

LZ3 ≤ –ϕA2 +
ϕρA1Q(ε)

Λ(k)
2m1IW

δ
–

d1Sη+2

2
– (d2 + c – 1)ηIη+2 – d3ηRη+2

–
W η+2

2ρη+1 +
η + 1

2

(

S + I + R +
W
ρ

)η(
ω2S2 + υ

)
+ A3 –

ρI
W

+ ρ

=
3∑

j=1

fj(S, I, R, W ) – ϕA2 +
ϕρA1Q(ε)

Λ(k)
2m1IW

δ
+ A3 –

ρI
W

+ ρ.

Additionally, it can be shown that if (m1, m2) ∈D1 ∩D2, then

LZ3 ≤
3∑

j=1

sup
t≥0

fj(S, I, R, W ) – ϕA2 ≤ –2 (11)

holds for either S → 0+ or I → 0+ or R → 0+. Furthermore,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

LZ3 ≤LZ3(S, I, R, 0) → –∞, W → 0+,

LZ3 ≤LZ3(+∞, I, R, W ) → –∞, S → +∞,

LZ3 ≤LZ3(S, +∞, R, W ) → –∞, I → +∞,

LZ3 ≤LZ3(S, I, +∞, W ) → –∞, R → +∞,

LZ3 ≤LZ3(S, I, R, +∞) → –∞, W → +∞.

(12)

It follows from (11), (12) and simple computations that there exists a sufficiently small
positive constant ε > 0 such that LZ3(S, I, R, W ) ≤ –1 holds for any (S, I, R, W ) ∈ R

4
+ \ Ω ,

where Ω = (ε, 1
ε

) × (ε, 1
ε

) × (ε, 1
ε

) × (ε, 1
ε

).
Based on Lemma 2.1 [10], it is straightforward to show that there exists a solution of

system (5), which is a stationary Markov process. �
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3 Permanence in mean and extinction of disease
For the deterministic version of system (5), i.e., system (5) without Brownian motion and
Lévy jumps, the endemic equilibrium (S∗, I∗, R∗, W ∗) is as follows:

S∗ =
(d2 + δ + c)(q + I∗)
m1q + (m1 – m2)I∗ , R∗ =

δI∗

d3
, W ∗ = I∗,

where I∗ satisfies

(m1 – m2)(d2 + δ + c)I2 +
[
(d2 + δ + c)(d1 + m1q) – (m1 – m2)Λ(k)

]
I

+ q
[
d1(d2 + δ + c) – m1Λ(k)

]
= 0. (13)

Based on the formulation of endemic equilibrium, it follows from the Vieta theorem that
there exists a unique endemic equilibrium provided (m1, m2) ∈ D3, and D3 is defined as
follows:

D3 =
{

(m1, m2)
∣
∣
∣m1 > max

{

m2,
d1(d2 + δ + c)

Λ(k)
,

m2Λ(k) + d1(d2 + δ + c)
Λ(k) – q(d2 + δ + c)

}}

. (14)

In the following, we discuss permanence in mean of each individual and disease extinc-
tion in system (5). Some corresponding practical interpretations can be found in [17] and
the references therein.

Theorem 3.1 For any initial value (S(0), I(0), R(0), W (0), k) ∈ R
4
+ × N, if hypotheses (H2)

and (H3) hold, (m1, m2) ∈D1 ∩D2 ∩D3 ∩D4, S∗2C6 > C5, I∗2C6 > C5, R∗2C6 > C5, W ∗2C6 >
C5, then system (5) is permanent in mean, where D4 is defined in (15), and C5 and C6 are
defined in (20) and (21).

D4 =
{

(m1, m2)|m1
(
q + Q(ε)

)(
q + I∗) < m2I∗(1 + P(ε)

)}
. (15)

Proof Firstly, we construct U1(t) = (S(t)–S∗)2

2 . Using Itô’s formula to system (5), we obtain

dU1(t) =
(
S(t) – S∗)

[

d1
(
S∗ – S(t)

)
+

(

m1 –
m2I∗

q + I∗

)
(
S∗W ∗ – S(t)W (t)

)
]

dt

+
(
S(t) – S∗)

[
ω2

2
+

∫

M

[
λ(u) – ln

(
1 + λ(u)

)]
ψ du

]

dt +
(
S(t) – S∗)ω dB(t)

+
(
S(t) – S∗)

∫

M

[
λ(u)S(t–) – ln

(
1 + λ(u)

)]
Ũ(dt, du)

≤ –
(

d1 + m1W ∗ –
m2I∗W ∗

q + I∗

)
(
S(t) – S∗)2 dt

+
m2qS(t)W (t)

(q + I∗)(q + I(t))
(
S(t) – S∗)(I(t) – I∗)dt

+
S(t)(S(t)W (t) + S∗W ∗)[q + (m2 + 1)I∗]

q + I∗ dt

+
(
S(t) – S∗)

[
ω2

2
+

∫

M

[
λ(u) – ln

(
1 + λ(u)

)]
ψ du

]

dt
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+
(
S(t) – S∗)ω dB(t) +

(
S(t) – S∗)

∫

M

[
λ(u)S(t–) – ln

(
1 + λ(u)

)]
Ũ(dt, du)

= LU1 dt +
(
S(t) – S∗)

[
ω2

2
+

∫

M

[
λ(u) – ln

(
1 + λ(u)

)]
ψ du

]

dt

+
(
S(t) – S∗)ω dB(t) +

(
S(t) – S∗)

∫

M

[
λ(u)S(t–) – ln

(
1 + λ(u)

)]
Ũ(dt, du).

When hypotheses (H2) and (H3) hold, it follows from Lemma 2.1 that

LU1 ≤ –
(

d1 + m1W ∗ –
m2I∗W ∗

q + I∗

)
(
S(t) – S∗)2

+
m2qQ2(ε)

(q + I∗)(q + P(ε))
(
S(t) – S∗)(I(t) – I∗)

+
Q(ε)(Q2(ε) + S∗W ∗)[q + (m2 + 1)I∗]

q + I∗ + S∗
(

ω2

2
+ υ

)

, (16)

where Q(ε) and P(ε) have been defined in Lemma 2.1.
Construct the function U2(t) = I(t) – I∗ – I∗ ln I(t)

I∗ . By using Itô’s formula to system (5), it
follows from Lemma 2.1 that

dU2(t) =
(
I(t) – I∗)

[

m1

(
S(t)W (t)

I(t)
–

S∗W ∗

I∗

)

– m2

(
S(t)W (t)
q + I(t)

–
S∗W ∗

q + I∗

)]

dt

= –
[

m1S(t)W (t)
I∗I(t)

–
m2S(t)W (t)

(q + I(t)(q + I∗))

]
(
I(t) – I∗)2 dt

+ W ∗
[

m1

I∗ –
m2(1 + I(t))

(q + I(t))(q + I∗)

]
(
S(t) – S∗)(I(t) – I∗)dt

+ S(t)
[

m1

I∗ –
m2(1 + I(t))

(q + I(t))(q + I∗)

]
(
I(t) – I∗)(W (t) – W ∗)dt

= –
qm1(q + I(t) + I∗) + (m1 – m2)I∗I(t)

(q + I(t))(q + I∗)I∗I(t)
S(t)W (t)

(
I(t) – I∗)2 dt

+ W ∗
[

m1

I∗ –
m2(1 + I(t))

(q + I(t))(q + I∗)

]
(
S(t) – S∗)(I(t) – I∗)dt

+ S(t)
[

m1

I∗ –
m2(1 + I(t))

(q + I(t))(q + I∗)

]
(
I(t) – I∗)(W (t) – W ∗)dt

≤ –
qm1(q + I∗ + P(ε)) + (m1 – m2)P(ε)I∗

(q + Q(ε))(q + I∗)Q(ε)I∗ P2(ε)
(
I(t) – I∗)2 dt

+ W ∗
[

m1

I∗ –
m2(1 + P(ε))

(q + Q(ε))(q + I∗)

]
(
S(t) – S∗)(I(t) – I∗)dt

+ Q(ε)
[

m1

I∗ –
m2(1 + P(ε))

(q + Q(ε))(q + I∗)

]
(
I(t) – I∗)(W (t) – W ∗)dt, (17)

where Q(ε) and P(ε) have been defined in Lemma 2.1.
According to similar arguments mentioned above, we will establish two functions

U3(t) = (R(t)–R∗)2

2 , U4(t) = (W (t)–W∗)2

2 , and using Itô’s formula to system (5), it can be ob-
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tained that
⎧
⎨

⎩

dU3(t) ≤ – δI∗(R(t)–R∗)2

R∗Q(ε) dt + δ(Q2(ε)+R∗I∗)
P(ε) dt,

dU4(t) ≤ – ρI∗(W (t)–W∗)2

W∗Q(ε) dt + ρ(W (t)–W∗)(I(t)–I∗)
P(ε) dt,

(18)

where Q(ε) and P(ε) have been defined in Lemma 2.1. Now, we define

U5(t) =
W ∗(q + I∗)(q + P(ε))C0

m2qQ2(ε)
U1(t) + U2(t) + U3(t) +

P(ε)Q(ε)C0

ρ
U4(t),

where C0 = m2(1+P(ε))
(q+Q(ε))(q+I∗) – m1

I∗ .
It follows from (16), (17), (18) and simple computations that

LU5(t) ≤ –
W ∗(q + I∗)(q + P(ε))C0

m2qQ2(ε)

(

d1 + m1W ∗ –
m2I∗W ∗

q + I∗

)
(
S(t) – S∗)2

–
P2(ε)[qm1(q + I∗ + P(ε)) + (m1 – m2)P(ε)I∗]

(q + Q(ε))(q + I∗)Q(ε)I∗
(
I(t) – I∗)2

–
δI∗

R∗Q(ε)
(
R(t) – R∗)2 –

I∗P(ε)C0

W ∗
(
W (t) – W ∗)2

+
Q(ε)(Q2(ε) + S∗W ∗)[q + (m2 + 1)I∗]

q + I∗

+
δ(Q2(ε) + R∗I∗)

P(ε)
+ S∗

(
ω2

2
+ υ

)

. (19)

By integrating both sides of (19) from 0 to t and performing expectations, it yields

EU5(t) – EU5(0) ≤ –C1E

∫ t

0

[
S(τ ) – S∗]2 dτ – C2E

∫ t

0

[
I(τ ) – I∗]2 dτ

– C3E

∫ t

0

[
R(τ ) – R∗]2 dτ – C4E

∫ t

0

[
W (τ ) – W ∗]2 dτ + C5t, (20)

where Cj (j = 1, 2, 3, 4, 5) are defined as follows:

C1 =
W ∗(q + I∗)(q + P(ε))C0

m2qQ2(ε)

(

d1 + m1W ∗ –
m2I∗W ∗

q + I∗

)

,

C2 =
P2(ε)[qm1(q + I∗ + P(ε)) + (m1 – m2)P(ε)I∗]

(q + Q(ε))(q + I∗)Q(ε)I∗ ,

C3 =
δI∗

R∗Q(ε)
,

C4 =
I∗P(ε)C0

W ∗ ,

C5 =
δ(Q2(ε) + R∗I∗)

P(ε)
+

Q(ε)(Q2(ε) + S∗W ∗)[q + (m2 + 1)I∗]
q + I∗ + S∗

(
ω2

2
+ υ

)

.

If (m1, m2) ∈D1 ∩D2 ∩D3 ∩D4, then

lim sup
t→∞

1
t
E

∫ t

0

[(
S(τ )–S∗)2 +

(
I(τ )– I∗)2 +

(
R(τ )–R∗)2 +

(
W (τ )–W ∗)2]dτ ≤ C5

C6
, (21)
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where C6 = minj=1,2,3,4{Cj}. Further computations yield that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

lim inft→∞ 1
t E

∫ t
0 S(τ ) dτ ≥ S∗

2 – lim supt→∞
1
t E

∫ t
0

(S(τ )–S∗)2

2S∗ dτ ≥ S∗
2 – C5

2S∗C6
,

lim inft→∞ 1
t E

∫ t
0 I(τ ) dτ ≥ I∗

2 – lim supt→∞
1
t E

∫ t
0

(I(τ )–I∗)2

2I∗ dτ ≥ I∗
2 – C5

2I∗C6
,

lim inft→∞ 1
t E

∫ t
0 R(τ ) dτ ≥ R∗

2 – lim supt→∞
1
t E

∫ t
0

(R(τ )–R∗)2

2R∗ dτ ≥ R∗
2 – C5

2R∗C6
,

lim inft→∞ 1
t E

∫ t
0 W (τ ) dτ ≥ W∗

2 – lim supt→∞
1
t E

∫ t
0

(W (τ )–W∗)2

2W∗ dτ ≥ W∗
2 – C5

2W∗C6
.

Finally, when S∗2C6 > C5, I∗2C6 > C5, R∗2C6 > C5, W ∗2C6 > C5, it yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

lim inft→∞ 1
t E

∫ t
0 S(τ ) dτ ≥ S∗

2 – C5
2S∗C6

> 0, a.s.

lim inft→∞ 1
t E

∫ t
0 I(τ ) dτ ≥ I∗

2 – C5
2I∗C6

> 0, a.s.

lim inft→∞ 1
t E

∫ t
0 R(τ ) dτ ≥ R∗

2 – C5
2R∗C6

> 0, a.s.

lim inft→∞ 1
t E

∫ t
0 W (τ ) dτ ≥ W∗

2 – C5
2W∗C6

> 0, a.s.

(22)

Based on the above analysis and (22), it can be obtained that system (5) with any given
initial value (S(0), I(0), R(0), W (0), k) ∈ R

4
+ ×N is permanent in mean almost surely. �

Theorem 3.2 For any initial value (S(0), I(0), R(0), W (0), k) ∈ R
4
+ × N, if (m1, m2) ∈ D1 ∩

D2 ∩D3 ∩D5, where D5 is defined in (23), then

lim sup
t→∞

1
t

ln

(
I(t)

d2 + δ + c
+

C8W (t)
ρ

)

≤ C11 a.s.,

where C11 is defined in (34). If C11 < 0, then limt→+∞ I(t) = 0 almost surely. Furthermore, the
distribution of S(t) weakly converges to the measure with the density σ (t), which is defined
in (26).

D5 =
{

(m1, m2)
∣
∣
∣max

{
qd1

Q2(ε)
,

q(2d1 – ω2)
2Q2(ε)

}

< m2 < m1

}

. (23)

Proof Using Lemma 2.1, Lemma 2.2 and the first equation of system (5), an auxiliary
stochastic equation is considered as follows:

dχ (t) =
(

Λ(k) – d1χ (t) +
m2Q2(ε)

q
χ (t)

)

+ ωχ (t) dB(t) +
∫

M

λ(u)χ (t–)Ũ(dt, du), (24)

with the initial condition χ (0) = S(0) > 0.
In order to facilitate the following proof, νj(τ ) (j = 1, 2, 3) on (0,∞) are defined as follows:

ν1(τ ) = Λ(k) – d1τ +
m2Q2(ε)

q
τ , ν2(τ ) = ωτ +

∫

M

λ(u)Ũ(dτ , du),

ν3 = ω2 +
(∫

M

[
λ(τ ) – ln

(
1 + λ(τ )

)]
ψ dτ

)2

.

Based on simple computations, it can be obtained that

∫ ∞

0

1
ν2

2 (τ )
e
∫ τ

1
2ν1(u)
ν2

2 (u)
du

dτ =
e

2Λ(k)
ν3

ν3

∫ ∞

0
τ

( 2qd1–2m2Q2(ε)
qν3

–2)e– 2Λ(k)
ν3τ dτ < ∞. (25)
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Consequently, it follows from (25) that sufficient conditions in Theorem 1.16 of [46] are
satisfied, and it can be obtained that Eq. (24) has a stationary ergodic solution and the
invariant density σ (τ ) defined on τ ∈ (0,∞) is

σ (τ ) = C7ν
–1
3 τ

( 2qd1–2m2Q2(ε)
qν3

–2)e– 2Λ(k)
ν3τ , (26)

where C7 = [ν–1
3 ( ν3

2Λ(k) )
2(qd1–m2Q2(ε))

qν3
+1

Γ ( 2(qd1–m2Q2(ε))
qν3

+ 1)]–1 represents a constant such that
∫ ∞

0 σ (τ ) dτ = 1.
Using the 1-dimensional stochastic differential equation comparison theorem [44], it

can be concluded that S(t) ≤ χ (t) holds for any t ≥ 0 almost surely. Further computations
show that

L1 =
∫ ∞

0
τσ (τ ) dτ =

C7

ν3

∫ ∞

0
τ

– 2(qd1–m2Q2(ε))
qν3

–1e– 2Λ(k)
ν3τ dτ

=
C7

ν3

∫ ∞

0

(
2Λ(k)

ν3

)– 2(qd1–m2Q2(ε))
qν3

–1

τ
2(qd1–m2Q2(ε))

qν3
–1e–τ

(
2Λ(k)

ν3

)

dτ

=
C7

ν3

(
ν3

2Λ(k)

) 2(qd1–m2Q2(ε))
qν3

Γ

(
2(qd1 – m2Q2(ε))

qν3

)

=
2Λ(k)

ν3

Γ ( 2(qd1–m2Q2(ε))
qν3

)

Γ ( 2(qd1–m2Q2(ε))
qν3

+ 1)
=

qΛ(k)
qd1 – m2Q2(ε)

, (27)

L2 =
∫ ∞

0
τ 2σ (τ ) dτ =

C7

ν3

∫ ∞

0
τ

– 2(qd1–m2Q2(ε))
qν3 e– 2Λ(k)

ν3τ dτ

=
C7

ν3

∫ ∞

0

(
2Λ(k)

ν3

)– 2(qd1–m2Q2(ε))
qν3

τ
2(qd1–m2Q2(ε))

qν3
–2e–τ

(
2Λ(k)

ν3

)

dτ

=
C7

ν3

(
ν3

2Λ(k)

) 2(qd1–m2Q2(ε))
qν3

–1

Γ

(
2(qd1 – m2Q2(ε))

qν3
– 1

)

=
(

2Λ(k)
ν3

)2 Γ ( 2(qd1–m2Q2(ε))
qν3

– 1)

Γ ( 2(qd1–m2Q2(ε))
qν3

+ 1)

=
2q2Λ2(k)

(qd1 – m2Q2(ε))[2(qd1 – m2Q2(ε)) – q2ν3]
. (28)

Consequently, it follows from (27) and (28) that

∫ ∞

0

(

τ –
qΛ(k)

qd1 – m2Q2(ε)

)2

σ (τ ) dτ

=
∫ ∞

0

[

τ 2 –
2qΛ(k)

qd1 – m2Q2(ε)
τ +

(
qΛ(k)

qd1 – m2Q2(ε)

)2]

σ (τ ) dτ

= L2 –
2qΛ(k)

qd1 – m2Q2(ε)
L1 +

(
qΛ(k)

qd1 – m2Q2(ε)

)2

=
q2Λ2(k)ν3

(qd1 – m2Q2(ε))2[2(qd1 – m2Q2(ε)) – q2ν3]
. (29)
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Define

U6(t) =
1

d2 + δ + c
I(t) +

1
ρ

√
Λ(k)[m1q + (m1 – m2)I∗]

d1(d2 + δ + c)(q + I∗)
W (t). (30)

By using Itô’s formula and Lemma 2.1, we find that

L(ln U6) ≤ [m1(q + Q(ε)) – m2P(ε)]W (t)
(d + δ + c)(q + Q(ε))U6(t)

[

χ (t) –
qΛ(k)

qd1 – m2Q2(ε)

]

+
[m1(q + Q(ε)) – m2P(ε)]Λ(k)W (t)

d1(q + Q(ε))(d2 + δ + c)U6(t)
–

I(t)
U6(t)

+
√

Λ(k)[qm1 + (m1 – m2)I∗]
√

d1(q + I∗)(d2 + δ + c)U6(t)
[
I(t) – W (t)

]

≤ m1ρ
√

d1(q + I∗)
√

Λ(k)(d2 + δ + c)[m1q + (m1 – m2)I∗]

∣
∣
∣
∣χ (t) –

qΛ(k)
qd1 – m2Q2(ε)

∣
∣
∣
∣

–
m2ρP(ε)

√
d1(q + I∗)

(q + Q(ε))
√

Λ(k)(d2 + δ + c)[m1q + (m1 – m2)I∗]

∣
∣
∣
∣χ (t) –

qΛ(k)
qd1 – m2Q2(ε)

∣
∣
∣
∣

+
C8 – 1
U6(t)

[
I(t) + C8W (t)

]

≤ m1ρ
√

d1(q + I∗)
√

Λ(k)(d2 + δ + c)[m1q + (m1 – m2)I∗]

∣
∣
∣
∣χ (t) –

qΛ(k)
qd1 – m2Q2(ε)

∣
∣
∣
∣

–
m2ρP(ε)

√
d1(q + I∗)

(q + Q(ε))
√

Λ(k)(d2 + δ + c)[m1q + (m1 – m2)I∗]

∣
∣
∣
∣χ (t) –

qΛ(k)
qd1 – m2Q2(ε)

∣
∣
∣
∣

+ min{d2 + δ + c,ρ}(C8 – 1)I{C8≤1} + max{d2 + δ + c,ρ}(C8 – 1)I{C8>1}, (31)

where C8 = Λ(k)[m1(q+Q(ε))–m2P(ε)]
d1(d2+δ+c)(q+Q(ε)) .

Based on (29) and (31), and integrating (30) from 0 to t, we find that

ln U6(t)
t

≤ ln U6(0)
t

+
m1ρ

√
d1(q + I∗)

√
Λ(k)(d2 + δ + c)[m1q + (m1 – m2)I∗]t

×
∫ t

0

∣
∣
∣
∣χ (τ ) –

qΛ(k)
qd1 – m2Q2(ε)

∣
∣
∣
∣dτ

–
m2ρP(ε)

√
d1(q + I∗)

(q + Q(ε))
√

Λ(k)(d2 + δ + c)[m1q + (m1 – m2)I∗]t

×
∫ t

0

∣
∣
∣
∣χ (τ ) –

qΛ(k)
qd1 – m2Q2(ε)

∣
∣
∣
∣dτ

+ min{d2 + δ + c,ρ}(C8 – 1)I{C8≤1} + max{d2 + δ + c,ρ}(C8 – 1)I{C8>1}. (32)
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According to the ergodicity of χ (t) and
∫ ∞

0 τσ (τ ) dτ < ∞, it yields that

lim
t→∞

1
t

∫ t

0

∣
∣
∣
∣χ (τ ) –

qΛ(k)
qd1 – m2Q2(ε)

∣
∣
∣
∣dτ

=
∫ ∞

0

∣
∣
∣
∣τ –

qΛ(k)
qd1 – m2Q2(ε)

∣
∣
∣
∣σ (τ ) dτ ≤

√∫ ∞

0

[

τ –
qΛ(k)

qd1 – m2Q2(ε)

]2

σ (τ ) dτ . (33)

Based on (29), (31), (32) and (33), it can be obtained that

lim sup
t→∞

ln U6(t)
t

≤ min{d2 + δ + c,ρ}(C8 – 1)I{C8≤1} + max{d2 + δ + c,ρ}(C8 – 1)I{C8>1}

+
m1ρ

√
d1(q + I∗)

√
Λ(k)(d2 + δ + c)[m1q + (m1 – m2)I∗]

C9

–
m2ρP(ε)

√
d1(q + I∗)

(q + Q(ε))
√

Λ(k)(d2 + δ + c)[m1q + (m1 – m2)I∗]
C9

= min{d2 + δ + c,ρ}(C8 – 1)I{C8≤1}

+ max{d2 + δ + c,ρ}(C8 – 1)I{C8>1} + C10

:= C11, (34)

where C9 =
√

q3ω2Λ2(k)
(qd1–m2Q2(ε))2[q(2d1–ω2)–2m2Q2(ε)] , and C10 = ρ(qd1–m2Q2(ε))C8C9

qΛ(k) .
If C11 < 0 (defined in (34)) and (m1, m2) ∈ D1 ∩ D2 ∩ D3 ∩ D5, where D5 is defined in

(23), then it can be concluded that lim supt→∞
ln I(t)

t < 0 almost surely, which reveals that
limt→∞ I(t) = 0 almost surely. Hence, it completes the proof. �

Theorem 3.3 For any initial value (S(0), I(0), R(0), W (0), k) ∈ R
4
+ × N, if (m1, m2) ∈ D1 ∩

D6, where

D6 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(m1, m2)

∣
∣
∣
∣
∣
∣
∣
∣
∣

max

{
qd1

Q2(ε)
,

q(2d1 – ω2)
2Q2(ε)

}

< m2 < m1,

m1 >
2Λ(k) + ω2P(ε) + 2(m2Q(ε) – d1 – υ)P(ε)

2P2(ε)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (35)

then limt→+∞ S(t) = 0 and limt→+∞ I(t) = 0 almost surely.

Proof Firstly, by applying Itô’s formula into the first equation of system (5), we obtain that

d ln S(t) =
[

Λ(k)
S(t)

– d1 –
(

m1 –
m2I(t)
q + I(t)

)

W (t)
]

dt

+
[

ω

2
+

∫

M

[
λ(u) – ln

(
1 + λ(u)

)]
ψ du

]

dt

+ ω dB(t) +
∫

M

ln
(
1 + λ(u)

)
Ũ(dt, du). (36)
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By integrating both sides of (36) from 0 to t, it follows from Lemma 2.1 that

ln S(t) – ln S(0) ≤
(

Λ(k)
P(ε)

– d1 – m1P(ε) + m2Q(ε) +
ω2

2
+ υ

)

t

+ ωB(t) +
∫ t

0

∫

M

ln
(
1 + λ(u)

)
Ũ(dτ , du) dτ . (37)

Let F(t) =
∫ t

0
∫
M

ln(1 + λ(u))Ũ(dτ , du) dτ . It can be shown that

〈
F(t), F(t)

〉
=

∫ t

0

[∫

M

ln
(
1 + λ(u)

)
Ũ(dτ , du)

]2

dτ

and that

P

{

sup
0≤t≤Tk

[

F(t) –
1
2
〈
F(t), F(t)

〉
]

> 2 ln Tk

}

≤ 1
T2

k

based on the exponential martingales inequality.
According to the Borel–Cantelli lemma [45], it can be concluded that a random integer

Tk0 = Tk0(ω) exists for almost all ω ∈ Ω , yielding that

sup
0≤t≤Tk

[

F(t) –
1
2
〈
F(t), F(t)

〉
]

≤ 2 ln Tk (38)

holds for Tk ≥ Tk0 almost surely. It follows from (38) that

F(t) ≤ 2 ln Tk +
1
2
〈
F(t), F(t)

〉
(39)

holds for all 0 ≤ t ≤ Tk almost surely.
Substituting (39) into (37), it can be obtained that

ln S(t) – ln S(0) ≤
(

Λ(k)
P(ε)

– d1 – m1P(ε) + m2Q(ε) +
ω2

2
+ υ

)

t

+ ωB(t) + 2 ln Tk

holds for all 0 ≤ t ≤ Tk almost surely. Furthermore, it can be shown that

ln S(t) – ln S(0)
t

≤ Λ(k)
P(ε)

– d1 – m1P(ε) + m2Q(ε)

+
ω2

2
+ υ +

ωB(t)
t

+
2 ln Tk

Tk – 1
(40)

holds for 0 ≤ Tk – 1 ≤ t ≤ Tk almost surely.
It is easy to show that limt→∞ B(t)

t = 0 almost surely. If (m1, m2) ∈D1 ∩D6, then, following
(40),

lim sup
t→∞

ln S(t)
t

≤ Λ(k)
P(ε)

– d1 – m1P(ε) + m2Q(ε) +
ω2

2
+ υ < 0
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yields that

lim
t→∞ S(t) = 0 a.s. (41)

Secondly, using similar proofs to Theorem 3.2 of this paper, if (m1, m2) ∈D1 ∩D6, then
it can be shown that

lim
t→∞ I(t) = 0 a.s. (42)

Hence, it completes the proof. �

Remark 3.4 Following similar arguments given in [17, 40], we can show that the basic
reproduction numbers for the deterministic and stochastic versions of system (5) are ob-
tained as follows:

Rd
0 =

m1Λ(k)
d1(d2 + δ + c)

and Rs
0 =

d1Rd
0

(d1 + ω2
2 +

∫
M

[λ(u) – ln(1 + λ(u))]ψ du)
,

respectively. Note thatRs
0 < Rd

0 and thatRs
0 decreases when the intensity of the Lévy jump

increases.

Remark 3.5 Based on the mathematical formulation of system (5), it can be concluded that
the state variable R(t) does not impose dynamic effects on infectious disease transmission.
Hence, we have discussed some sufficient conditions for disease extinction omitting R(t)
in Theorems 3.2 and 3.3 of this paper.

4 Numerical simulation
Simulation studies are used to explore the combined dynamic effects of Markovian switch-
ing and media coverage on the stochastic epidemiological dynamics of system (5). Calcu-
lations are based on Milstein’s higher order method [46]. Suppose state space N = {1, 2}.
Using the Markovian chain law, system (5) can be investigated as a hybrid system switch-
ing between subsystems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = [Λ(1) – d1S(t) – (m1 – m2I(t)
q+I(t) )S(t)W (t)] dt

+ ωS(t) dB(t) +
∫
M

λ(u)S(t–)Ũ(dt, du),

dI(t) = [(m1 – m2I(t)
q+I(t) )S(t)W (t) – (d2 + δ + c)I(t)] dt,

dR(t) = [δI(t) – d3R(t)] dt,

dW (t) = ρ[I(t) – W (t)] dt,

(43)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = [Λ(2) – d1S(t) – (m1 – m2I(t)
q+I(t) )S(t)W (t)] dt

+ ωS(t) dB(t) +
∫
M

λ(u)S(t–)Ũ(dt, du),

dI(t) = [(m1 – m2I(t)
q+I(t) )S(t)W (t) – (d2 + δ + c)I(t)] dt,

dR(t) = [δI(t) – d3R(t)] dt,

dW (t) = ρ[I(t) – W (t)] dt.

(44)
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Figure 1 Existence of the endemic equilibrium and permanence in mean almost surely. Parameter values:
λ = 0.01,m1 = 0.3 andm2 = 0.15

Figure 2 Examples of Theorem 3.2. The dynamics of system (43) are shown with parameter values as
described in the text, and (left column) λ = 0.01,m1 = 0.4 andm2 = 0.25 (right column) λ = 0.04,m1 = 0.5 and
m2 = 0.2

In the following numerical examples we take d1 = 0.4, q = 0.1, ω2 = 0.25, d2 = 0.2, δ = 0.3,
c = 0.1, d3 = 0.05, ρ = 0.5 with appropriate units. Parameters λ, m1 and m2 are varied.

In Fig. 1 we give an example of persistence in mean. Here, λ = 0.01, m1 = 0.3 and
m2 = 0.15. It follows from (6) and simple computations that the endemic equilibrium of the
deterministic version of system (5) exists. These parameter values also satisfy the existence
of a stationary distribution when (m1, m2) ∈D1 ∩D2 ∩D3 = {(m1, m2)|0.0747 < m2 < m1 <
0.5333}. Here, (S∗, I∗, R∗, W ∗) = (0.5761, 0.1428, 0.2811, 0.2811), (m1, m2) = (0.3, 0.15) ∈
D1 ∩D2 ∩D3 ∩D4 is satisfied, and sufficient conditions in Theorem 3.1 hold. Additionally,
we have lim supt→∞

1
t E

∫ t
0 [(S(τ ) – S∗)2 + (I(τ ) – I∗)2 + (R(τ ) – R∗)2 + (W (τ ) – W ∗)2] dτ ≤

0.9473, and it can be concluded that system (5) is permanent in mean (based on Theo-
rem 3.1).

Figure 2 provides two examples satisfying Theorem 3.2 given system (43). Here we
assume (left column) λ = 0.01, m1 = 0.4 and m2 = 0.25, and (right column) λ = 0.04,
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Figure 3 Examples of Theorem 3.3. The dynamics of system (44) are shown with parameter values as
described in the text, and (left column) λ = 0.01,m1 = 0.8 andm2 = 0.25 (right column) λ = 0.04,m1 = 0.9 and
m2 = 0.2

m1 = 0.5 and m2 = 0.2. Given λ = 0.01, we see that (m1, m2) ∈ D1 ∩ D2 ∩ D3 ∩ D5 =
{(m1, m2)|0.1926 < m2 < m1 < 0.5333}, and the distribution of S(t) weakly converges to
the measure with σ (t) defined in (23) and limt→∞ I(t) = 0 almost surely. When λ = 0.04,
(m1, m2) ∈ D1 ∩D2 ∩D3 ∩D5 = {(m1, m2)|0.1631 < m2 < m1 < 0.5333} is satisfied, and we
obtain the same result.

Two examples of Theorem 3.3 are shown in Fig. 3 given system (44). When λ = 0.01,
extinction of all individuals requires that (m1, m2) ∈ D1 ∩ D6 = {(m1, m2)|0.1926 < m2 <
m1, m1 > 0.7442}. This is shown to be true in the left column of Fig. 3 with m1 = 0.8
and m2 = 0.25). In the right column we see that extinction is accomplished with prob-
ability 1 when λ = 0.04, m1 = 0.9 and m2 = 0.2, since (m1, m2) ∈ (m1, m2) ∈ D1 ∩ D6 =
{(m1, m2)|0.1926 < m2 < m1, m1 > 0.8721} is satisfied.

5 Conclusion
It is well known that the studies of stochastic perturbations and media coverage are two
important and well-established disciplines in mathematical epidemiology [1, 3, 47, 48].
Here, we have extended the model in [17] to include Markovian switching, telephone
noise, Lévy jumps and media impact. These extensions have been motivated by the fol-
lowing facts:

(I) Lévy jumps have been shown to effectively portray an unexpected outbreak of
infectious disease and other sudden severe perturbations arising in the real world
[23–28], which cannot be accurately depicted by Brownian motion;

(II) Evidences from real-world observations point out that the birth rate of susceptible
individuals is subject to both white noise and telephone noise [18–22] (which is
generally memoryless and can be regarded as a switching state among some
considerable environmental regimes [18–20]);

(III) It is well known that there is a profound relationship between public health issues
and mass media coverage, and that media reports can elicit changes in individual
behaviour during an infectious disease outbreak, affecting the implementation of
public health measures to mitigate infection [29, 43].
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Based on the theoretical findings in Lemma 2.1 and Lemma 2.2, if intensities of media
coverage are restricted within certain ranges, then the solution is stochastically ultimately
bounded, and there exists a globally unique positive solution to the proposed system. Fur-
thermore, it shows that there exists a stationary distribution to the positive solution (a
stationary Markov process) when intensities of media coverage and Markovian switching
are restricted within certain ranges. All these theoretical findings can be found in Theo-
rem 2.3.

Some sufficient conditions associated with Markovian switching, Lévy jumps and me-
dia coverage are derived for the persistence in mean of each individual and extinction of
the infectious disease, which are discussed in Theorems 3.1, 3.2 and 3.3. Corresponding
numerical experiments and corresponding figures indicate that permanence in mean of
each individual and extinction of disease have strong relationship with intensities of media
coverage and Lévy jumps. Furthermore, the basic reproduction numbers of the determin-
istic and stochastic version are obtained in Remark 3.4, which reveals that Rs

0 < Rd
0 and

that Rs
0 decreases when the intensity of the Lévy jump increases.

Compared with the recent related work, the combined dynamic effects of Markovian
switching and media coverage on a stochastic epidemiological system with Lévy jumps
and distributed delay are investigated in this paper, which has not been studied before.
Our analytical findings thus provide enhanced knowledge in the field of mathematical
epidemiology.

Appendix A: Proof of Lemma 2.1

Proof Let α1(t) = Sγ (t), 0 < γ < 1. By applying Itô’s formula [45] to etα1(t), it can be ob-
tained that

d
(
etα1(t)

)

= et
[

α1(t) + γα
γ –1
1 dα1(t) +

γ (γ – 1)αγ –2
1 (t)(dα1)2

2

]

= et
{

1 + γ

[

Λ(k) – d1S(t) –
(

m1 –
m2I(t)
q + I(t)

)

S(t)W (t)
]}

α1(t)

+ et
[

γ (γ – 1)ω2 +
∫

M

[(
1 + λ(u)

)γ – 1 – γ λ(u)
]
ψ du

]

α1(t)

+ et
[

γω dB(t) +
∫

M

[(
1 + λ(u)

)γ – 1
]
Ũ(dt, du)

]

α1(t). (45)

By integrating (45) from 0 to t and taking expectations on both sides of (45), it yields that

E
(
etα1(t)

)

= α1(0) + E

∫ t

0
eτ

{

1 + γ

[

Λ(k) – d1S(t) –
(

m1 –
m2I(t)
q + I(t)

)

S(t)W (t)
]}

α1(τ ) dτ

+ E

∫ t

0
eτ

[∫

M

[(
1 + λ(u)

)γ – 1
]
Ũ(dt, du) – γ (1 – γ )ω2

]

α1(τ ) dτ
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≤ α1(0) + E

∫ t

0
eτ

[
1 + Λ(k)γ – d1γ S(t) – (m1 – m2)S(t)W (t) – γ (1 – γ )ω2]α1(τ ) dτ

+ E

∫ t

0
eτ

[∫

M

[(
1 + λ(u)

)γ – 1 – γ λ(u)
]
ψ du

]

α1(τ ) dτ . (46)

For α1 ≥ 0 and 0 < γ < 1, αγ
1 ≤ 1 + γ (α1 – 1) holds. Consequently, it can be shown that

α1(t)
[

1 + Λ(k)γ – d1γ S(t) – γ (1 – γ )ω2 +
∫

M

[(
1 + λ(u)

)γ – 1 – γ λ(u)
]
ψ du

]

≤ [
1 + Λ(k)γ – d1γ S(t)

]
α1(t) ≤ Q1(γ ), (47)

where Q1(γ ) represents a positive constant associated with γ . Hence, it can be concluded
that

E
(
etα1(t)

) ≤ α1(0) + E

∫ t

0
eτ Q1(γ ) dτ . (48)

Based on (48), it can be shown that

lim sup
t→∞

E
(
Sγ (t)

) ≤ Q1(γ ). (49)

When (m1, m2) ∈D1, it follows from the standard arguments that

⎧
⎨

⎩

limt→∞ I(t) ≤ m1Q1(γ )–(d2+δ+c)
m2Q1(γ ) := Q2(γ ),

limt→∞ R(t) ≤ δQ2(γ )
d3

:= Q3(γ ).
(50)

Based on the mathematical formulation of W (t), we find that

lim sup
t→∞

W (t) ≤ lim sup
t→∞

I(t) ≤ Q2(γ ). (51)

Let α̃(t) = (S(t), I(t), R(t), W (t), k)T ∈R
4
+ ×N, then

2(1– γ
2 )∧0∣∣α̃(t)

∣
∣γ ≤ Sγ (t) + Iγ (t) + Rγ (t) + W γ (t). (52)

According to (49), (50), (51), and (52), it can be obtained that

lim sup
t→∞

E
∣
∣α̃(t)

∣
∣γ ≤ 0.5(1– γ

2 )∧0 lim sup
t→∞

E
[
Sγ (t) + Iγ (t) + Rγ (t) + W γ (t)

]

≤ 0.5(1– γ
2 )∧0[Q1(γ ) + 2Q2(γ ) + Q3(γ )

]
:= Q(γ ). (53)

Assume Q(ε) = ( Q(γ )
ε

)
1
γ , where 0 < ε < 1 denotes an arbitrarily small constant. Based on

Chebyshev’s inequality, it can be concluded that

⎧
⎨

⎩

P[α̃(t) < Q(ε)] ≤ Q(ε)γP[α̃–γ (t)],

lim inft→∞ P[α̃(t) ≤ Q(ε)] ≥ 1 – ε.
(54)
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According to Chebyshev’s inequality and (54), it can be shown that there exists P(ε) > 0
such that

lim inf
t→∞ P

[
α̃(t) ≥ P(ε)

] ≥ 1 – ε. (55)

Based on (54) and (55), it completes the proof. �

Appendix B: Proof of Lemma 2.2

Proof According to similar arguments utilised in [17, 40], it is straightforward to show the
existence of a unique local positive solution (S(t), I(t), R(t), W (t), k) ∈R

4
+ ×N on t ∈ [0, Te)

almost surely for any initial value.
Let Te stand for explosion time [45]. Assume n0 ≥ 1 represents a sufficiently large integer

such that (S(0), I(0), R(0), W (0)) all lie within [ 1
n0

, n0]. For any integer n ≥ n0, the stopping
time [45] can be defined as follows:

Ts = inf

⎧
⎪⎨

⎪⎩
t ∈ [0, Te)

∣
∣
∣
∣
∣
∣
∣

min
{

S(t), I(t), R(t), W (t)
} ≤ 1

n
, or

max
{

S(t), I(t), R(t), W (t)
} ≥ n

⎫
⎪⎬

⎪⎭
.

It follows from the mathematical formulation of Ts that Ts is increasing when n → ∞.
Set T∞ = limn→∞ Ts. Then it is easy to show that T∞ ≤ Te almost surely. Further compu-
tations show that Te = ∞ almost surely when T∞ = ∞ holds almost surely, which yields
(S(t), I(t), R(t), W (t), k) ∈ R

4
+ × N hold for all t ≥ 0. Hence, we will show that T∞ = ∞ al-

most surely.
If T∞ = ∞ almost surely does not hold, then there exists a pair of positive constants

Ñ0 > 0 and 0 < ε < 1 such that P{T∞ ≤ Ñ0} ≥ ε. Hence, there exists a positive integer
n1 ≥ n0 such that P{Ts ≤ Ñ0} ≥ ε holds for any n ≥ n1. By defining a C4-function W :
R

4
+ → R+ ∪ {0} as follows:

V (S, I, R, W ) = S – ln S + I – ln I + R – ln R – 3 +
1
ρ

(W – 1 – ln W ).

Using Itô’s formula [45] and calculating the derivation of dV (S, I, R, W ) along the solution
of system (5), we find that

dV (S, I, R, W )

=
(

1 –
1

S(t)

)[

Λ(k) – d1S(t) –
(

m1 –
m2I(t)
q + I(t)

)

S(t)W (t)
]

dt

+
(

1 –
1

I(t)

)[(

m1 –
m2I(t)
q + I(t)

)

S(t)W (t) – (d2 + δ + c)I(t)
]

dt

+
(

1 –
1

R(t)

)
[
δI(t) – d3R(t)

]
dt + ρ

(

1 –
1

W (t)

)
[
I(t) – W (t)

]
dt

+
(
S(t) – 1

)
ω dB(t) +

[
ω2

2
+

∫

M

(λ(u) – ln
(
1 + λ(u)

)
ψ du

]

dt
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+
∫

M

[
λ(u)S(t–) – ln

(
1 + λ(u)

)]
Ũ(dt, du)

= LV dt +
(
S(t) – 1

)
ω dB(t) +

∫

M

[
λ(u)S(t–) – ln

(
1 + λ(u)

)]
Ũ(dt, du).

When hypotheses (H2) and (H3) hold, it yields from Lemma 2.1 that

LV ≤ Λ(k) + d1 + d2 + d3 + δ + c + ρ + (m1 + ρ + δ)Q(ε)

+
(1 + m1q)Q2(ε)

q
+

m2Q3(ε)
q

+
ω2

2
+ υ. (56)

The following arguments are similar to those in [17, 40], which are omitted here. Based
on the above analysis, it can be concluded that τ∞ = ∞. �
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