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Abstract
In this paper, a nonlinear mathematical model with diffusion is taken into account to
review the dynamics of Lengyel–Epstein chemical reaction model to describe the
oscillating chemical reactions. For this purpose, the dimensionless Lengyel–Epstein
model with diffusion and homogeneous boundary condition is considered. The
steady states with and without diffusion of the Lengyel–Epstein model are studied.
The basic reproductive number is computed and the global steady states for the
system are calculated. Numerical results are offered for two systems using three well
known techniques to validate the main outcomes. The consequences established
from this qualitative study are supported by numerical simulations characterized by
distinct programs, adopting forward Euler method, Crank–Nicolson method, and
nonstandard finite difference method.
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1 Introduction
The chemical reactions as the Belousov–Zhabotinsky reaction and the Briggs–Rauscher
reaction are exceptional. The mathematical specimens of these chemical reactions are
scrutinize mathematically; then again; these replicas are cluttered. The Lengyel–Epstein
reaction associating iodine (I2), malonic acid (MA), and chlorine dioxide (ClO2) is a
straightforward reaction as follows [1]:

⎧
⎪⎪⎨

⎪⎪⎩

I2 + MA → IMA + H+ + I–, (i)

I– + ClO2 → 1
2 I2 + ClO2

–, (ii)

4I– + 4H+ + ClO2
– → 2I2 + Cl– + 2H2O. (iii)

(1)

(a) The MA (malonic acid) iodization is given in the first equation of (1).
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(b) The iodide ion oxidation by free chlorine dioxide radical is given in the second
equation of (1).

(c) A reaction of iodide and chlorite ions created in the first and second equation of (1)
generates iodine as given in the third equation of (1).

The rate equations for the so-called ClO2–I2–MA (chlorine dioxide-iodine-malonic
acid) are given by

–
d[I2]
dτ

=
k1[MA][I2]

k2 + [I2]
, (2)

–
d[ClO2]

dτ
= k3[ClO2]

[
I–]

(3)

and

–
d[ClO2

–]
dτ

= k4
[
H+][

ClO2
–][

I–]
+

k5I–

α + [I–]2

[
I–]

[I2]
[
ClO2

–]
, (4)

where k1, k3, k4, and k5 are reaction rate constants, whereas k2 and α denote saturation
levels. Furthermore, the last term in (iii) characterizes the autocatalytic consequence of I2

and the self-inhibitory outcome of I– on the chlorite–iodide reaction [2]. This framed term
disappears when [I–] → 0, where no reaction can happen since no iodide is accessible, and
in the limit [I–] → ∞, where the intense self-inhibition develops. The aforementioned
rate equations (i)–(iii) form a five-variable system containing [ClO2

–], [I–], [ClO2], [I2],
and [MA]. Nonetheless, the iodization of Malonic acid helps largely as a cradle of iodine
ions, and MA can be swapped by ethyl acetoacetate [2]. Furthermore, it is experimentally
seen that the concentrations of chlorite and iodide ions fluctuate over numerous orders of
level through an oscillation, whereas the concentrations of chlorine dioxide and malonic
acid vary slowly. These concentrations may consequently be considered as constants, and
actions of the system may be estimated by a two-variable specimen including only the
concentrations of iodide and chlorine ions. For a flow reactor with appropriate serving,
it is conceivable to retain the concentrations of malonic acid, chlorine dioxide and iodine
approximately constant, and oscillations can still be perceived in the suitable ranges of
temperature and concentrations. Thus, we conclude that MA, ClO2 and I2 vary much
more sluggishly than the intermediate ClO2

– and I– which change by some orders of level
during an oscillation period. Taking U = I–, V = ClO2

– and H = I2, we obtain the following
equations [3, 4]:

H → U , z11 = k′
1, k′

1 = k1[MA],

U → V , z22 = k′
2[U], k′

2 = k3[MA],

and

4U + V → Q, z33 =
k′

2[U][V ]
α + [U]2 , k′

3 = k5[I2].

Arguing as in [3], an improved application in scientific modeling, it is vital that mod-
els are to be written dimensionless. This state is achieved if we make the transforma-
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tions

U =
√

αu, V =
αk′

2
k′

3
v, τ =

t
k′

2
, l =

k′
1√

αk′
2

and m =
k′

3√
αk′

2
. (5)

Under these transformations, we have the following Lengyel–Epstein model [5]:

⎧
⎨

⎩

du
dt = –u + l – 4ψ(u)v := G(v, u),
dv
dt = mu – mψ(u)v := H(v, u).

(6)

Kinetic applications, in elucidation, are a controlling gizmo in the study of the reac-
tion structure, allowing to gather vital facts of the processes that transpire before the
influential phase of the speed. Through kinetic investigation one can decide the speed
law of a reaction just as its steady rate. One of the methodologies for this is the uti-
lization of integrated equations. In this methodology, one checks whether the adjust-
ment in the concentration of one of the reactants or items follows first or second or-
der kinetics or, all the more once in a while, kinetics with higher orders or even zero
order. In a reaction, reactants go through a progress state zone along the reaction or-
ganize among products and reactants, where chemical bonds are broken and changed.
This change state was first projected by Eyring and Polanyi in the mid-1930s. Numer-
ous scientists controlled pretty much every part of a chemical reaction, and have as-
sumed a focal visionary aspect in the advancement of chemistry as a part of science.
Along these lines, watching and understanding the progress state have been viewed
as the “Holy Grail” of chemistry [6]. Model (6) is a nonfractional order system, i.e.,
it contains the first order derivative with respect to time variable τ . The first-order
derivative with respect to the variable τ infers the transient change pace of these
chemical reactions. Though, as a result of the intricacy of reactions which were bio-
chemical in nature, chemical reaction practices are regularly influenced by or rely on
the historical background of chemical reactions. Many researchers have solved the
Lengyel–Epstein chemical model [7–10]. A number of researchers were using frac-
tional order techniques and they claimed these to be more suitable than classical ones
[11–26].

In this paper, we are keen on an old style version of the Lengyel–Epstein reaction diffu-
sion structure as a specimen of the chlorite–iodide–malonic-acid (CIMA) reaction. The
deliberated model has been pulled into the light of legitimate concern for some analysts
since its origin in 1991. The purpose behind this intrigue is the way that CIMA reaction is
perhaps the most punctual trial that restricted the theoretical suggestions of Alan Turing
in 1952, concerning the chemical basis for morphogenesis and, all the more by and large,
pattern formation [27].

This paper is systematized into five sections. The introduction is the first section in
which we intricate some history of the Lengyel–Epstein model in kinetic studies. In Sect. 2,
we will study the Lengyel–Epstein model with diffusion. Besides this, we will study the
steady states with and without diffusion of the Lengyel–Epstein model. In Sect. 3, we pon-
der the global steady states for the system. In Sects. 4 and 5, numerical finding are offered
for two systems using three well known techniques to validate the main outcomes. Results
and Discussion are presented in Sect. 6, and conclusions are drawn in Sect. 7.
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2 Model with diffusion
Here, we consider one-dimensional coupled Lengyel–Epstein model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du
dt = κ1�u – u + l – 4vψ(u), τ > 0, x ∈ Υ ,
dv
dt = κ2�v + mu – mvψ(u), τ > 0, x ∈ Υ ,

u(x, 0) = u0; v(x, 0) = v0, x ∈ Υ ,

ux(x, τ ) = vx(x, τ ) = 0, x ∈ ∂Υ , τ > 0,

(7)

where Υ is a bounded domain in R
N with sufficiently smooth boundary ∂Υ . Here, u =

u(x, τ ) and v = v(x, τ ) denote the concentration of the inhibitor chlorite (ClO2) and the
activator iodide (I–), respectively, at time τ > 0 and point x ∈ Υ . The constants l and m are
restrictions depending on the concentration of the starch, broadening the diffusion ratio
to be effective by κ1 and κ2. The constants κ1, κ2, l and m are nonnegative. The function ψ

is supposed to be positive and continuously differentiable on R
+ such that ψ(0) = 0, and

for u ∈ (0, l),

ψ(l) > 0,

ψ(u) ≥ ψ ′(u)u. (8)

2.1 Invariant regions
Now, we study the invariant zones for the system (7).

Definition 1 ([28, 29]) A frame A = (0,p1) × (0,p2) is called invariant if the vector field
(G, H) on the boundary ∂A points inside, i.e.,

⎧
⎨

⎩

0 ≤ G(0, v) and 0 ≥ G(p1, v) for p2 > v > 0,

0 ≤ H(u, 0) and 0 ≥ G(u,p2) for p1 > v > 0.
(9)

Proposition 1 The structure (7) satisfying condition (8) defines the invariant zone

Al = (a, l) ×
(

a,
l

ψ(l)

)

, a = 0. (10)

2.2 Steady states of model (6) without diffusion
We shall consider system (6) without diffusion.

Proposition 2 The structure (6) has the unique steady state solution

(
u∗, v∗) =

(

μ,
μ

ψ(μ)

)

, where μ =
l
5

. (11)

If the inequality –[ψ(μ) + 4μψ ′(μ)] < mψ2(μ) is maintained, the steady state is an asymp-
totically stable equilibrium for the structure (6).

Proof An equilibrium node (u∗, v∗) of (6) solves the system
⎧
⎨

⎩

–u + l – 4vψ(u) = G(u, v) := 0,

mu – mvψ(u) = H(u, v) := 0.
(12)
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Simple calculations from (12) provide the solution given below:

E0
(
u∗, v∗) =

(

μ,
μ

ψ(μ)

)

, where μ =
l
5

. (13)

Next, we ponder the stability of the equilibrium. The Jacobian matrix for the structure (6)
at the equilibrium point (u∗, v∗) is given by

J(E0) =

(
–1 – 4μ

ψ(μ)ψ
′(μ) –4ψ(μ)

m – mμ

ψ(μ)ψ
′(μ) –mψ(μ)

)

. (14)

We have

J(E0) = 5mψ(μ) =
5mμ

1 + μ2 > 0, (15)

and

tr J(E0) =
(

–1 –
4μ

ψ(μ)
ψ ′(μ) – mψ(μ)

)

=
3μ2 – 5 – mμ

1 + μ2 < 0. (16)

Thus, the Jacobian of (14) has eigenvalues with negative real parts. Hence, the equilibrium
node of (14) is asymptotically stable, which is bound by condition (13). Hence, the proof
of Proposition 2 is completed. �

Comment 1 Observe that 0 > Gu(u∗, v∗), 0 > Hv(u∗, v∗) and 0 > Hu(u∗, v∗). If

–1 –
4μ

ψ(μ)
ψ ′(μ) = Fu

(
u∗, v∗) > 0 (17)

is satisfied then we call u(x, t) an activator, v(x, t) an inhibitor, and the structure (6) is an
activator–inhibitor structure. Since ψ(μ) is always positive, multiplying both sides of the
inequity by ψ(μ), we get

–
[
ψ(μ) + 4μψ ′(μ)

]
> 0. (18)

Comment 2 Merging the activator–inhibitor condition (18) with the steady state condi-
tion given in Proposition 2, we discover that the condition

mψ2(μ) > –
[
ψ(μ) + 4μψ ′(μ)

]
> 0

makes the system (6) a diffusion free stable activator–inhibitor structure.

2.3 Steady states of model (6) with diffusion
In this subsection, we shall debate the basic properties of the nonhomogeneous steady
states of the Lengyel–Epstein structure. The steady state points satisfy the following sys-
tem:

⎧
⎨

⎩

0 = κ1�u – u + l – 4ψ(u)v,

0 = κ2�v + m(u – ψ(u)v)
(19)

with the homogeneous Neumann boundary conditions ux(x, τ ) = vx(x, τ ) = 0, x ∈ ∂Υ .
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Definition 2 A constant solution is supposed to be Turing unstable if it is stable in the
absence of diffusion, whereas it transforms into unstable one when diffusion is available.

Proposition 3 ([30]) Assume that g ∈ C(Ῡ ×R) and w ∈ C2(Υ ) ∩ C1(Ῡ ). It follows that:
(a) If 0 ≤ �w(x) + g(x, w(x)) in Υ , with 0 ≥ wx on ∂Υ and maxῩ (w(x)) = w(x0), then

0 ≤ g
(
x0, w(x0)

)
.

(b) If 0 ≥ �w(x) + g(x, w(x)) in Υ , with 0 ≤ wx on ∂Υ and minῩ (w(x)) = w(x0), then

0 ≥ g
(
x0, w(x0)

)
.

Lemma 1 Conditions (10) and (11) imply

ψ ′(0) ≥ ψ(u)
u

> 0. (20)

Proof Let uψ ′(u) ≤ ψ(u), which is equivalent to

(
ψ(u)

u

)′
=

–ψ(u) + uψ ′(u)
u2 ≤ 0. (21)

Hence, ψ(u)
u is a decreasing function. Now, for some s ∈ (0, u), we have

ψ(u)
u

≤ ψ(s)
s

⇒ lim
s→0

ψ(s)
s

≥ u–1ψ(u). (22)

This yields

ψ(u)
u

≤ ψ ′(0). �

Proposition 4 If (u, v) = (u(x), v(x)) is a positive equilibrium of the boundary value prob-
lem (19), then ε2 < u < ε1 and ε2

ψ(ε2) < v < ε1
ψ(ε1) , for all x ∈ Υ , where ε1 = l, ε2 = ε1

1+4ψ ′(0) ε1
ψ(ε1)

.

Proof If at some node in Ῡ the function u reaches its extreme over Ῡ , then by (19) and
Proposition 3, at this point we have

l – u – 4vψ(u) ≥ 0. (23)

It implies that u < l. Likewise, if v achieves an extreme over Ῡ at some node, then by
(19) and Proposition 3, we have 0 ≤ u – 4vψ(u), inferring that v ≤ u

4ψ(u) ≤ μ

ψ(μ) . Since (11)
warranties that u(ψ(u))–1 is growing for u between 0 and ε1. If u achieves its minimum
over Ῡ at some point, then

l ≤ 4vψ(u) + u ≤ u + 4u
ψ(u)

u

(
ε1

ψ(ε1)

)

. (24)

This, along with condition (20), yields

u
[

1 + 4
(

ψ(u)ε1

uψ(ε1)

)]

> l. (25)
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Therefore, ε2 < u. Also, if v has a minimum over Ῡ at some point, then vψ(u) ≥ u. There-
fore, we get u

ψ(u) ≤ v which leads to ε2
ψ(ε2) ≤ v. �

3 Global asymptotic stability
In this section, we study the global asymptotic stability of the system (7). The reason is to
find some adequate conditions for the global stability of the steady state equations. First,
assume that ha(u) = (ψ(u))–1(l – u), which results in ha(u∗) = μ(ψ(u))–1. Now, system (7)
can be rewritten as

⎧
⎨

⎩

uτ = κ1�u + [–4(v – v∗) + (ha(u) – ha(u∗))]ψ(u),

vτ = κ2�v + m[–(v – v∗) + ( u
ψ(u) – u∗

ψ(u∗) )]ψ(u).
(26)

Theorem 1 Assume that condition (11) is satisfied and ψ ′(u)
ψ(u) ≥ – 1

l–u . It follows that for any
solution (u, v) to (7), we get

lim
τ→0

∥
∥v(·, τ ) – uv∗∥∥

L2(Υ ) = lim
τ→0

∥
∥u(·, τ ) – u∗∥∥

L2(Υ ) = 0. (27)

Lemma 2 ([7]) If u ∈ (0, l), then there exist a real θ between μ and u and a nonnegative
function χ (θ ), which is continuous, such that

u
ψ(u)

–
μ

ψ(μ)
= μ(u – μ)χ (θ ). (28)

Proof Letting s = u
μ

and w(s) = sμ
ψ(μs) , we have

u
ψ(u)

–
μ

ψ(μ)
= w(s) – w(1). (29)

Using the mean value theorem, for suitable δ1 we have

w(s) – w(1) = (s – 1)w′(δ1). (30)

Also

w′(s) =
d
ds

(
sμ

ψ(μs)

)

= μ
–uψ ′(u) + ψ(u)

ψ2(u)
, (31)

where μs = u. Now, suppose that χ (u) = ψ(u)–uψ ′(u)
ψ2(u) , then (30) reads w′(δ1) = μχ (θ ), which

guarantees that χ (θ ) ≥ 0. �

4 Numerical schemes
In this section, we look at two specific examples and use numerical analysis based on for-
ward Euler, Crank–Nicolson, and nonstandard methods to investigate the solution of the
system and its stability.
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4.1 The CIMA model
In this first example, we suppose ψ(u) = u(1 + u2)–1, then the system (7) takes the form

⎧
⎨

⎩

uτ = l – u – 4 u
1+u2 v + κ1�u,

vτ = mu – muv
1+u2 + κ2�v.

(32)

To discretize system (20) using the finite difference method, firstly [0, �]2 × [0, T] is parti-
tioned into M2 × N parts with spatial and temporal step sizes dx = �

M and dτ = T
N . Then,

the grid points are xi = i dx and τj = j dτ , where i = 0, 1, 2, . . . , M and j = 0, 1, 2, . . . , N . We
represent uj

i and vj
i as the finite difference approximations of u(i dx, j dτ ) and v(i dx, j dτ ),

respectively. First order temporal derivative and second order spatial derivative finite dif-
ference formulas are:

uτ |ji = δτ uj
i =

uj+1
i – uj

i
dτ

, vτ |ji = δτ vj
i =

vj+1
i – vj

i
dτ

,

uxx|ji = δ2
x uj

i =
uj

i–1 – 2uj
i + uj

i+1
(dx)2 , vxx|ji = δ2

x vj
i =

vj
i–1 – 2vj

i + vj
i+1

(dx)2 .

(33)

4.2 Forward Euler method
Substituting the values of uτ |ji and uxx|ji into the first equation of (20) and the values of vτ |ji
and vxx|ji into the second equation of (20), we have

δτ uj
i = κ1δ

2
x uj

i + l – uj
i – 4

uj
iv

j
i

1 + (uj
i)2

, δτ vj
i = κ2δ

2
x vj

i + m
(

uj
i –

uj
iv

j
i

1 + (uj
i)2

)

. (34)

After simple calculation, we have

uj+1
i = R1

(
uj

i–1 – 2uj
i + uj

i+1
)

+ uj
i + l dτ – uj

i dτ –
4uj

iv
j
i dτ

1 + (uj
i)2

,

vj+1
i = +R2

(
vj

i–1 – 2vj
i + vj

i+1
)

+ vj
i + muj

i dτ –
muj

iv
j
i dτ

1 + (uj
i)2

,

(35)

where R1 = κ1 dτ

(dx)2 and R2 = κ2 dτ

(dx)2 . This technique is conditionally stable for 2–dτ
4 > R1 and

1
2 > R2 for the structure (20).

4.3 Crank–Nicolson method
Substituting the values of uτ |ji, uxx|ji and uxx|j+1

i into the first equation of (32) and the values
of vτ |ji, vxx|ji and vxx|j+1

i into the second equation of (32), we have

δτ uj
i =

κ1

2
δ2

x
(
uj

i + uj+1
i

)
+ l – uj

i – 4
uj

iv
j
i

1 + (uj
i)2

,

δτ vj
i =

κ2

2
δ2

x
(
vj

i + vj+1
i

)
+ m

(

uj
i –

uj
iv

j
i

1 + (uj
i)2

)

.

(36)
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After simple calculation, we have the following scheme for system (32):

uj+1
i –

R1

2
(
uj+1

i+1 – 2uj+1
i + uj+1

i–1
)

=
R1

2
(
uj

i–1 – 2uj
i + uj

i+1
)

+ uj
i + l dτ – uj

i dτ –
4uj

iv
j
i dτ

1 + (uj
i)2

,

vj+1
i –

R2

2
(
vj+1

i+1 – 2vj+1
i + vj+1

i–1
)

=
R2

2
(
vj

i–1 – 2vj
i + vj

i+1
)

+ vj
i + muj

i dτ –
muj

iv
j
i dτ

1 + (uj
i)2

,

where R1 = κ1 dτ

(dx)2 and R2 = κ2 dτ

(dx)2 . This scheme is unconditionally stable for the system (32).

4.4 Nonstandard finite difference method
Here, we will design a nonstandard finite difference method for the system (20). Substi-
tuting the values of uτ |ji, uxx|ji, vτ |ji and vxx|ji into equation (20), we have

uj+1
i – uj

i
dτ

=
κ1

(dx)2

(
uj

i–1 – 2uj
i + uj

i+1
)

+ l – uj
i –

4uj
iv

j
i

1 + (uj
i)2

,

vj+1
i – vj

i
dτ

=
κ2

(dx)2

(
vj

i–1 – 2vj
i + vj

i+1
)

+ muj
i –

muj
iv

j
i

1 + (uj
i)2

.

(37)

After simple calculation, we obtain the following explicit nonstandard finite difference
scheme:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uj+1
i = R1(uj

i–1+uj
i+1)+uj

i+l dτ

(
4vj

i dτ

1+(uj
i)2

+1+2R1+dτ )
,

vj+1
i = R2(vj

i–1+vj
i+1)+vj

i+muj
i dτ

(1+2R2+
muj

i dτ

1+(uj
i)2

)
,

(38)

where R1 = κ1 dτ

(dx)2 and R2 = κ2 dτ

(dx)2 . This technique is completely stable for the structure (32).

4.5 Stability analysis of nonstandard finite difference method
To find the stability bounds, the von Neumann stability technique is used. After linearizing
equation (33) and then using the von Neumann stability bounds, we get

T(t + �t)eiαx = eiαxT(t) + R1
(
–2T(t + �t)eiαx + T(t)eiα(x–�x) + T(t)eiα(x+�x))

– dτeiαxT(t + �t),

T(t + �t)
T(t)

=
(2R1 cos(α�x) + 1)

(2R1 + dτ + 1)
,

T(t + �t)
T(t)

=
(–4R1 sin2( α�x

2 ) + 1 + 2R1)
(2R1 + 1 + dτ )

,

(39)

∣
∣
∣
∣
T(t + �t)

T(t)

∣
∣
∣
∣ =

∣
∣
∣
∣
–4R1 sin2( α�x

2 ) + 1 + 2R1

1 + 2R1 + dτ

∣
∣
∣
∣ ≤

∣
∣
∣
∣

1 – 2R1

1 + 2R1 + dτ

∣
∣
∣
∣ < 1. (40)

Similarly, following the same lines, (33) gives

∣
∣
∣
∣
T(t + �t)

T(t)

∣
∣
∣
∣ =

∣
∣
∣
∣
–4R2 sin2( α�x

2 ) + 1 + 2R2

2R2 + 1

∣
∣
∣
∣ ≤

∣
∣
∣
∣
1 – 2R2

1 + 2R2

∣
∣
∣
∣ < 1. (41)
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From (40) and (41), it is clear that the proposed nonstandard finite difference technique
for system (32) is completely stable.

4.6 Consistency of nonstandard finite difference method
To check the uniformity of nonstandard finite difference technique, Taylor series is used.
The series of u|j+1

i , u|ji+1 and u|ji–1 are given below:

–u|ji + u|j+1
i = uτ |ji dτ +

(dτ )2

2!
uττ |ji +

(dτ )3

3!
uτττ |ji + · · · ,

u|ji+1 – u|ji = dxux|ji +
(dx)2

2!
uxx|ji +

(dx)3

3!
uxxx|ji + · · · ,

u|ji–1 – u|ji = –dxux|ji +
(dx)2

2!
uxx|ji –

(dx)3

3!
uxxx|ji + · · · .

(42)

Consider the unconditional proposed nonstandard finite difference scheme

uj+1
i = uj

i +
κ1 dτ

(dx)2

(
uj

i–1 – 2uj
i + uj

i+1
)

+ l dτ – uj
i dτ –

4uj
iv

j
i dτ

1 + (uj
i)2

. (43)

Substituting the values of u|j+1
i , u|ji+1 and u|ji–1 into the above equation and after simplifi-

cation, we have

(

uτ |ji +
dτ

2!
uττ |ji +

(dτ )2

3!
uτττ |ji + · · ·

)(

1 +
2κ1 dτ

(dx)2 + dτ +
4vj

i dτ

1 + (uj
i)2

)

= 2κ1

(
uxx|ji

2!
+

(dx)2

4!
uxxxx|ji

)

+ l – uj
i –

4uj
iv

j
i dτ

1 + (uj
i)2

. (44)

Putting dτ = (dx)3 and letting dx → 0, the above equation gives

uτ = κ1�u + l – u –
4uv

1 + u2 . (45)

Similarly, Taylor series expansion of v|j+1
i , v|ji+1 and v|ji–1 are given below:

–v|ji + v|j+1
i = vτ |ji dτ + vττ |ji

(dτ )2

2!
+ vτττ |ji

(dτ )3

3!
+ · · · ,

–v|ji + v|ji+1 = vx|ji dx + vxx|ji
(dx)2

2!
+

(dx)3

3!
vxxx|ji + · · · ,

–v|ji + v|ji–1 = –vx|ji dx + vxx|ji
(dx)2

2!
–

(dx)3

3!
vxxx|ji + · · · .

(46)

Substituting the values of v|j+1
i , v|ji+1 and v|ji–1 into equation (33) and after simplification,

we get

(

vτ |ji +
dτ

2!
vττ |ji +

(dτ )2

3!
vτττ |ji + · · ·

)(

1 +
2κ2 dτ

(dx)2 + m
uj

i dτ

1 + (uj
i)2

)

= 2κ2

(
vxx|ji

2!
+

(dx)2

4!
vxxxx|ji

)

+ muj
i –

muj
iv

j
i

1 + (uj
i)2

. (47)
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Putting dτ = (dx)3 and letting dx → 0, the above equation gives

vτ = κ2�v + m
(

u –
u

1 + u2 v
)

. (48)

5 Second model
In this second example, we assume ψ(u) = u(1 + eu)–1, then the system (7) takes the form

⎧
⎨

⎩

uτ = κ1�u + l – u – 4uv
1+eu ,

vτ = κ2�v + m(u – uv
1+eu ).

(49)

The equilibrium point of this system is (μ, 1 + eμ). To discretize the system (45) using
finite difference method, firstly [0,�]2 × [0, T] is divided into M2 × N parts with spatial
and temporal step sizes dx = �

M and dτ = T
N . Then the grid points are xi = i dx and τj = j dτ ,

where i = 0, 1, 2, . . . , M and j = 0, 1, 2, . . . , N .

5.1 Forward Euler method
Substituting the values of uτ |ji and uxx|ji into the first equation of (45) and the values of vτ |ji
and vxx|ji into the second equation of (45), we have

δτ uj
i =

κ1

2
δ2

x
(
uj

i + uj+1
i

)
+ l – uj

i –
4uj

iv
j
i

1 + euj
i
,

δτ vj
i =

κ2

2
δ2

x
(
vj

i + vj+1
i

)
+ m

(

uj
i –

uj
iv

j
i

1 + euj
i

)

.

(50)

After simple calculation, we obtain

uj+1
i = R1

(
uj

i–1 – 2uj
i + uj

i+1
)

+ uj
i + l dτ – uj

i dτ –
4uj

iv
j
i dτ

1 + euj
i

,

vj+1
i = R2

(
vj

i–1 – 2vj
i + vj

i+1
)

+ vj
i + m dτ –

muj
iv

j
i dτ

1 + euj
i

,

(51)

where R1 = κ1 dτ

(dx)2 and R2 = κ2 dτ

(dx)2 . This technique is conditionally stable for 2–dτ
4 > R1 and

1
2 > R2 for the structure (45).

5.2 Crank–Nicolson method
Substituting the values of uτ |ji, uxx|ji and uxx|j+1

i into the first equation of (45) and the values
of vτ |ji, vxx|ji and vxx|j+1

i into the second equation of (30), we have

δτ uj
i =

κ1

2
δ2

x
(
uj

i + uj+1
i

)
+ l – uj

i –
4uj

iv
j
i

1 + euj
i
,

δτ vj
i =

κ2

2
δ2

x
(
vj

i + vj+1
i

)
+ m

(

uj
i –

uj
iv

j
i

1 + euj
i

)

.

(52)
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After simple calculation, we have

uj+1
i –

R1

2
(
uj+1

i+1 – 2uj+1
i + uj+1

i–1
)

=
R1

2
(
uj

i–1 – 2uj
i + uj

i+1
)

+ uj
i + l dτ – uj

i dτ –
4uj

iv
j
i dτ

1 + euj
i

,

vj+1
i –

R2

2
(
vj+1

i+1 – 2vj+1
i + vj+1

i–1
)

=
R2

2
(
vj

i–1 – 2vj
i + vj

i+1
)

+ vj
i + muj

i dτ –
muj

iv
j
i dτ

1 + euj
i

,

(53)

where R1 = κ1 dτ

(dx)2 and R2 = κ2 dτ

(dx)2 . This technique is completely stable for the structure
(45).

5.3 Proposed nonstandard finite difference method
Here, we will present a scheme the nonstandard finite difference method for the system
(45). Substituting the values of uτ |ji, uxx|ji, vτ |ji and vxx|ji into equation (53), we have

uj+1
i – uj

i
dτ

= l – uj
i –

4uj
iv

j
i

1 + euj
i

+
κ1

(dx)2

(
uj

i–1 – 2uj
i + uj

i+1
)
,

vj+1
i – vj

i
dτ

= muj
i –

muj
iv

j
i

1 + euj
i

+
κ2

(dx)2

(
vj

i–1 – 2vj
i + vj

i+1
)
.

(54)

After simple calculation, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uj+1
i = R1(uj

i–1+uj
i+1)+uj

i+l dτ

(1+2R1+dτ+
4vj

i dτ

1+euj
i

)
,

vj+1
i = vj

i+R2(vj
i–1+vj

i+1)+muj
i dτ

(1+2R2+
muj

i dτ

1+euj
i

)
,

(55)

where R1 = κ1 dτ

(dx)2 and R2 = κ2 dτ

(dx)2 . This technique is completely stable for the structure
(53).

5.4 Stability analysis of nonstandard finite difference method
To find the stability bounds, the von Neumann stability technique is used. After linearizing
equation (31) and then using the von Neumann stability bounds, we get

T(t + �t)eiαx – T(t)eiαx = R1
(
–2T(t + �t)eiαx + T(t)eiα(x–�x) + T(t)eiα(x+�x))

– dτeiαxT(t + �t),

(1 + 2R1 + dτ )eiαxT(t + �t) =
(
1 + 2R1 cos(α�x)

)
eiαxT(t),

(56)

T(�t + t)
T(t)

=
(2R1 cos(α�x) + 1)

(1 + 2R1 + dτ )
,

T(t + �t)
T(t)

=
(1 + 2R1 – 4R1 sin2( α�x

2 ))
(2R1 + 1 + dτ )

,
(57)
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∣
∣
∣
∣
T(t + �t)

T(t)

∣
∣
∣
∣ =

∣
∣
∣
∣
–4R1 sin2( α�x

2 ) + 1 + 2R1

2R1 + dτ + 1

∣
∣
∣
∣ ≤

∣
∣
∣
∣

1 – 2R1

1 + 2R1 + dτ

∣
∣
∣
∣ < 1. (58)

Similarly, following the same lines, (52) gives

∣
∣
∣
∣
T(t + �t)

T(t)

∣
∣
∣
∣ =

∣
∣
∣
∣
–4R2 sin2( α�x

2 ) + 1 + 2R2

2R2 + 1

∣
∣
∣
∣ ≤

∣
∣
∣
∣
1 – 2R2

1 + 2R2

∣
∣
∣
∣ < 1. (59)

From (54) and (55), it is clear that the proposed nonstandard finite difference technique
for system (32) is unconditionally stable.

5.5 Consistency of nonstandard finite difference method
To check the uniformity of the nonstandard finite difference technique, Taylor series is
used. The series of u|j+1

i , u|ji+1 and u|ji–1 are given below:

–u|ji + u|j+1
i = uτ |ji dτ + uττ |ji

(dτ )2

2!
+ uτττ |ji

(dτ )3

3!
+ · · · ,

–u|ji + u|ji+1 = ux|ji dx + uxx|ji
(dx)2

2!
+ uxxx|ji

(dx)3

3!
+ · · · ,

–u|ji + u|ji–1 = –ux|ji dx + uxx|ji
(dx)2

2!
– uxxx|ji

(dx)3

3!
+ · · · .

(60)

Consider the unconditional proposed nonstandard finite difference scheme

uj+1
i =

κ1 dτ

(dx)2

(
uj

i–1 – 2uj
i + uj

i+1
)

+ uj
i + l dτ – uj

i dτ –
4uj

iv
j
i dτ

1 + euj
i

,

(

uτ |ji + uττ |ji
dτ

2!
+ uτττ |ji

(dτ )2

3!
+ · · ·

)(

1 +
2κ1 dτ

(dx)2 + dτ +
4vj

i dτ

1 + (uj
i)2

)

= 2κ1

(
uxx|ji

2!
+

(dx)2

4!
uxxxx|ji

)

+ l – uj
i –

4uj
iv

j
i dτ

1 + euj
i

.

(61)

Putting dτ = (dx)3 and letting dx → 0, the above equation gives

uτ = κ1�u + l – u –
4uv

1 + eu . (62)

Similarly, Taylor series expansion of v|j+1
i , v|ji+1 and v|ji–1 are given below:

–v|ji + v|j+1
i = vτ |ji dτ + vττ |ji

(dτ )2

2!
+ vτττ |ji

(dτ )3

3!
+ · · · ,

–v|ji + v|ji+1 = vx|ji dx + vxx|ji
(dx)2

2!
+ vxxx|ji

(dx)3

3!
+ · · · ,

–v|ji + v|ji–1 = –vx|ji dx + vxx|ji
(dx)2

2!
– vxxx|ji

(dx)3

3!
+ · · · .

(63)
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Substituting the values of v|j+1
i , v|ji+1 and v|ji–1 into equation (32) and after simplification,

we get

(

vτ |ji + vττ |ji
dτ

2!
+ vτττ |ji

(dτ )2

3!
+ · · ·

)(

1 +
2κ2 dτ

(dx)2 + m
uj

i dτ

1 + euj
i

)

= 2κ2

(
vxx|ji

2!
+

(dx)2

4!
vxxxx|ji

)

+ muj
i –

muj
iv

j
i

1 + euj
i
. (64)

Putting dτ = (dx)3 and letting dx → 0, the above equation gives vτ = κ2�v + m(u – uv
1+eu ).

6 Results and discussion
6.1 Test Problem 1
Here, the proposed (i) forward Euler scheme, (ii) Crank–Nicolson scheme, and (iii) non-
standard finite difference scheme are tested on the model considered for the one-
dimensional CIMA problem

⎧
⎨

⎩

uτ = l – u – 4 u
1+u2 v + κ1�u,

vτ = m(u – u
1+u2 v) + κ2�v,

with u0 = 1 + cos(x), v0 = 2 + sin(x). (65)

Numerical simulations are carried out to confirm the efficiency and effectiveness of the
nonstandard finite difference method. Figures 1(a)–(d), 3(a)–(d), and 5(a)–(d) represent
the 2D concentration and mesh plots for u(x, τ ) and v(x, τ ) using forward Euler, Crank–
Nicolson and nonstandard finite difference schemes with l = 5, m = 1, κ1 = 0.01, and
κ2 = 0.01. In all figures, the system converges to the constant steady state (Figs. 1(a)–(d),
1(e)–(h)). Figures 1(e)–(h), 2(e)–(h), and 3(e)–(h) represent the mesh plots and projected
views for u(x, τ ) and v(x, τ ). Mesh plots and projected views of Figs. 1(e)–(f ), 2(e)–(h), and
3(e)–(h) indicate that the solutions u(x, τ ) and v(x, τ ) tend to a spatially homogeneous pe-
riodic orbit. The stripes of Fig. 3(e)–(h) fade away whereas the stripes of Figs. 1(a)–(d) and
2(e)–(h) remain for the same time τ = 20. It has been observed that when we increase the
value of dτ by 0.5, the forward Euler and Crank–Nicolson schemes fail to provide stable
solutions (Figs. 7(a)–(d) and 7(e)–(h)), whereas the explicit nonstandard finite difference
scheme provides stable solutions even for dτ = 0.1, 0.5, 1, 10, 100.

6.2 Test Problem 2
Here, the proposed (i) forward Euler scheme, (ii) Crank–Nicolson scheme, and (iii) non-
standard finite difference scheme are tested on a model described by the one-dimensional
problem as

⎧
⎨

⎩

uτ = l – u – 4uv
1+eu + κ1�u,

vτ = m(u – uv
1+eu ) + κ2�v,

with u0 = 1 + cos(x) and v0 = 2 + sin(x). (66)

Numerical simulations are carried out to confirm the efficiency and effectiveness of the
nonstandard finite difference method. Figures 4(a)–(d), 5(a)–(d), and 6(a)–(d) represent
the 2D concentration and mesh plots for u(x, τ ) and v(x, τ ) using forward Euler, Crank–
Nicolson, and nonstandard finite difference schemes with l = 5, m = 1, κ1 = 0.01, and
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Figure 1 (a)–(d) Numerical solutions of system (32) using forward Euler scheme. Here, u0 = 1 + sin(x) and
v0 = 2 + cos(x), with l = 5,m = 1, κ1 = 0.01, and κ2 = 0.01. The concentration of u(τ ) is at the top (2D and 3D
plots) while the concentration of v(τ ) is at the bottom (2D and 3D plots). The solutions v(x,τ ) and u(x,τ ) tend
to the constant steady state. (e)–(h) Numerical solutions of system (32) using forward Euler scheme. Here,
u0 = 1 + sin(x) and v0 = 2 + cos(x), with l = 10,m = 5, κ1 = 0.01, and κ2 = 0.01. (Top) The solutions v(x,τ ) and
u(x,τ ) tend to the spatially homogeneous periodic orbit. (Bottom) The projected views onto the xτ -plane at
τ = 20 for v(x,τ ) and u(x,τ ). The stripe structure invades the homogeneous periodic orbit for v(x,τ ) and u(x,τ )
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Figure 2 (a)–(d) Numerical solutions of system (32) using Crank–Nicolson scheme. Here, u0 = 1 + sin(x) and
v0 = 2 + cos(x), with l = 5,m = 1, κ1 = 0.01, and κ2 = 0.01. (Top) The concentration of u(τ ) is on the left while
the concentration of v(τ ) is on the right. (Bottom) The solutions v(x,τ ) and u(x,τ ) tend to the constant steady
state. (e)–(h) Numerical solutions of system (32) using Crank–Nicolson scheme. Here, u0 = 1 + sin(x) and
v0 = 2 + cos(x), with l = 10,m = 5, κ1 = 0.01, and κ2 = 0.01. (Top) The solutions v(x,τ ) and u(x,τ ) tend to the
spatially homogeneous periodic orbit. (Bottom) The projected views onto the xτ -plane at τ = 20 for v(x,τ )
and u(x,τ ). The stripe structure invades the homogeneous periodic orbit for u(x,τ ) and v(x,τ )
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Figure 3 (a)–(d) Numerical solutions of system (32) using nonstandard finite difference scheme. Here,
u0 = 1 + sin(x) and v0 = 2 + cos(x), with l = 5,m = 1, κ1 = 0.01, and κ2 = 0.01. (Top) The concentration of v(τ ) is
on the left while the concentration of v(τ ) is on the right. (Bottom) The solutions v(x,τ ) and u(x,τ ) tend to the
constant steady state. (e)–(h) Numerical solutions of system (32) sing nonstandard finite difference scheme.
Here, u0 = 1 + sin(x) and v0 = 2 + cos(x), with l = 10,m = 5, κ1 = 0.01, and κ2 = 0.01. (Top) The solutions v(x,τ )
and u(x,τ ) tend to the spatially nonhomogeneous steady state. (Bottom) The projected views onto the
xτ -plane at τ = 20 for v(x,τ ) and u(x,τ ). The stripe structure invades the nonhomogeneous steady states for
v(x,τ ) and u(x,τ )
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Figure 4 (a)–(d) Numerical solutions of system (49) using forward Euler scheme. Here, u0 = 1 + sin(x) and
v0 = 2 + cos(x), with l = 5,m = 1, κ1 = 0.01, and κ2 = 0.01. (Top) The concentration of u(τ ) is on the left while
the concentration of v(τ ) is on the right. (Bottom) The solutions v(x,τ ) and u(x,τ ) tend to the constant steady
state. (e)–(h) Numerical solutions of system (49) using forward Euler scheme. Here, u0 = 1 + sin(x) and
v0 = 2 + cos(x), with l = 10,m = 20, κ1 = 0.01, and κ2 = 0.01. (Top) The solutions v(x,τ ) and u(x,τ ) tend to the
spatially homogeneous periodic orbit. (Bottom) The projected views onto the xτ -plane at τ = 20 for v(x,τ )
and u(x,τ ). The stripe structure invades the nonhomogeneous steady states for u(x,τ ) and v(x,τ )
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Figure 5 (a)–(d) Numerical solutions of system (49) using Crank–Nicolson scheme. Here, u0 = 1 + sin(x) and
v0 = 2 + cos(x), with l = 5,m = 1, κ1 = 0.01, and κ2 = 0.01. (Top) The concentration of u(τ ) is on the left while
the concentration of v(τ ) is on the right. (Bottom) The solutions v(x,τ ) and u(x,τ ) tend to the constant steady
state. (e)–(h) Numerical solutions of system (49) using Crank–Nicolson scheme. Here, u0 = 1 + sin(x) and
v0 = 2 + cos(x), with l = 10,m = 20, κ1 = 0.01, and κ2 = 0.01. (Top) The solutions v(x,τ ) and u(x,τ ) tend to the
spatially nonhomogeneous steady states. (Bottom) The projected views onto the xτ -plane at τ = 20 for v(x,τ )
and u(x,τ ). The stripe structure invades the nonhomogeneous steady states for v(x,τ ) and u(x,τ )
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Figure 6 (a)–(d) Numerical solutions of system (49) using nonstandard finite difference scheme. Here,
u0 = 1 + sin(x) and v0 = 2 + cos(x), with l = 5,m = 1, κ1 = 0.01, and κ2 = 0.01. (Top) The concentration of u(τ ) is
on the left while the concentration of v(τ ) is on the right. (Bottom) The solutions u(x,τ ) and v(x,τ ) tend to the
constant steady state. (e)–(h) Numerical solutions of system (49) using nonstandard finite difference scheme.
Here, u0 = 1 + sin(x) and v0 = 2 + cos(x), with l = 10,m = 20, κ1 = 0.01, and κ2 = 0.01. (Top) The solutions v(x,τ )
and u(x,τ ) tend to the spatially nonhomogeneous steady state. (Bottom) The projected views onto the
xτ -plane at τ = 20 for v(x,τ ) and u(x,τ ). The stripe structure invades the nonhomogeneous steady states for
v(x,τ ) and u(x,τ )
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Figure 7 (a)–(d) Numerical solutions of systems (32) and (49) using Euler method. Here, u0 = 1 + sin(x) and
v0 = 2 + cos(x), with l = 5,m = 1, κ1 = 0.01, and κ2 = 0.01. The plots of solutions v(x,τ ) and u(x,τ ) shows
divergent behavior. (e)–(h) Numerical solutions of systems (32) and (49) using Crank–Nicolson method. Here,
u0 = 1 + sin(x) and v0 = 2 + cos(x), with l = 5,m = 1, κ1 = 0.01, and κ2 = 0.01
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Figure 8 (a)–(d) Numerical solutions of systems (32) and (49) using the nonstandard finite difference
method. Here, u0 = 1 + sin(x) and v0 = 2 + cos(x), with l = 5,m = 1, κ1 = 0.01, and κ2 = 0.01. The plots of
solutions v(x,τ ) and u(x,τ ) show convergent behavior

κ2 = 0.01. In all figures, the system converges to the constant steady state (1, 3.7183). Fig-
ures 4(e)–(h), 5(e)–(h), and 6(e)–(h) represent the mesh plots and projected views for
u(x, τ ) and v(x, τ ). Mesh plots and projected views of Figs. 4(e)–(h), 5(e)–(h), and 6(e)–
(h) indicate that the solutions u(x, τ ) and v(x, τ ) tend to spatially nonhomogeneous steady
states. It has been observed that when we increase the value of dτ by 0.5, the forward Eu-
ler and Crank–Nicolson schemes fail to provide stable solutions (Figs. 7(a)–(d) and 7(e)–
(h)), whereas the explicit nonstandard finite difference scheme provides stable solutions
(Figs. 8(a)–(d)) even for dτ = 0.1, 0.5, 1, 10, 100.

7 Conclusion
In this article, we consider a nonlinear model with diffusion to review the dynamics of
Lengyel–Epstein reaction model describing oscillating chemical reactions. The model
demonstrates the connection between malonic acid, iodine, and chlorine dioxide. When
simulating the model with the given methodology, we have recognized that the techniques
are capturing to the true equilibrium nodes. The stability and uniformity of suggested
techniques are also confirmed with the aid of von Neumann stability bounds and Taylor
series, respectively. Besides, suggested nonstandard finite difference technique is uncon-
ditionally consistent regarding positivity property. The diagrams show that the suggested
finite difference method is dynamically consistent with the performance of continuous
systems. Conversely, two other well-known methods failed to preserve the positivity prop-
erty and shown divergence on diverse step size dτ .
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In the future, we will try to solve this system by using stochastic theory or by adding a
delaying factor and then solving it using numerical techniques.
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