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Abstract
Kim and Kim (J. Math. Anal. Appl. 487:124017, 2020) introduced the degenerate
logarithm function, which is the inverse of the degenerate exponential function, and
defined the degenerate polylogarithm function. They also studied a new type of the
degenerate Bernoulli polynomials and numbers by using the degenerate
polylogarithm function. Motivated by their research, we subdivide this paper into two
parts. In Sect. 2, we construct a new type of degenerate Genocchi polynomials and
numbers by using the degenerate polylogarithm function, called the degenerate
poly-Genocchi polynomials and numbers, deriving several combinatorial identities
related to the degenerate poly-Genocchi numbers and polynomials. Then, in Sect. 3,
we also consider the degenerate unipoly Genocchi polynomials attached to an
arithmetic function by using the degenerate polylogarithm function. In particular, we
provide some new explicit computational identities of degenerate unipoly
polynomials related to special numbers and polynomials.
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1 Introduction
In recent years, many mathematicians have researched various special polynomials and
numbers which included the Stirling numbers, central factorial numbers, Bernoulli num-
bers, Euler numbers, (central) Bell numbers, Cauchy numbers, and others [2–8]. Signifi-
cantly, Carlitz [9, 10] initiated a study of degenerate versions of some special polynomials
and numbers, namely the degenerate Bernoulli and Euler polynomials and numbers. Since
then, many mathematicians have been studying degenerate versions of special polynomi-
als and numbers such as Bernoulli, Euler, and Genocchi polynomials and numbers, and
others [1, 11–26]. Notably, Genocchi numbers have been extensively studied in many dif-
ferent contexts such as: elementary number theory, complex analytic number theory, dif-
ferential topology (differential structures on spheres), theory of modular forms (Eisenstein
series), p-adic analytic number theory, and in quantum physics (quantum groups)[20–
22, 27–29].
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In 1997, Kaneko [2] introduced poly-Bernoulli numbers which are defined by the poly-
logarithm function. The polyexponential functions were first studied by Hardy [30] and
reconsidered by Kim and Kim [1, 17] in view of an inverse to the polylogarithm functions
which were studied by Jaonquière [31], Lewis [8], and Zagier [32]. Kim et al. [18] also
studied a new type of the degenerate poly-Bernoulli polynomials by using the degenerate
modified polyexponential functions.

Furthermore, Kim and Kim [15] introduced the degenerate logarithm function (the in-
verse of the degenerate exponential function) and studied a new type of the degenerate
Bernoulli polynomials and numbers by using the degenerate polylogarithm function. In-
fluenced by Kim et al.’s research, as well as the importance and potential for applications in
number theory, combinatorics, and other fields of applied mathematics, we define a new
type of the degenerate poly-Genocchi polynomials and the degenerate unipoly Genocchi
polynomials, and provide several combinatorial identities related to these polynomials and
numbers.

Now, as is well established in academia, the ordinary Bernoulli polynomials Bn(x) and
the Genocchi polynomials Gn(x), (n ∈N∪{0}) are respectively defined by their generating
functions as follows (see[9, 13, 14, 20]):

(
t

et – 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
,

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
. (1)

When x = 0, Bn = Bn(0) and Gn = Gn(0) are respectively called the Bernoulli numbers
and the Genocchi numbers.

We note that by (1)

G2n+1 = B2n+1 = 0 (n ∈N), Gn = 2
(
1 – 2n)Bn. (2)

The Euler polynomials are given by

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
(see [9, 20]). (3)

When x = 0, En = En(0) are called the Euler numbers.
For any nonzero λ ∈ R (or C), the degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = (1 + λt)

1
λ = e1

λ(t) (see [1, 13–25]). (4)

By Taylor expansion, we get

ex
λ(t) =

∞∑
n=0

(x)n,λ
tn

n!
(see [12–15]), (5)

where

(x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ
)

(n ≥ 1).
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Note that

lim
λ→0

ex
λ(t) =

∞∑
n=0

xntn

n!
= ext . (6)

In [9, 10], Carlitz introduced the degenerate Bernoulli polynomials and the degenerate
Euler polynomials, respectively given by

t
eλ(t) – 1

ex
λ(t) =

∞∑
n=0

Bn,λ(x)
tn

n!
,

2
eλ(t) + 1

ex
λ(t) =

∞∑
n=0

En,λ(x)
tn

n!
. (7)

When x = 0, Bn,λ = Bn,λ(0) are called the degenerate Bernoulli numbers, and En,λ = En,λ(0)
are called the degenerate Euler numbers.

Note that limλ→0 Bn,λ(x) = Bn(x), (n ≥ 0) and limλ→0 En,λ(x) = En(x), (n ≥ 0).
In [20], Kim et al. considered the degenerate Genocchi polynomials given by

2t
eλ(t) + 1

ex
λ(t) =

∞∑
n=0

Gn,λ(x)
tn

n!
. (8)

When x = 0, Gn,λ = Gn,λ(0) are called the degenerate Genocchi numbers.
As is well known, for s ∈C, the polylogarithm function is defined by a power series in z,

which is also a Dirichlet series in s

Lis(z) =
∞∑

n=1

zn

ns = z +
z2

2s +
z3

3s + · · · (
see [8, 14]

)
. (9)

This definition is valid for arbitrary complex order s and for all complex arguments z with
|z| < 1: it can be extended to |z| ≥ 1 by analytic continuation.

From (9), we note that

Li1(z) =
∞∑

n=1

zn

n
= – log(1 – z). (10)

Recently, Kim and Kim [15] introduced the degenerate logarithm function logλ(1 + t),
which is the inverse of the degenerate exponential function eλ(t) and the motivation for
the definition of degenerate polylogarithm function as follows:

logλ(1 + t) =
∞∑

n=1

λn–1(1)n,1/λ
tn

n!
=

1
λ

∞∑
n=1

(λ)n
tn

n!
=

1
λ

(
(1 + t)λ – 1

)
. (11)

Here, logλ(t) = 1
λ

(tλ – 1) is the compositional inverse of eλ(t) satisfying logλ(eλ(t) =
eλ(logλ(t)) = t. We note that

lim
λ→0

logλ(1 + t) =
∞∑

n=1

(–1)n–1 tn

n
= log(1 + t). (12)
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Thus, the degenerate polylogarithm function is defined by

lk,λ(x) =
∞∑

n=1

(–λ)n–1(1)n,1/λ

(n – 1)!nk xn, k ∈ Z
(|x| < 1

)
,
(
see [15]

)
. (13)

We note that

lim
λ→0

lk,λ(x) =
∞∑

n=1

xn

nk = Lik(x). (14)

By (11) and (13), we see that

l1,λ(x) =
∞∑

n=1

(–λ)n–1(1)n,1/λ

n!
xn = – logλ(1 – x). (15)

In [15], they also studied a new type of degenerate poly-Bernoulli polynomials and num-
bers by using the degenerate polylogarithm function as follows:

lk,λ(1 – eλ(–t))
1 – eλ(–t)

ex
λ(–t) =

∞∑
n=0

β
(k)
n,λ(x)

tn

n!
. (16)

When x = 0, β (k)
n,λ = β

(k)
n,λ(0) are called the degenerate poly-Bernoulli numbers.

Moreover, they observed that

∞∑
n=0

β
(1)
n,λ

tn

n!
=

1
1 – eλ(–t)

l1,λ
(
1 – eλ(–t)

)
=

–t
eλ(–t) – 1

=
∞∑

n=0

(–1)nBn,λ
tn

n!
. (17)

Kim [15] introduced the degenerate Stirling numbers of the second kind as follows:

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0). (18)

As an inversion formula of (18), the degenerate Stirling numbers of the first kind are de-
fined by

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ (n ≥ 0),
(
see [8, 18]

)
. (19)

From (18) and (19), it is well known that

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0),

(
see [13, 15]

)
(20)

and

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(k ≥ 0),

(
see [15]

)
. (21)
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This paper is subdivided into two parts. In Sect. 2, we construct a new type of degener-
ate Genocchi polynomials and numbers, called the degenerate poly-Genocchi polynomi-
als and numbers, by using the degenerate polylogarithm function, deriving several com-
binatorial identities related to the degenerate poly-Genocchi numbers and polynomials.
In Sect. 3, we also consider the degenerate unipoly Genocchi polynomials attached to an
arithmetic function by using the degenerate polylogarithm function. In particular, we pro-
vide some new explicit computational identities of degenerate unipoly polynomials related
to special numbers and polynomials.

2 A new type degenerate poly-Genocchi numbers and polynomials
In this section, we define the new type degenerate poly-Genocchi polynomials by using
the degenerate polylogarithm function which are called the degenerate poly-Genocchi
polynomials as follows:

lk,λ(1 – eλ(–2t))
eλ(t) + 1

ex
λ(t) =

∞∑
n=0

g(k)
n,λ(x)

tn

n!
. (22)

When x = 0, g(k)
n,λ = g(k)

n,λ(0) are called the degenerate poly-Genocchi numbers.
When k = 1, from (15), we see that g(1)

n,λ(x) = Gn,λ(x) (n ≥ 0) are the degenerate Genocchi
polynomials because of

l1,λ
(
1 – eλ(–2t)

)
= – logλ

(
1 – 1 + eλ(–2t)

)
= 2t. (23)

From (5), we observe that

d
dx

eλ(x) = e1–λ
λ (x),

d
dx

lk,λ(x) =
1
x

lk–1,λ(x). (24)

Theorem 1 For n ≥ 2, k ∈ Z, we have

lk,λ
(
1 – eλ(–2x)

)

= 2
∫ x

0

–2e1–λ
λ (–2t)

eλ(–2t) – 1

∫ t

0

–2e1–λ
λ (–2t)

eλ(–2t) – 1
· · · · · ·

∫ t

0

–2te1–λ
λ (–2t)

eλ(–2t) – 1︸ ︷︷ ︸
(k–2)–times

dt dt · · ·dt. (25)

Proof By using (25), we have

d
dx

(
1 – eλ(–2x)

)
= 2e1–λ

λ (–2x) (26)

and

d
dx

lk,λ
(
1 – eλ(–2x)

)
=

2e1–λ
λ (–2t)

(1 – eλ(–2x))
lk–1,λ

(
1 – eλ(–2x)

)
. (27)
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Thus, from (15), (26), and (27), we get the desired result as follows:

lk,λ
(
1 – eλ(–2x)

)

= 2
∫ x

0

–2e1–λ
λ (–2t)

eλ(–2t) – 1

∫ t

0

–2e1–λ
λ (–2t)

eλ(–2t) – 1
· · · · · ·

∫ t

0

–2te1–λ
λ (–2t)

eλ(–2t) – 1︸ ︷︷ ︸
(k–2)–times

dt dt · · ·dt. (28)

�

Theorem 2 For n ≥ 0 and k = 2, we have

g(2)
n,λ =

n∑
l=0

(
n
l

)
(–2)l Bl,λ(1 – λ)

l + 1
Gn–l,λ. (29)

Proof By using (16), (17), and Theorem 1, we get

∞∑
n=0

g(2)
n,λ

xn

n!
=

2
eλ(x) + 1

∫ x

0

–2t
eλ(–2t) – 1

e1–λ
λ (–2t) dt

=
2

eλ(x) + 1

∫ x

0

∞∑
l=0

Bl,λ(1 – λ)
(–2t)l

l!
dt

=
2x

eλ(x) + 1

∞∑
l=0

(–2)l Bl,λ(1 – λ)
l + 1

xl

l!

=

( ∞∑
m=0

Gm,λ
xm

m!

)( ∞∑
l=0

(–2)l Bl,λ(1 – λ)
l + 1

xl

l!

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
(–2)l Bl,λ(1 – λ)

l + 1
Gn–l,λ

)
xn

n!
. (30)

Therefore, by comparing the coefficients on both sides of (30), we get what we wanted. �

Theorem 3 For n ≥ 0, k ∈ Z, we have

g(k)
n,λ =

∑
n1+n2+···+nk–1=m

(
n
m

)
(–2)m

(
n

n1, n2, . . . , nk–1

)

× Bn1,λ(1 – λ)
n1 + 1

· · · · · · Bnk–1,λ(1 – λ)
n1 + n2 + · · · + nk–1 + 1

Gn–m,λ. (31)

Proof By using (8), Theorem 1, and Theorem 2, we have

∞∑
n=0

g(k)
n,λ

xn

n!
=

lk,λ(1 – eλ(–2x))
eλ(x) + 1

=
(

2x
eλ(x) + 1

) ∑
n1+n2+···+nk–1=m

(–2)m
(

n
n1, n2, . . . , nk–1

)

× Bn1,λ(1 – λ)
n1 + 1

· · · · · · Bnk–1,λ(1 – λ)
n1 + n2 + · · · + nk–1 + 1
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=
∞∑

n=0

( ∑
n1+n2+···+nk–1=m

(
n
m

)
(–2)m

(
n

n1, n2, . . . , nk–1

)

× Bn1,λ(1 – λ)
n1 + 1

· · · · · Bnk–1,λ(1 – λ)
n1 + n2 + · · · + nk–1 + 1

Gn–m,λ

)
xm

m!
. (32)

Therefore, by comparing the coefficients on both sides of (32), we get what we de-
sired. �

The following lemma is easily obtained by (5) and (22).

Lemma 4 For n ≥ 0, k ∈ Z, we have

g(k)
n,λ(x) =

n∑
m=0

(
n
m

)
g(k)

m,λ(x)n–m,λ. (33)

Theorem 5 For n ≥ 0, k ∈ Z, we have

g(k)
n,λ(1) + g(k)

n,λ =
n∑

m=1

(1)m,1/λ(–1)n–1

mk–1 λm–12nS2,λ(n, m). (34)

Proof By using Lemma 4, (5), and (22), we observe that

lk,λ
(
1 – eλ(–2t)

)
=

(
eλ(t) + 1

) ∞∑
l=0

g(k)
l,λ

tl

l!

=

( ∞∑
m=0

(1)m,λ
tm

m!
+ 1

)( ∞∑
l=0

g(k)
l,λ

tl

l!

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
(1)n–l,λg(k)

l,λ + g(k)
n,λ

)
tn

n!

=
∞∑

n=1

(
g(k)

n,λ(1) + g(k)
n,λ

) tn

n!
. (35)

On the other hand, from (13) and (20), we have

lk,λ
(
1 – eλ(–2t)

)
=

∞∑
m=1

(1)m,1/λ(–λ)m–1

(m – 1)!mk

(
1 – eλ(–2t)

)m

=
∞∑

m=1

(1)m,1/λ(–1)m–1λm–1

mk–1
(–1)m(eλ(–2t) – 1)m

m!

=
∞∑

m=1

(1)m,1/λ(–1)–1λm–1

mk–1

∞∑
n=m

S2,λ(n, m)(–1)n 2ntn

n!

=
∞∑

n=1

( n∑
m=1

(1)m,1/λ(–1)n–1

mk–1 λm–12nS2,λ(n, m)

)
tn

n!
. (36)

Therefore, by comparing the coefficients of (35) and (36), we get what we wanted. �
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Theorem 6 For n ≥ 0, k = 1, we have

n∑
m=1

(1)m,1/λλ
m–12nS2,λ(n, m) =

⎧⎨
⎩

2, if n = 1,

0, otherwise.
(37)

Proof From Theorem 5 and (23), we have

2t = l1,λ
(
1 – eλ(–2t)

)

=
∞∑

n=1

( ∞∑
m=1

(1)m,1/λ(–1)n–1λm–12nS2,λ(n, m)

)
tn

n!
. (38)

Therefore, by comparing the coefficients on both sides of (38), we have the desired re-
sult. �

Theorem 7 For n ≥ 0, k ∈ Z, we have

g(k)
n,λ(x) =

n∑
l=0

l∑
m=0

(
n
l

)
(x)mS2,λ(m, l)g(k)

n–l,λ. (39)

Proof From (20) and (22), we get

∞∑
n=0

g(k)
n,λ(x)

tn

n!
=

lk,λ(1 – eλ(–2t))
eλ(t) + 1

(
eλ(t) – 1 + 1

)x

=
∞∑
i=0

g(k)
i,λ

ti

i!

∞∑
m=0

(x)m
(eλ(t) – 1)m

m!

=
∞∑
i=0

g(k)
i,λ

ti

i!

∞∑
l=0

l∑
m=0

(x)mS2,λ(m, l)
tl

l!

=
∞∑

n=0

( n∑
l=0

l∑
m=0

(
n
l

)
(x)mS2,λ(m, l)g(k)

n–l,λ

)
tn

n!
. (40)

Therefore, by comparing the coefficients on both sides of (40), we have the desired re-
sult. �

Theorem 8 For n ≥ 0, k ∈ Z, we have

g(k)
n,λ(x) =

n∑
l=0

l+1∑
m=1

(
n
l

)
(1)m,1/λ(–1)l

(l + 1)mk–1 λm–12lS2,λ(l + 1, m)Gn–l,λ(x). (41)

Proof From (8), (13), and (36), we have

∞∑
n=0

g(k)
n,λ(x)

tn

n!

=
2t

eλ(t) + 1
ex
λ(t)

1
2t

∞∑
m=1

(–λ)m–1(1)m,1/λ

(m – 1)!mk

(
1 – eλ(–2t)

)m
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=
2t

eλ(t) + 1
ex
λ(t)

1
2t

∞∑
l=1

( l∑
m=1

(1)m,1/λ(–1)l–1

mk–1 λm–12lS2,λ(l, m)

)
tl

l!

=
∞∑
i=0

Gi,λ(x)
ti

i!
1
2t

∞∑
l=0

( l+1∑
m=1

(1)m,1/λ(–1)l

mk–1 λm–12l+1S2,λ(l + 1, m)

)
tl+1

(l + 1)!

=
∞∑
i=0

Gi,λ(x)
ti

i!

∞∑
l=0

( l+1∑
m=1

(1)m,1/λ(–1)l

(l + 1)mk–1 λm–12lS2,λ(l + 1, m)

)
tl

l!

=
∞∑

n=0

( n∑
l=0

l+1∑
m=1

(
n
l

)
(1)m,1/λ(–1)l

(l + 1)mk–1 λm–12lS2,λ(l + 1, m)Gn–l,λ(x)

)
tn

n!
. (42)

Therefore, by comparing the coefficients on both sides of (42), we have the desired re-
sult. �

Theorem 9 For n ≥ 1, k ∈ Z, we have

g(k)
n,λ(x) =

n∑
l=1

l∑
m=1

m∑
j=1

(
n
l

)(
l

m

)
(1)l–m+1,λ(1)j,1/λ(–1)m–1λj–12n–l+m–1

(l – m + 1)jk–1

× S2,λ(m, j)Bn–l, λ2

(
x
2

)
. (43)

Proof From (5), (7), and (36), we get

∞∑
n=0

g(k)
n,λ(x)

tn

n!

=
lk,λ(1 – eλ(–2t))

eλ(t) + 1
ex
λ(t)

=
1

e2
λ(t) – 1

ex
λ(t)

(
et
λ – 1

) ∞∑
m=1

( m∑
j=1

(1)j,1/λ(–1)m–1

jk–1 λj–12mS2,λ(m, j)

)
tm

m!

=
1

e λ
2

(2t) – 1
e

x
2
λ
2

(2t)
∞∑
i=1

(1)i,λ
ti

i!

∞∑
m=1

( m∑
j=1

(1)j,1/λ(–1)m–1

jk–1 λj–12mS2,λ(m, j)

)
tm

m!

=
t

e λ
2

(2t) – 1
e

x
2
λ
2

(2t)
∞∑
i=0

(1)i+1,λ

i + 1
ti

i!

∞∑
m=1

( m∑
j=1

(1)j,1/λ(–1)m–1

jk–1 λj–12mS2,λ(m, j)

)
tm

m!

=
∞∑

α=0

1
2

Bα, λ2

(
x
2

)
2αtα

α!

∞∑
i=0

(1)i+1,λ

i + 1
ti

i!

∞∑
m=1

( m∑
j=1

(1)j,1/λ(–1)m–1

jk–1 λj–12mS2,λ(m, j)

)
tm

m!

=
∞∑

α=0

Bα, λ2

(
x
2

)
2α–1tα

α!

×
∞∑
l=1

( l∑
m=1

m∑
j=1

(
l

m

)
(1)l–m+1,λ(1)j,1/λ(–1)m–1λj–12m

(l – m + 1)jk–1 S2,λ(m, j)

)
tl

l!
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=
∞∑

n=1

( n∑
l=1

l∑
m=1

m∑
j=1

(
n
l

)(
l

m

)
(1)l–m+1,λ(1)j,1/λ(–1)m–1λj–12n–l+m–1

(l – m + 1)jk–1

× S2,λ(m, j)Bn–l, λ2

(
x
2

))
tn

n!
. (44)

Therefore, by comparing the coefficients on both sides of (44), we have the desired re-
sult. �

Theorem 10 For n ≥ 1 and k ∈ Z, we get

n∑
m=1

n–m∑
l=0

(
n
m

)
(–1)l+n–m2–l–1 m(–λ)m–1(1)m,1/λ

mk S1,λ(n – m, l)El,λ

=
n∑

m=0

(–1)m+n2–mS1,λ(n, m)g(k)
l,λ . (45)

Proof Replace t by – 1
2 logλ(1 – t) in (22). From (7), (13), and (21), the left-hand side of (22)

is

lk,λ(t)
(eλ(– 1

2 logλ(1 – t)) + 1)

=
1
2

2
eλ(– 1

2 logλ(1 – t)) + 1

∞∑
m=1

(–λ)m–1(1)m,1/λ

(m – 1)!mk tm

=
1
2

∞∑
l=0

El,λ
(– 1

2 logλ(1 – t))l

l!

∞∑
m=1

(–λ)m–1(1)m,1/λ

mk–1
tm

m!

=
1
2

∞∑
l=0

El,λ

(
–

1
2

)l ∞∑
j=l

S1,λ(j, l)
(–t)j

j!

∞∑
m=1

(–λ)m–1(1)m,1/λ

mk–1
tm

m!

=
1
2

∞∑
j=0

( j∑
l=0

El,λ(–1)l+j2–lS1,λ(j, l)

)
tj

j!

∞∑
m=1

(–λ)m–1(1)m,1/λ

mk–1
tm

m!

=
∞∑

n=1

( n∑
m=1

n–m∑
l=0

(
n
m

)
(–1)l+n–m2–l–1 m(–λ)m–1(1)m,1/λ

mk S1,λ(n – m, l)El,λ

)
tn

n!
. (46)

On the other hand, the right-hand side of (22) is

∞∑
m=0

g(k)
m,λ

(– 1
2 logλ(1 – t))m

m!
=

∞∑
m=0

g(k)
m,λ

(
–

1
2

)m ∞∑
n=m

S1,λ(n, m)
(–1)ntn

n!

=
∞∑

n=0

( n∑
m=0

(–1)m+n2–mS1,λ(n, m)g(k)
m,λ

)
tn

n!
. (47)

Therefore, by comparing the coefficients of (46) and (47), we get what we wanted. �

3 The degenerate unipoly Genocchi polynomials and numbers
Let p be any arithmetic function which is real- or complex-valued function defined on the
set of positive integers N. Kim and Kim [5] defined the unipoly function attached to p(x)
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by

uk(x|p) =
∞∑

n=1

p(n)xn

nk (k ∈ Z). (48)

Moreover,

uk(x|1) =
∞∑

n=1

xn

nk = Lik(x) (49)

is the ordinary polylogarithm function.
In this paper, we define the degenerate unipoly function attached to p(x) as follows:

uk,λ(x|p) =
∞∑

n=1

p(n)
(–λ)n–1(1)n,1/λ

nk xn. (50)

We note that

uk,λ

(
x| 1

Γ

)
= lk,λ(x) (51)

is the degenerate polylogarithm function.
We also define the degenerate unipoly Genocchi polynomials by

uk,λ(1 – eλ(–2t)|p)
eλ(t) + 1

ex
λ(t) =

∞∑
n=0

g(k)
n,λ,p(x)

tn

n!
. (52)

When x = 0, g(k)
n,λ,p = g(k)

n,λ,p(0) is the degenerate unipoly Genocchi numbers.
We note that

g(k)
n,λ, 1

Γ

(x) =
∞∑

n=0

g(k)
n,λ(x). (53)

The next lemma is intended to be used conveniently to prove some of the theorems
below.

Lemma 11 For k ∈ Z, we have

uk,λ
(
1 – eλ(–2t)|p)

=
∞∑
l=1

( l∑
m=1

p(m)(–1)l–1λm–1(1)m,1/λm!2l

mk S2,λ(l, m)

)
tl

l!
. (54)

Proof From (20) and (50), we have

uk,λ
(
1 – eλ(–2t)|p)

=
∞∑

m=1

p(m)(–λ)m–1(1)m,1/λ

mk

(
1 – eλ(–2t)

)m m!
m!

=
∞∑

m=1

p(m)(–1)–1λm–1(1)m,1/λm!
mk

(eλ(–2t) – 1)m

m!
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=
∞∑

m=1

p(m)(–1)–1λm–1(1)m,1/λm!
mk

∞∑
l=m

S2,λ(l, m)
(–2t)l

l!

=
∞∑
l=1

( l∑
m=1

p(m)(–1)l–1λm–1(1)m,1/λm!2l

mk S2,λ(l, m)

)
tl

l!
. (55)

Thus, we have what we wanted. �

Theorem 12 For n ≥ 1, k ∈ Z, we get

g(k)
n,λ,p =

n∑
l=1

l∑
m=1

(
n
l

)
m!p(m)(–1)l–1λm–1(1)m,1/λ2l–1S2,λ(l, m)

mk En–l,λ. (56)

Proof From (7) and Lemma 11, we have

∞∑
n=0

g(k)
n,λ,p

tn

n!

=
uk,λ(1 – eλ(–2t)|p)

eλ(t) + 1

=
2

eλ(t) + 1

∞∑
l=1

( ∞∑
m=1

m!p(m)(–1)l–1λm–1(1)m,1/λ2l–1

mk S2,λ(l, m)

)
tl

l!

=
∞∑
i=0

Ei,λ
ti

i!

∞∑
l=1

( l∑
m=1

m!p(m)(–1)l–1λm–1(1)m,1/λ2l–1S2(l, m)
mk

)
tl

l!

=
∞∑

n=1

( n∑
l=1

l∑
m=1

(
n
l

)
m!p(m)(–1)l–1λm–1(1)m,1/λ2l–1S2,λ(l, m)

mk En–l,λ

)
tn

n!
. (57)

Thus, by comparing the coefficients on both sides of (57), we have the desired re-
sult. �

Theorem 13 For n ≥ 0, k ∈ Z, we get

g(k)
n,λ,p =

n∑
l=0

l+1∑
m=1

(
n
l

)
p(m)(–1)lλm–1(1)m,1/λm!2l

mk(l + 1)
S2,λ(l + 1, m)Gn–l,λ. (58)

Proof From (8) and Lemma 11, we have

∞∑
n=0

g(k)
n,λ,p

tn

n!

=
uk,λ(1 – eλ(–2t)|p)

eλ(t) + 1
ex
λ(t)

=
1

eλ(t) + 1

∞∑
l=0

( l+1∑
m=1

p(m)(–1)lλm–1(1)m,1/λm!2l+1

mk S2,λ(l + 1, m)

)
tl+1

(l + 1)!

=
2t

eλ(t) + 1

∞∑
l=0

( l+1∑
m=1

p(m)(–1)lλm–1(1)m,1/λm!2l

mk(l + 1)
S2,λ(l + 1, m)

)
tl

l!
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=
∞∑
i=1

Gi,λ
ti

i!

∞∑
l=0

( l+1∑
m=1

p(m)(–1)lλm–1(1)m,1/λm!2l

mk(l + 1)
S2,λ(l + 1, m)

)
tl

l!

=
∞∑

n=0

( n∑
l=0

l+1∑
m=1

(
n
l

)
p(m)(–1)lλm–1(1)m,1/λm!2l

mk(l + 1)
S2,λ(l + 1, m)Gn–l,λ

)
tn

n!
. (59)

Thus, by comparing the coefficients on both sides of (59), we have the desired result. �

Theorem 14 For k ∈ Z, we have

g(k)
n,λ,p(x)

=
n∑

α=1

α–1∑
l=0

l+1∑
m=1

(
n
α

)(
α

l

)
(1)α–l,λ

p(m)(–1)lλm–1(1)m,1/λm!2l

(l + 1)mk S2,λ(l + 1, m)Bn–α, λ2

(
x
2

)

if n ≥ 1 and g(k)
0,λ,p(x) = 0.

Proof From (5), (7), and Lemma 11, we get

∞∑
n=0

g(k)
n,λ,p(x)

tn

n!

=
uk,λ(1 – eλ(–2t)|p)

eλ(t) + 1
ex
λ(t)

=
1

eλ(t) + 1
· eλ(t) – 1

eλ(t) – 1
ex
λ(t)

×
∞∑
l=0

( l+1∑
m=1

p(m)(–1)lλm–1(1)m,1/λm!2l+1

mk S2,λ(l + 1, m)

)
tl+1

(l + 1)!

=
2tex

λ(t)
e λ

2
(2t) – 1

(
eλ(t) – 1

) ∞∑
l=0

( l+1∑
m=1

p(m)(–1)lλm–1(1)m,1/λm!2l

mk S2,λ(l + 1, m)

)
tl

(l + 1)!

=
∞∑
i=0

Bi, λ2

(
x
2

)
2iti

i!

∞∑
j=1

(1)j,λ
tj

j!

∞∑
l=0

( l+1∑
m=1

p(m)(–1)lλm–1(1)m,1/λm!2l

(l + 1)mk S2,λ(l + 1, m)

)
tl

l!

=
∞∑
i=0

Bi, λ2

(
x
2

)
2iti

i!

×
∞∑

α=1

(
α–1∑
l=0

l+1∑
m=1

(
α

l

)
(1)α–l,λ

p(m)(–1)lλm–1(1)m,1/λm!2l

(l + 1)mk S2,λ(l + 1, m)

)
tα

α!

=
∞∑

n=1

( n∑
α=1

α–1∑
l=0

l+1∑
m=1

(
n
α

)(
α

l

)
(1)α–l,λ

p(m)(–1)lλm–1(1)m,1/λm!2l

(l + 1)mk

× S2,λ(l + 1, m)Bn–α, λ2

(
x
2

))
tn

n!
. (60)

Thus, by comparing the coefficients on both sides of (60), we obtain the desired theo-
rem. �
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4 Conclusion
In this paper, we constructed a new type degenerate Genocchi polynomials and numbers
by using the degenerate polylogarithm function, called degenerate poly-Genocchi polyno-
mials and numbers. We represented the following: the generating function of the degen-
erate poly-Genocchi numbers by iterated integrals in Theorem 1; the explicit degenerate
poly-Genocchi numbers in terms of the degenerate Bernoulli polynomials and the degen-
erate Genocchi numbers in Theorem 3. Not to mention, we obtained in Theorems 5 and
7 that the degenerated poly-Genocchi polynomials are represented by the degenerated
poly-Genocchi numbers and the degenerate Stirling numbers of the second kind. We also
demonstrated in Theorem 10 that the degenerate poly-Genocchi polynomials are repre-
sented by the degenerated poly-Genocchi numbers and the degenerate Stirling numbers
of the first kind. We expressed those polynomials in terms of the degenerate Genocchi
polynomials and the degenerate Stirling numbers of the second kind in Theorem 8 and
the degenerate poly-Bernoulli polynomials in Theorem 9.

On the other hand, in Sect. 3, we defined the degenerate unipoly Genocchi polynomi-
als by using the degenerate polylogarithm function and obtained: the identity degenerate
unipoly Genocchi polynomials in terms of the degenerate Euler numbers and the degener-
ate Stirling numbers of the second kind in Theorem 12; the degenerate Genocchi numbers
and the degenerate Stirling numbers of the second kind in Theorem 13; the degenerate
Bernoulli polynomials and the degenerate Stirling numbers of the second kind in Theo-
rem 14.

The field of degenerate versions is widely applied not only to number theory and com-
binatorics but also to symmetric identities, differential equations, and probability theory.
As one of our future projects, we would like to continue to study degenerate versions of
certain special polynomials and numbers and their applications to physics, economics,
and engineering as well as mathematics.
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